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Abstract: Lysine acetyltransferase 8 (KAT8) is a member of the MYST family of histone
acetyltransferases. It catalyzes the acetylation of histone H4 at lysine 16 (H4K16ac) and non-
histone proteins. Abnormal upregulation or downregulation of KAT8 and its associated
H4K16ac have been observed in malignant tumors, suggesting its close association with
tumorigenesis and progression. Characterized by structural diversity and multi-target
mechanisms, natural agents have been increasingly shown to possess significant antitumor
activity. This review focuses on KAT8, summarizing its molecular mechanisms in regulating
tumor development by catalyzing substrate protein acetylation, which impacts tumor cell
proliferation, cell cycle regulation, apoptosis, DNA damage repair, and autophagy. It
also systematically discusses the pharmacological activities and molecular mechanisms of
small-molecule agents that target KAT8 to inhibit tumor proliferation, including natural
compounds, synthetic drugs, and non-coding RNAs.
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1. Introduction
Malignant tumors are characterized by high incidence and mortality and poor progno-

sis worldwide [1]. Current clinical strategies combine early detection with treatments such
as surgery, chemotherapy, and immunotherapy to improve patient survival. However, ther-
apeutic efficacy depends on multiple factors, including tumor type and drug resistance [2].
Natural medicines—encompassing animal-, plant-, mineral-, and marine-derived agents
validated by modern pharmaceutical systems—exhibit pharmacological activity. Bioactive
natural compounds extracted from these sources are characterized by their structural di-
versity and multi-target mechanisms. In recent years, numerous natural compounds have
demonstrated potent antitumor activity and are utilized as chemotherapeutic agents (e.g.,
paclitaxel) or adjuvant therapies in cancer treatment [3].

Lysine acetyltransferase 8 (KAT8), formerly called males absent on the first (MOF)
and MYST histone acetyltransferase 1 (MYST1), belongs to the MYST family of HATs.
Initially identified in Drosophila as a component of the X-chromosome dosage compen-
sation complex, KAT8 balances X-encoded protein/enzyme levels between sexes [4]. It
is evolutionarily conserved across species, including humans. Structurally, KAT8 con-
tains a chromodomain, a zinc finger domain, and a canonical MYST (MOZ/SAS) domain
(Figure 1) [5]. The MYST (HAT) domain contains an acetyl-coenzyme A binding site and a
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histone-binding region, while the C2HC-type zinc finger domain is critical for substrate
recognition [6].

 

Figure 1. Three-dimensional structure and functional structural domains of KAT8. (A) Functional
structural domains. (B) 3D structure of crystal structure of MYST acetyltransferase domain in com-
plex with N-(1-(5-bromo-2-methoxyphenyl)-1H-1,2,3-triazol-4-yl)-2-methoxybenzenesulfonamide [7].
(C) Legend of each structural domain and its corresponding function.

KAT8 exhibits broad substrate specificity, catalyzing acetylation of histone 4 at lysine
16 (H4K16) and non-histone proteins [8]. KAT8 regulates diverse cellular processes through
its catalytic activities, including embryonic stem cell pluripotency, gene transcription,
DNA damage repair, cell proliferation, apoptosis, autophagy, and mitochondrial homeosta-
sis [9]. In non-small cell lung cancer (NSCLC) cells, KAT8 upregulates p27 transcription
by enhancing H4K16 acetylation (H4K16ac) in the S-phase kinase-associated protein 2
(SKP2) promoter, promoting S-phase progression and proliferation [10]. KAT8 serves as
the catalytic subunit in two distinct complexes: the male-specific lethal (MSL) and non-
specific lethal (NSL) complexes. Beyond the catalytic subunit KAT8, the MSL complex
contains MSL1, MSL2, and MSL3 subunits that specifically acetylate lysine 16 on histone
H4 [11]. In contrast, the NSL complex (comprising KAT8 regulatory NSL complex subunits
1 (KANSL1), 2 (KANSL2), 3 (KANSL3), PHD finger protein 20 (PHF20), host cell factor
C1 (HCFC1), WD repeat domain 5 (WDR5), O-linked N-acetylglucosamine transferase
(OGT), microspherule protein 1 (MCRS1)) exhibits broader substrate specificity, acetylating
histone H4 at lysines 5, 8, and 18, in addition to H4K16, to regulate diverse biological
functions [12]. Moreover, KAT8 acetylates non-histone proteins such as tumor protein
p53 (TP53), lysine demethylase 1A (KDM1A/LSD1), and interferon regulatory factor 3
(IRF3) [13]. For example, KAT8 acetylates p53 at lysine 120 (K120) in its DNA-binding
domain, modulating DNA damage responses [14]. YEATS domain-containing protein 4
(YEATS4), a conserved nuclear protein overexpressed in multiple cancers, was acetylated
by KAT8 in bladder cancer cells, disrupting its interaction with HECT, UBA, and WWE
domain containing E3 ubiquitin protein ligase 1 (HUWE1), inhibiting its ubiquitination and
degradation, thereby suppressing tumor proliferation [15,16]. Selenoprotein P 1 (SEPP1),
a member of the selenoprotein family of selenium transporter proteins and antioxidant
enzymes, with a cluster of differentiation 8 (CD8)+ T cell abundance, could be acetylated
by KAT8 at lysines 247 and 249, which enhanced CD8+ T cell activity and antitumor im-
munity in pancreatic cancer [17,18]. Dysregulated KAT8 expression or enzymatic activity
is implicated in neurological disorders [19], immune diseases [20], and cancer [21]. This
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review summarizes the roles of KAT8 in tumorigenesis and progression and the natural
compounds and small-molecule drugs targeting KAT8 for cancer therapy.

2. Aberrant Expression of Lysine Acetyltransferase 8 (KAT8) in Cancer
Numerous studies have revealed that KAT8 and H4K16ac are intricately associated

with tumor initiation, development, and progression. Acetylation that occurs at H4k16
reduces the negative charge of histones, weakening their interaction with DNA and thereby
relaxing chromatin, which facilitates DNA damage repair, gene transcription, and recom-
bination [22]. It is reported that upregulation of H4K16ac promotes the proliferation of
NSCLC and malignant glioma cells [23]. In addition, H4K16 and α-tubulin deacetylation
mediated by HDAC6 promotes correct spindle organization and meiotic apparatus assem-
bly during porcine oocyte maturation, indicating the role of H4K16ac in regulating the cell
cycle of cancer cells [24]. Moreover, the repression of H3K18 and H4K16 acetylation at the
proto-oncogene Myc promoter region inhibits the Pol II recruitment to initiate Myc tran-
scription in breast cancer cells [25]. Therefore, the imbalance of H4K16ac and its catalytic
enzyme KAT8 is tightly related with tumorigenesis.

Downregulation of KAT8 and its associated H4K16ac has been observed in renal cell
carcinoma, ovarian cancer, hepatocellular carcinoma (HCC), and gastric cancer [26]. Specif-
ically, KAT8 expression was reduced by over 75% in 41% of patients with primary breast
cancer and 79% of patients with medulloblastoma. In a study analyzing 5102 medulloblas-
toma tissues, both mRNA and protein levels of KAT8 were markedly reduced compared
to normal tissues, accompanied by decreased H4K16ac levels. Notably, patients with low
KAT8 expression exhibited significantly lower survival than those with high expression [27].
Similarly, KAT8 expression was downregulated in 90.5% (19/21) of patients with renal cell
carcinoma [28], and its levels correlated positively with survival in patients with liver and
gastric cancer [29].

Conversely, KAT8 is aberrantly upregulated in certain malignancies, including glioblas-
toma, oral tongue squamous cell carcinoma, NSCLC, thymic lymphoma, endometrial can-
cer, and thyroid cancer [30,31]. For example, KAT8 mRNA levels were 1.5–2 times higher
in glioma tissues than in normal brain tissues (p < 0.05) [32]. The differential expression
patterns of KAT8 across tumor and normal tissues, summarized in Figure 2 based on The
Cancer Genome Atlas (TCGA) database, suggest context-dependent roles of KAT8 in high-
versus low-expression tumors.

Figure 2. Differential expression of KAT8 in indicated tumor and normal tissues (TCGA database
updated by 21 May 2025).

3. The Role of Lysine Acetyltransferase 8 (KAT8) in Cancer Progression
As a core member of the MYST HAT family, KAT8 dynamically regulates chromatin

remodeling and gene transcription through H4K16 acetylation, while its acetylation of
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non-histone proteins modulates their activity, thereby influencing critical cellular processes.
It is evident that dysregulation of KAT8 expression or enzymatic activity is closely linked
to tumorigenesis. Paradoxically, however, KAT8 is overexpressed in some cancers but
underexpressed in others, highlighting its divergent roles in tumor proliferation, apoptosis,
and autophagy.

3.1. Lysine Acetyltransferase 8 (KAT8) and Apoptosis

Apoptosis, also called programmed cell death, is a genetically regulated process of
autonomous and orderly cell death that maintains intracellular homeostasis [33]. In tumors
with low KAT8 expression, KAT8 promotes apoptosis. For example, nuclear protein 1 tran-
scriptional regulator (NUPR1) overexpression-mediated downregulation of KAT8 inhibited
programmed apoptosis in HCC cells [34]. Consistent with this, KAT8 overexpression
increased H4K16ac levels, reduced carbonic anhydrase 9 (CA9) expression, and promoted
apoptosis in clear cell renal cell carcinoma [35]. Moreover, KAT8 regulated p53 K120 acety-
lation to induce apoptosis in H9C2 cardiomyocytes, U2OS osteosarcoma cells, and MCF-7
breast cancer cells [36,37]. Mechanistically, KAT8-mediated p53 K120 acetylation promotes
p53 recruitment to the promoters of pro-apoptotic genes BCL2-associated X apoptosis
regulator (BAX) and BCL2 binding component 3 (BBC3/PUMA), enhancing their transcrip-
tion and inducing apoptosis in H9C2 cells [14]. In MCF-7 and MDA-MB231 breast cancer
cells, small interfering RNA-mediated KAT8 knockdown reduced global H4K16ac levels,
silenced the pro-apoptotic gene PYD and CARD domain containing (PYCARD/TMS1/ASC),
and inhibited apoptosis [38].

It is reported that KAT8 autoacetylated at K274 residue, which could be deacetylated by
sirtuin 1 (SIRT1). Overexpressed SIRT1 leads to downregulated KAT8 acetylation as well as
enzyme activity, whereas it increases the recruitment to chromatin in Hela cells [39]. In HeLa
cells, SIRT1 orchestrates an epigenetic-proteostatic cascade through physical interaction
with histone acetyltransferases KAT8 and Tip60 (KAT5). This protein complex facilitates
deacetylation of KAT8/Tip60, thereby abrogating their intrinsic HAT activity. The resultant
suppression of DNA damage repair machinery culminates in apoptosis induction [40].
Moreover, it is reported that acetylation of SIRT1 promoted KAT8 ubiquitination dependent
degradation [41]. KAT8 also bound to the SIRT1 promoter to enhance SIRT1 expression,
which downregulated the signal transducer and activator of transcription 3 (STAT3) and
promoted apoptosis in HepG2 cells [42]. In prostate cancer cells, KAT8 is able to catalyze
the level of H4K16 acetylation modification in the promoter region of nuclear factor-κ B
(NF-κB) to enhance its transcriptional activity, whereas the activation of NF-κB promotes
the deacetylation of KAT8 by SIRT1 to downregulate the level of H4K16ac [43]. In addition,
KAT8 repression induces Caspase 3 cleavage and AR-lacking PC3 cells apoptosis, which
indicated that the balance of KAT8 acetylation mediated by KAT8 and SIRT1 is dependent
on NF-κB activation and corelated with cancer cell apoptosis.

Conversely, in tumors with high KAT8 expression, KAT8 exhibits anti-apoptotic
effects. For example, interferon-gamma (IFNG) stimulation induced the formation of
KAT8-IRF1 transcriptional condensates in NSCLC cells, upregulating the CD274 molecule
(CD274/PD-L1) to inhibit A549 cell apoptosis [42]. Pyruvate kinase M1/2 (PKM/PKM2), a
glycolytic regulator, interacted with and phosphorylated Bcl-2 apoptosis regulator (Bcl-2) to
upregulate its expression [44], suppressing apoptosis in glioblastoma cells and promoting
NSCLC cell proliferation [45]. KAT8 also interacted with PKM2 in the nucleus to acetylate
it at lysine 433, enhancing glycolysis and A549 cell proliferation [46]. Consistent with this,
KAT8 deficiency promoted apoptosis in BHP-10-3 and TT2609 thyroid cancer cells [47].
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In summary, KAT8 bidirectionally regulates apoptosis through interactions with apop-
totic factors and signaling pathways. Its role in cancer cell apoptosis depends on its role in
cancer progression, as reflected by the KAT8 expression level.

3.2. Lysine Acetyltransferase 8 (KAT8) and Cell Proliferation

One of the core biological characteristics of life, cell proliferation refers to the process
by which cells generate new cells through division [48]. Multiple studies have revealed
that KAT8 exerts distinct regulatory effects on tumor cell proliferation depending on its
expression level (high/low) in tumor tissues [10].

In tissues and cells with low KAT8 expression, KAT8 typically suppresses proliferation.
For example, KAT8 knockout induced hyperproliferation in MCF-7 breast cancer cells [49].
Research indicates that KAT8 inhibits the tumorigenicity of HCC cells, suppressing their
proliferation both in vitro and in vivo [33]. Consistent with this, KAT8 expression was
downregulated in HCC tissue samples and correlated positively with estrogen receptor
1 (ESR1/ERα). Targeted knockdown of KAT8 upregulated endogenous ERα, downregu-
lating nuclear receptor subfamily 0 group B member 2 (NR0B2/SHP) and SMAD family
member 7 (SMAD7) expression and significantly promoting HCC cell proliferation [13].
Conversely, elevated KAT8 expression in MGC-803 gastric cancer cells increased H4K16ac
levels, leading to cell cycle arrest at the G1 phase [50].

Whereas, in tissues and cells with high KAT8 expression, KAT8 often promotes prolif-
eration. For example, KAT8 increased H4K16ac levels in the promoter region of the human
papillomavirus oncoprotein E7 in cervical cancer cells, enhancing transcriptional activity
and accelerating proliferation [51]. In endometrial cancer cells, the estrogen/estrogen recep-
tor upregulates KAT8 expression, activates the phosphoinositide 3-kinase (PI3K)/protein
kinase B (AKT) and Ras/Raf/mitogen-activated protein kinase (MEK)/extracellular signal-
regulated kinase (ERK) pathways to inhibit apoptosis of Ishikawa uterine cancer cells [52].
Histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit
(EZH2) catalyzed the trimethylation of histone H3 at lysine 27 (H3K27me3), enhancing
the transcriptional activity of polycomb repressive complex 2 and thereby suppressing
the progression of malignancies such as breast, bladder, and endometrial cancers [53]. In
tongue squamous cell carcinoma tissues, KAT8 expression was upregulated and corre-
lated positively with EZH2 levels. The KAT8 inhibitor CHI-KAT8i5 downregulated KAT8,
reduced EZH2 expression, and inhibited the tumorigenicity of UM1 cells [54]. NF-E2-
related factor 2 (NRF2), a master regulator of cellular antioxidant responses, is able to
regulate cellular resistance to oxidative stress, DNA damage repair, etc. and further regu-
lates cancer progression [55]. KAT8 acetylates NRF2 at lysine 588, facilitating its nuclear
translocation and the activation of downstream oncogenes such as NAD(P)H:quinone
oxidoreductase 1 (NQO1) and heme oxygenase 1 (HMOX1/HO-1), promoting NSCLC
proliferation. Specifically, KAT8 knockdown in vivo and in vitro suppressed NSCLC cell
proliferation by reducing NRF2 acetylation [56]. KAT8-mediated acetylation of sirtuin 6
(SIRT6) significantly inhibited its deacetylase activity and disrupted its interaction with
forkhead box A2 (FOXA2), leading to the transcriptional upregulation of zinc finger E-box
binding homeobox 2 (ZEB2) [57]. Elevated ZEB2 expression correlated with poor overall
survival in patients with cancer and tumor progression, promoting proliferation in A549
and H1299 NSCLC cells [58]. In thyroid cancer tissues with high KAT8 expression, KAT8
knockdown decreased the levels of cyclin D1 (CCND1) and D3 (CCND3), critical regulators
of the G1/S transition, resulting in G1-phase cell cycle arrest and suppressed thyroid cancer
cell proliferation [59]. Conversely, silencing KAT8 in malignant glioma cells downregulated
cyclin-dependent kinase 1 (CDK1), cyclin A, and cyclin B expression and upregulated
p21 expression, leading to G2/M-phase arrest [19]. While KAT8 is overexpressed in both
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thyroid cancer and malignant glioma tissues, the mechanisms underlying its cell cycle
regulation differ between these two cancer types, which we speculate may be attributed to
the diversity of KAT8 substrates involved in fulfilling the biological functions of different
cell types.

In summary, KAT8 regulates tumor cell proliferation by modulating the cell cycle,
tumorigenicity, and related pathways. Similar to its role in apoptosis, its regulatory effects
vary across cancer types and are closely associated with its aberrant upregulation or
downregulation in corresponding tumor tissues. This functional duality may stem from
imbalances in KAT8 expression and catalytic activity.

3.3. Lysine Acetyltransferase 8 (KAT8) and DeoxyriboNucleic Acid Damage and Repair

Abnormal DNA damage repair in cells can lead to DNA mutations, compromising ge-
nomic stability and mediating the transition of cells from a homeostatic state to a malignant
phenotype [60]. Compared to normal tissues, tumor tissues exhibit increased DNA damage,
hindering DNA replication and elevating the incidence of DNA damage, particularly DNA
double-strand breaks (DSBs) [61]. Dysregulated DNA replication control and DNA damage
induce replication stress, a source of genomic instability and a hallmark of precancerous
and cancerous cells [62]. The efficiency of DNA damage repair determines the subsequent
progression of tumors.

It has been reported that KAT8 and its associated H4K16 acetylation play critical roles
in DNA damage response and repair processes, including homologous recombination and
DSB repair [63]. Knockout/overexpression of KAT8 correlated positively with phosphory-
lation of serine 139 in H2A.X variant histone (H2AX), a DNA damage marker (γH2AX), in
MLL-AF9 leukemia cells, indicating that KAT8 promotes DNA damage repair and inhibits
apoptosis in AF9 cells [64]. Consistent with this, the jumonji domain containing 6 arginine
demethylase and lysine hydroxylase (JMJD6)-mediated upregulation of KAT8 in U2OS
and MCF-7 cells enhanced H4K16ac levels near DSBs, facilitating DNA damage repair [65].
In RKO colon cancer cells, after DNA damage induction by ionizing radiation, ATM ser-
ine/threonine kinase (ATM) phosphorylated threonine 392 of KAT8, which recruited the
mediator of DNA damage checkpoint protein 1 (MDC1) and BRCA1 DNA repair associated
(BRCA1) to DNA damage sites for repair, thereby promoting colon cancer cell prolifer-
ation [66,67]. Proliferating cell nuclear antigen (PCNA), a DNA polymerase-interacting
protein, participates in DNA replication and damage repair [68]. Studies have shown that
KAT8 interacts with PCNA, regulating PCNA ubiquitination to promote its recruitment
to replication stress-induced DNA damage sites, thereby initiating the translesion DNA
synthesis pathway for DNA repair [69]. Notably, in U2OS osteosarcoma cells, inhibiting the
interaction between PCNA and DNA polymerase η (POLH) blocks DNA damage repair
and suppresses U2OS cell proliferation [70]. These findings suggest that KAT8 promotes os-
teosarcoma cell proliferation by regulating DNA damage repair via PCNA. The pivotal role
of KAT8 in DNA damage repair highlights its potential as a therapeutic target. Inhibiting
the acetyltransferase activity of KAT8 could suppress the repair of elevated DNA damage
in tumor cells, offering a strategy for developing chemotherapeutic agents or adjuvant
therapies for radiotherapy/chemotherapy.

3.4. Lysine Acetyltransferase 8 (KAT8) and Autophagy

Autophagy is a lysosome-dependent process that degrades aged, damaged, or excess
organelles and proteins to maintain cellular homeostasis [71]. The role of autophagy in can-
cer varies depending on its stage, mutation type, and microenvironment [72]. During early
tumorigenesis, autophagy acts as a survival pathway to suppress tumor initiation and pro-
gression [73]. However, in established tumors, autophagy protects cancer cells [74], while
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excessive activation induces autophagic cell death and inhibits tumor progression [75]. Nu-
merous studies have revealed that post-translational modifications, particularly acetylation,
play crucial roles in autophagy regulation [76].

In fibroblasts, KAT8 increased H4K16ac levels to promote the expression of the au-
tophagy regulator transforming growth factor (TGF)-β, thereby inducing autophagy and
inhibiting fibroblast differentiation [77]. Microtubule-associated protein 1 light chain 3
alpha (MAP1LC3A/LC3) is a key autophagy protein. During autophagy, its cytosolic form
(LC3-I) is converted to the phosphatidylethanolamine-conjugated form (LC3-II), which
localizes to autophagosomal membranes [78]. Rapamycin suppressed KAT8 levels and
H4K16ac levels, promoting the conversion from LC3-I to LC3-II and activating autophagy
in HeLa cervical cancer and U1810 NSCLC cells [79]. GABA type A receptor-associated
protein-like 1 (GABARAPL1) is critical for the autophagolysosomal degradation path-
way [80]. It inhibited the perinuclear transport of autophagosomes and lysosomes, induced
lysosomal degradation, reduced autophagic flux, and regulated autophagy-related pro-
cesses in breast cancer and LNCaP prostate cancer cells [81–84]. KAT8 acetylates H4K16 in
the GABARAPL1 promoter region, inducing its expression and activating epidermal cell
(HaEpi) autophagy [85]. Therefore, KAT8 may regulate autophagy in breast and prostate
cancers via GABARAPL1. Additionally, treating neuroblastoma cells with MG149, a KAT8
inhibitor, impairs global H4K16 acetylation and autophagy regulator PTEN-Induced Kinase
1 (PINK1) expression of neuroblastoma cells further inhibiting autophagy receptor p62
recruitment, resulting in autophagy [86]. Moreover, PINK1 silence downregulates the
autophagy receptor p62, inhibiting mitophagy and promoting renal cancer cell prolifera-
tion [87], which suggests that the role of KAT8 in activating the PINK1 signaling pathway
could induce cancer cell autophagy and influence tumor cell proliferation.

3.5. Lysine Acetyltransferase 8 (KAT8) and Invasion/Migration

Tumor cells actively degrade the basement membrane and extracellular matrix to in-
vade surrounding tissues, leading to cancer metastasis [88,89]. Knocking out KAT8 in HCC
cells or silencing KAT8 in GBM cells significantly reduced their invasion and migration
capabilities [88,89]. Similarly, upregulating KAT8 promoted the proliferation, migration,
and invasion of endometrial cancer Ishikawa cells. In oesophageal squamous cell carcinoma
(ESCC) cells, KAT8 catalyzed the acetylation of fascin actin-bundling protein 1 (FSCN1) at
lysine 41, enhancing its F-actin-bundling activity and promoting filopodia/invadopodia
formation to drive ESCC cell invasion [90]. Ubiquitin-specific peptidase 10 (USP10) sta-
bilized KAT8 and increased H4K16 acetylation in the promoter region of annexin A2
(ANXA2), activating Wnt/β-catenin (CTNNB1) signaling to promote ESCC cell migration
and invasion [91]. The tyrosine kinase bromodomain adjacent to zinc finger domain 1B
(BAZ1B/WSTF) is upregulated in multiple cancers to drive migration and proliferation [92].
In MDA-MB-231 breast cancer cells, KAT8 acetylated WSTF at lysine 426, promoting its
phosphorylation at serine 158 and thereby enhancing its kinase and transcriptional activity,
driving breast cancer cell proliferation, migration, and invasion [93].

Epithelial-mesenchymal transition (EMT) is a process in which cells lose epithelial
features and gain mesenchymal features. It is involved in embryogenesis, wound healing,
and cancer progression, including metastasis [94,95]. Keratin 8 (KRT8), a major intermediate
filament component, is closely associated with cell migration, invasion, and EMT [96]. In
A549 NSCLC cells, KAT8 interacted with and acetylated LSD1, inhibiting LSD1 activity,
which increased the methylation of histone H3 at lysine 4 in the promoters of KRT8 and
cadherin 1 (CDH1/E-cadherin), upregulating their expression and promoting EMT and
tumor invasion [97].
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These findings demonstrate that KAT8 and its H4K16ac-mediated regulatory mecha-
nisms are critically involved in tumorigenesis (Table 1).

Table 1. Mechanisms of KAT8 in regulating the process of various tumors.

Mechanism Target Model Reference

Apoptosis

KAT8 promotes SIRT1 expression to downregulate
STAT3 expression to promote apoptosis. HCC (HepG2) [41]

KAT8 overexpression H4K16 acetylation level
upregulation CA9 expression reduction promotes

apoptosis.
RCC (786-0) [36]

KAT8 interacts with PKM2 and acetylates the PKM2
K433 site thereby upregulating Bcl-2 to restrain

apoptosis.

PRAD
(BHP10-3, TT2609) [47]

Cell
Proliferation

KAT8 promotes upregulation of H4K16 acetylation
levels, cell cycle arrest in G1 phase, and inhibition of

cell proliferation.
STAD (MGC-803) [52]

Knockdown of KAT8 inhibits tumorigenicity of UM1
cells by downregulating EZH2 expression. TSCC (UM1) [43]

Knockdown of KAT8 downregulates acetylation of
NRF2 588 site and inhibits NQO1 and HO-1 expression

to suppress cell proliferation.
NSCLC (H1975) [58]

KAT8 mediates SIRT6 acetylation to inhibit SIRT6 and
FOXA2 interactions, which in turn activates ZEB2
transcription, thereby promoting cell proliferation.

NSCLC (A549, H1299) [59]

KAT8 catalyzes the Skp2 promoter region H4K16ac,
upregulates p27, promotes cell passage through the S

phase, and inhibits cell proliferation.
NSCLC (A549) [13]

DNA Damage and
Repair

KAT8 interacts with PCNA and ubiquitinates it to
promote its recruitment to replication stress DNA

damage sites for DNA damage repair.

Osteosarcoma
(U2OS) [71]

Autophagy

Downregulation of H4K16 acetylation levels by KAT8
promotes increased LC3-LC3II conversion and activates

cellular autophagy.
NSCLC (U1810) [79]

KAT8 downregulates H4K16 acetylation levels, PINK1
expression, inhibits p62 recruitment, and inhibits the

mitochondrial-lysosomal autophagy pathway.

Renal cell carcinoma
(ACNH) [87]

Invasion and
Migration EMT

KAT8 catalyzes the acetylation of the bundle protein
Fascin-K41 site and promotes cell invasiveness. ESCC (KYSE150) [91]

KAT8 acetylates the WSTF-K426 site and promotes
WSTF-S158 phosphorylation, cell migration, and

invasion ability.

Breast cancer
(MDAMB-237) [95]

KAT8 inhibits LSD1 recruitment at the promoter region
and restores the methylation of H3K4 and KRT8, and

inhibits EMT and invasive capability.

NSCLC
(A549) [98]

HCC: human hepatocellular carcinoma; PRAD: prostate adenocarcinoma; STAD: stomach adenocarcinoma; TSCC:
tongue squamous cell carcinoma; NSCLC: non-small cell lung carcinoma; ESCC: esophageal squamous cell
carcinoma.

4. Small-Molecule Drugs Targeting Lysine Acetyltransferase 8 (KAT8)
Small-molecule drugs are organic or synthetic compounds with molecular

weights <1000 Da [99], characterized by high efficacy, low toxicity, strong specificity, and
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better absorption by the human body [98]. Since KAT8 and its associated H4K16ac are
dysregulated in various tumors, small-molecule drugs targeting H4K16ac—including nat-
ural compounds, synthetic agents, and non-coding RNA (ncRNA)-based drugs—have
demonstrated promising antitumor pharmacological activities and molecular mechanisms.

4.1. Natural Compounds Targeting Lysine Acetyltransferase 8 (KAT8)

Natural compounds are bioactive molecules extracted from natural sources, with
plants being the primary reservoir of anticancer agents [100]. Approximately 30 distinct
natural compounds have been isolated from plants to date, and over 3,000 plant-derived
compounds are under investigation for cancer therapy and clinical trials [101]. The phar-
macological activity and indicated mechanism of natural compounds targeting KAT8 are
summarized in Figure 3.

 

Figure 3. The regulatory mechanism of natural compounds targeting KAT8 in tumors. Source of
CAS (https://pubchem.ncbi.nlm.nih.gov) (accessed on 21 May 2025). (A): Capsaicin [50]. (B): Celas-
trol [102]. (C): Resveratrol [103]. (D): Moscatilin [104].

Capsaicin (8-methyl-N-vanillyl-6-noneamide) is an alkaloid extracted from chili pep-
per resin [100]. Its oral bioavailability ranges from 36% to 40%, and it is primarily me-
tabolized via hepatic and intracerebral pathways [101]. The capsaicin transdermal patch
Qutenza (containing 8% capsaicin, 179 mg) is approved by the US Food and Drug Adminis-
tration (FDA) to treat neuropathic pain from postherpetic neuralgia [105]. Extensive studies
have revealed capsaicin’s antitumor effects. For example, it upregulated apoptosis-related
proteins (e.g., caspase 3 [CASP3] and p53) to induce cell death in NSCLC, bladder cancer,
and glioma [106]. Capsaicin also downregulated cyclin D and cyclin E, inducing G1 phase
arrest to suppress breast and prostate cancer progression [107]. In MGC-803 gastric cancer
cells, capsaicin upregulated KAT8 and enhanced global H4K16ac levels, leading to G1
phase arrest and inhibited proliferation [50]. These findings suggest capsaicin’s potential to
suppress tumors with low KAT8 expression.

https://pubchem.ncbi.nlm.nih.gov
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Celastrol ((2R,4aS,6aS,6aR,14aS,14bR)-10-Hydroxy-2,4a,6a,6a,9,14a-hexamethyl-11-
oxo-1,3,4,5,6,13,14,14b-octahydropicene-2-carboxylic acid), a pentacyclic triterpenoid iso-
lated from Tripterygium wilfordii [108], exhibits anti-inflammatory, antitumor, anti-obesity,
and neuroprotective activities [109]. Over 60% of its metabolites are excreted via urine, with
minor amounts via the intestines, although hepatotoxicity, nephrotoxicity, and reproductive
risks remain concerns [110]. Recent studies have highlighted celastrol’s ability to inhibit
breast cancer, prostate cancer, and glioma progression [111]. In non-small cell lung cancer
(NSCLC) cells, celastrol exerts antitumor effects through dual epigenetic and apoptotic
mechanisms. Specifically, celastrol suppresses HDAC1 and HDAC4 expression, conse-
quently elevating global H4K16ac levels. This epigenetic reprogramming activates caspase-
3-dependent apoptotic pathways, ultimately inhibiting NSCLC cell proliferation [102]. The
pharmacological activity of celastrol in inhibiting the proliferation of NSCLC is also con-
firmed in vivo. However, its bioavailability (<40%) is limited by gastrointestinal enzymatic
degradation and first-pass metabolism, necessitating formulation improvements.

Resveratrol (3,4′,5-trihydroxy-trans-stilbene), a natural antibiotic from Imperata cylin-
drica, possesses antioxidant, anti-inflammatory, cardioprotective, and anticancer proper-
ties [112]. Its plasma concentrations peak within one hour post-administration, and it is
metabolized via intestinal and renal pathways [113]. It is demonstrated that resveratrol
could inhibit the proliferation of hematologic malignancies, breast, skin, cervical, ovarian,
gastric, prostate, colon, liver, pancreatic, and thyroid cancers [114–117]. For example, resver-
atrol downregulated Bcl-2 to induce apoptosis in breast cancer cells [118]. It also reduced
H4K16ac levels, triggered S-phase arrest via DNA damage activation, and elevated γH2AX
levels in head and neck squamous cell carcinoma cells, suppressing proliferation [103].

Moscatilin (4,4′-Dihydroxy-3,3′,5-trimethoxybibenzyl), a bibenzyl derivative from
dendrobium species, exhibits immunomodulatory, antioxidant, and anti-ageing effects [119].
Its absorption is limited by gastrointestinal enzymes, gut microbiota metabolism, and first-
pass metabolism, with its metabolism occurring in the intestine and liver [120]. Moscatilin
inhibited the proliferation of colon, breast, pancreatic, and lung cancer cells [121–123]. For
example, it upregulated p53 to induce apoptosis in pancreatic cancer cells. It also inhibited
HDAC3, elevated H4K16ac levels, and promoted apoptosis in MDA-MB-231 breast cancer
cells [104].

4.2. Synthetic Small-Molecule Compounds Targeting Lysine Acetyltransferase 8 (KAT8)

Aspirin (2-acetoxybenzoic acid), a salicylate derivative, exhibits high oral bioavailabil-
ity (~80%), reaching peak plasma concentrations within 0.5–2 h [124]. It is hydrolyzed to
salicylic acid by esterases in the gastrointestinal tract, blood, and liver [125]. Salicylate inhib-
ited KAT8 expression, reduced H4K16ac in the mucin 1 (MUC1) promoter, downregulated
AKT phosphorylation, and suppressed EMT in gastric cancer cells [126].

Chidamide (N-(2-Amino-4-fluorophenyl)-4-[[(E)-3-pyridin-3-ylprop-2-enoyl]amino
methyl]benzamide), an HDAC inhibitor, had an oral bioavailability of ~70% and a
maximum tolerated dose of >5 g/kg in mice. It is approved by China’s FDA for
relapsed/refractory peripheral T-cell lymphoma [127]. It upregulated KAT8 and the
histone methyltransferase EZH2 in H929 and RPMI8226 myeloma cells, enhancing
H4K16ac and H3K27me3 levels in the microtubule-associated protein 1 light chain 3 beta
(MAP1LC3B/LC3B) promoter, enhancing LC3B transcription, activating autophagy, and
inhibiting myeloma proliferation [128].

Gemcitabine (4-amino-1-(2-deoxy-2,2-difluoro-β-D-erythro-pentofuranosyl)pyrimidin-
2(1H)-one hydrochloride), a pyrimidine nucleoside analogue [129], exhibited ~100% bioavail-
ability (~50% oral bioavailability). Its plasma concentrations peaked at 3.2–45.5 µg/mL 30 min
post-infusion, with a half-life of 42–94 min. It is metabolized in the liver and excreted
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renally [130]. It is FDA-approved for advanced ovarian, breast, NSCLC, and pancreatic
cancers [131]. It downregulated KAT8 and H4K16ac levels in T24 bladder cancer cells,
upregulated cleaved poly(ADP-ribose) polymerase 1 (PARP1), downregulated BCL2, and
promoted apoptosis [132]. The pharmacological activity and indicated mechanism of
synthetic small-molecule compounds targeting KAT8 are summarized in Figure 4.

 

Figure 4. The regulatory mechanism of synthetic small-molecule compounds targeting KAT8 in
tumors. Source of CAS (https://pubchem.ncbi.nlm.nih.gov) (accessed on 21 May 2025). (A): Salicylic
acid [126]. (B): Chidamide [128]. (C): Gemcitabine [132].

4.3. Metal-Based Agents Targeting Lysine Acetyltransferase 8 (KAT8)

Inorganic arsenic, a class I carcinogen, modulates histone post-translational modi-
fications and shows anti-tumor activity in indicated types of cancer. In myeloma cells,
arsenic trioxide (As2O3) enhanced lymphokine-activated killer-mediated cytotoxicity to
suppress proliferation [133]. In HeLa cells, As2O3 directly bounds to KAT8, inactivating its
acetyltransferase activity, reducing H4K16ac levels, and upregulating HDAC4 [134]. These
findings suggest the As2O3 potential in targeting tumors overexpressing KAT8 beyond
acute myeloid leukemia.

Hexavalent chromium (Cr[VI]) induced Nupr1 overexpression, reduced H4K16ac
levels, and triggered cell cycle arrest to inhibit HCC proliferation [135].

4.4. Non-Coding RNA

Non-coding RNAs refer to a class of RNA molecules that are not translated into
proteins [136]. They exhibit tumor-specific targeting capabilities and demonstrate promis-
ing therapeutic potential in cancer treatment. Several ncRNA-based biologics have been
approved by the FDA for clinical applications [137]. For example, the microRNA (miR)-29-
based therapeutic agent Remlarsen (MRG-201) [138], currently undergoing Phase II clinical
trials, showed efficacy in treating skin cancer [139]. Additionally, miR-21 has been clinically
applied in gynecological cancers, including ovarian, cervical, and endometrial cancers, as it
regulates the downstream target programmed cell death 4 (PDCD4) [140].

Notably, miR-203 has been reported to upregulate KAT8 expression, promoting p53
acetylation at K120. This epigenetic modification leads to the downregulation of the anti-
apoptotic gene BCL2-like 2 (BCL2L2/BCL-W), ultimately inducing apoptosis in human

https://pubchem.ncbi.nlm.nih.gov
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HCT116 colon cancer cells [141]. Conversely, miR-15a and miR-16-1 downregulated KAT8
expression in chronic lymphocytic leukemia cells, decreasing BCL2 levels and, thereby,
tumor cell proliferation [142]. Reduced or absent expression of miR-15 and miR-16-1 was
observed in 65 patients with chronic B-lymphocytic leukemia with deleted lymphocytic
leukemia 1 (DLEU1/LEU1) and 2 (DLEU2/LEU2) gene deletions [143]. Based on these
findings, we hypothesize that miR-15 and mir-16-1 deficiency or downregulation may
attenuate their inhibitory effects on KAT8, thereby upregulating BCL2 expression and
promoting leukemogenesis and lymphomagenesis. Furthermore, miR-149-5p-mediated
KAT8 suppression reduced global H4K16ac levels in 293/APPsw cells, leading to decreased
soluble amyloid beta precursor protein (APP) beta peptide production and potentially
attenuating Alzheimer’s disease progression [144]. Notably, KAT8 is significantly upreg-
ulated in various malignancies, including thyroid carcinoma, glioblastoma multiforme,
oral tongue squamous cell carcinoma, NSCLC, and thymic lymphoma, where it modulates
cell proliferation [59]. Therefore, these findings suggest that miR-149-5p-mediated KAT8
downregulation may inhibit tumor growth in these malignancies, although experimental
validation is required.

Emerging evidence indicates that long intergenic non-protein coding RNA 2541
(LINC02541/RP11-367G18.1) variant 2 (RP11-367G18.1v2) co-regulates genes enriched
in tumor-associated pathways [145]. The YY1 transcription factor (YY1) is ubiquitously
expressed in mammalian cells and interacts with HATs to activate gene transcription [146].
Mechanistically, the RP11-367G18.1v2-YY1 complex enhanced H4K16 acetylation via EP300
lysine acetyltransferase (EP300), activating the hypoxia-inducible gene solute carrier fam-
ily 2 member 1 (SLC2A1/GLUT1). Colony formation assays confirm that upregulation of
the YY1 complex suppresses tumorigenicity [147]. In pancreatic β-cells, RP11-367G18.1
promoted EMT by increasing H4K16ac levels in the twist family bHLH transcription
factor 1 (TWIST1), snail family transcriptional repressor 2 (SNAI2/SLUG), and vascular
endothelial growth factor A (VEGFA/VEGF) promoters by interacting with EP300 [148].
Additionally, circMYO10, a circular RNA derived from myosin X (MYO10) back-splicing,
is upregulated in osteosarcoma cell lines [149]. CircMYO10 has been shown to activate
Wnt/CTNNB1 signaling via the miR-370-3p/RuvB-like AAA ATPase 1 (RUVBL1) axis
and histone modifier lysine acetyltransferase 5 (KAT5/TIP60), increasing H4K16ac levels
in the MYC proto-oncogene bHLH transcription factor (MYC/c-Myc) promoter to inhibit
osteosarcoma progression [150].

5. Conclusions and Perspectives
Tumor development and progression are closely associated with dysregulated acety-

lation homeostasis. While the role of HDACs in oncogenesis is well-established, HAT
inhibitors have emerged as promising anticancer therapeutic strategies. Over 20 HAT
inhibitors are currently undergoing preclinical and clinical trials as monotherapies or com-
bination therapies, including Zolinza and Istodax, which are approved by the FDA to treat
cutaneous T-cell lymphoma. This review focused on the HAT KAT8, systematically summa-
rizing its expression patterns and associated H4K16ac levels across cancers. It elucidated
the KAT8 dual regulatory roles in tumorigenesis and progression based on its upregulation
or downregulation and its associated signaling pathways. It also catalogued the KAT8-
targeting small molecules (natural compounds and synthetic drugs) that modulate tumor
cell proliferation by correcting KAT8 and H4K16ac levels and regulating downstream
pathways. Notably, while some compounds remain in the exploratory stages and require
optimization of their bioactivity and bioavailability before Phase I/II trials, others (e.g.,
resveratrol) have entered clinical testing or received FDA approval (e.g., gemcitabine).
Natural compounds are gaining attention in chemotherapeutic development due to their
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low toxicity profiles, although challenges in pharmacokinetics and solubility necessitate
further refinement.
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