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Abstract: Rheumatoid arthritis (RA) is a progressive autoimmune disease that is character-
ized by inflammation of the synovial joints leading to cartilage and bone damage. The 
pathogenesis is sustained by the production of pro-inflammatory cytokines including tumor 
necrosis factor (TNF), interleukin (IL)-1 and IL-6, which can be targeted therapeutically to 
alleviate disease severity. Several innate immune receptors are suggested to contribute to the 
chronic inflammation in RA, through the production of pro-inflammatory factors in response 
to endogenous danger signals. Much research has focused on toll-like receptors and more 
recently the nucleotide-binding domain and leucine-rich repeat pyrin containing protein-3 
(NLRP3) inflammasome, which is required for the processing and release of IL-1β. This 
review summarizes the current understanding of the potential involvement of these receptors 
in the initiation and maintenance of inflammation and tissue damage in RA and experimental 
arthritis models. 
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Rheumatoid Arthritis
Rheumatoid arthritis (RA) affects 0.5–1% of the population. It is a systemic dis-
ease, characterized by an erosive symmetrical polyarthritis, where widespread 
synovial inflammation affects both large and small peripheral joints. In addition 
to joint destruction, the accompanying systemic inflammation can lead to comor-
bidities including pulmonary inflammation, vasculitis and an increased risk of 
cardiovascular disease.1 RA is regarded as a classic polygenic autoimmune disease, 
primarily on the basis that 70–80% of patients have autoantibodies such as rheu-
matoid factor (RF) and anti-citrullinated protein antibodies (ACPA). However, not 
all patients express these autoantibodies, and they are neither necessary nor suffi-
cient to cause disease, but are predictive of a more aggressive disease course with 
greater joint erosion.2 The heritability of RA is estimated to be ~50% in ACPA 
positive patients, while seronegative RA is much lower at ~20%.3 However, the 
disease concordance in identical twins is around 12–15%, suggesting a role for 
environmental factors. To date, over 100 genetic loci have been associated with RA, 
though the exact relationship of many of these loci to the disease remains to be 
determined.4

Within the RA joint, peripheral blood mononuclear cells infiltrate the synovial fluid 
and the synovial membrane, alongside expansion of tissue resident fibroblast-like 
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synoviocytes (FLS) leading to the formation of a pannus 
(Figure 1). These cells are highly activated releasing pro- 
inflammatory factors, such as Interleukin (IL)-1, IL-6, IL-17, 
tumor necrosis factor (TNF), vascular endothelial growth 
factor (VEGF) and matrix metalloproteases (MMPs).1 

Furthermore, neutrophils that accumulate in the synovial 
fluid undergo NETosis releasing citrullinated proteins that 
can be recognized by ACPA.5 This sustained inflammatory 
environment, leads to the recruitment of further cells into the 
joint space, whilst FLS invade the cartilage matrix alongside 
activated osteoclasts, degrading the surrounding cartilage 
and bone.1

In clinical practice, the most widely used and effective 
therapies are designed to dampen down inflammatory pro-
cesses. Historically, non-steroidal anti-inflammatory drugs 
and corticosteroids were used. However, for the last 20 
years, the mainstay of therapy in RA have been biological 
therapies targeting pro-inflammatory cytokines or their 
receptors, eg anti-TNF antibodies or IL-6 receptor antibo-
dies. Although modestly effective, those that target IL-1 
are not frequently used due to the superior performance of 
the other biologicals.6 Anti-cytokine activity can also be 

mediated by a number of oral Janus Kinases (JAK) inhi-
bitors that have recently been approved for the treatment 
of RA.7 However, all of these anti-cytokine therapies 
target inflammation in RA downstream in the inflamma-
tory process, none are effective in all patients, many lose 
their efficacy with time and all have significant side 
effects. Thus, there is great interest in exploring upstream 
inflammatory mechanisms, with a view to the identifica-
tion of new therapeutic targets. Over the past two decades 
there has been a considerable focus on understanding the 
contribution of toll-like receptors (TLRs) and more 
recently the nucleotide-binding domain and leucine-rich 
repeat pyrin containing protein-3 (NLRP3) inflammasome 
in sustaining inflammation and joint destruction in RA.

Toll-Like Receptors
TLRs are a family of innate pattern recognition receptors 
that induce pro-inflammatory cytokines in response to both 
microbial-associated molecular patterns (MAMPs) and 
endogenous danger signals termed damage-associated 
molecular patterns (DAMPs). In humans, there are 10 
TLRs that are differentially expressed on both immune 

Figure 1 Pathological changes in a rheumatoid arthritis joint. In established RA, the inflamed synovial membrane forms a pannus, due to infiltration of peripheral blood cells 
and proliferation of fibroblast-like synoviocytes. These cells are highly activated releasing pro-inflammatory mediators and autoantibodies within the joint sustaining the 
inflammatory process. This is accompanied by cartilage damage and osteoclast-mediated bone erosion leading to invasion of the pannus tissue and irreversible deformation 
of the joint.
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and non-immune cells. TLRs 1, 2, 4, 5 and 6 are predo-
minantly expressed at the plasma membrane, whereas 
TLRs 3, 7, 8 and 9 are localized to the endosome.8 

TLR10 is the least characterized member of the family 
and has been suggested to function both at the cell surface 
and within the endosomal compartment.9

TLRs are type 1 integral membrane receptors that share 
a common structure, consisting of an ectodomain of leu-
cine-rich repeats (LRR) where they engage their ligands 
and a cytoplasmic toll-interleukin-1 receptor homology 
(TIR) domain, also shared by the IL-1 receptor, from 
where they initiate signaling. Upon activation, TLRs 
form homo or heterodimers bringing their TIR domains 
into close proximity, permitting the recruitment of the 
TLR adaptor proteins, myeloid differentiation response 
protein 88 (MyD88), MyD88 adaptor-like (MAL), TIR- 
domain-containing adapter-inducing interferon-β (TRIF) 
and TRIF-related adaptor molecule (TRAM). Generally, 
MyD88 is engaged by all TLRs except TLR3, MAL by 
TLR2 and TLR4, TRIF by TLR3 and TLR4 and TRAM 
by TLR4.10 However, TLR adaptor proteins have been 
shown to signal from TLRs outside this general consensus 
in a cell type dependent manner. For example, in murine 
bone marrow-derived macrophages (BMDM), TLR7 and 
TLR9 require MAL with TLR7 also suggested to use 
TRAM.11,12 Furthermore, TRAM may also function as 
an adaptor protein for TLR2 in primary human FLS, 
human umbilical vein endothelial cells and murine 
embryonic fibroblasts.13

Dependent on the adaptor proteins recruited, various 
signaling pathways are engaged that culminate in the acti-
vation of transcription factors that include nuclear factor- 
κB (NF-kB), activator protein-1 (AP-1) and interferon 
regulatory factors (IRFs) to induce pro-inflammatory cyto-
kines such as TNF, IL-1β, IL-6 and type I interferon.8 

Following TLR activation, IL-1β is translated as 
a biologically inactive 31kDa precursor requiring proteo-
lytic cleavage by caspase-1 to an active mature 17kDa 
molecule before being released from cells. This process 
requires the formation of the inflammasome, a cytosolic 
multi-protein complex to first activate pro-caspase-1.14,15

The NLRP3 Inflammasome
Several types of inflammasome have been identified, of 
which the nucleotide-binding domain and leucine-rich 
repeat pyrin containing protein-3 (NLRP3) inflammasome 
is the most extensively studied. It consists of a LRR 
domain at the C-terminus considered to be the sensing 

domain, a central nucleotide-binding domain (NBD or 
NACHT domain) and a pyrin domain (PYD) at the 
N-terminus.16 Upon activation, NLRP3 oligomerizes with 
the adaptor protein apoptosis-associated speck-like protein 
containing CARD (a caspase activation and recruitment 
domain) (ASC), which then recruits and activates pro- 
caspase-1 to form the inflammasome (Figure 2).17 Once 
activated, caspase-1 cleaves pro-IL-1β and gasdermin 
D (GSDMD) into two fragments. The GSDMD-N termi-
nus fragments then oligomerize forming pores in the cell 
membrane which facilitate IL-1β release. This also initi-
ates pyroptosis, an inflammatory form of cell death char-
acterized by cell swelling and rupture, leading to the 
release of the cytoplasmic contents.18,19

To produce mature IL-1β, most cells require two dis-
tinct signals. A priming step is required to to activate NF- 
κB to initiate the transcription of pro-IL-1β and NLRP3, 
which is expressed at low levels under resting 
conditions.20 A second signal is then needed to stimulate 
the assembly of the NLRP3 inflammasome to enable the 
processing and release of IL-1β (Figure 2). Priming has 
been demonstrated following activation of several differ-
ent receptors. Ligands that activate TLR2, TLR3, TLR4, 
TLR7, TLR8 and TLR9 all induce IL-1β release.21,22 

Upregulation of NLRP3 expression has been observed in 
murine macrophages following activation of TLR2, 3 and 
4.23 In addition, activation of TLR2, TLR3, TLR4, TLR7, 
NOD2 or stimulation with TNF, IL-1α or IL-1β results in 
the cleavage of caspase-1 in the presence of ATP, where 
ATP alone is not sufficient; further demonstrating the 
requirement for priming.20,24 NLRP3 is also activated by 
a diverse range of stimuli, suggesting a role as a sensor of 
cellular stress. These stimuli include reactive oxygen spe-
cies, mitochondrial dysfunction, ion fluxes due to K+ or 
Cl− efflux, Na+ influx and Ca2+ mobilization and lysoso-
mal damage due to uptake of crystalline molecules, such 
as monosodium urate and cholesterol crystals.25 In con-
trast, primary human monocytes engage an alternative 
pathway; TLR4 can induce IL-1β release in the absence 
of a separate NLRP3 activation signal or the induction of 
pyroptosis.26

As a potent inducer of inflammation and cell death, 
NLRP3 activity needs to be tightly regulated. In addition 
to a low expression in resting cells, further regulation can 
be achieved through post-translational modifications 
including phosphorylation, ubiquitination, nitrosylation 
and sumoylation.27–30 Furthermore, several proteins are 
suggested to interact with NLRP3 to regulate 
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inflammasome assembly.25 Most recently, a member of the 
TIR domain protein family, sterile alpha and TIR motif 
containing 1 (SARM1) was demonstrated to regulate 
NLRP3 through its TIR domain, inhibiting ASC oligomer-
ization and caspase-1 activation.31

Together, the ability of TLRs and NLRP3 to respond to 
DAMPs and stimuli induced by cellular stress makes them 
key candidates for sustaining inflammation in sterile 
inflammatory diseases such as RA. Moreover, induction 
of pyroptosis following NLRP3 activation would poten-
tially release further DAMPs with the potential to activate 
TLRs sustaining a chronic cycle of inflammation.

TLRs in RA
In early studies of TLRs in RA, their potential involve-
ment in RA pathophysiology became evident from studies 

of arthritis models using TLR deficient mice. In addition, 
we also demonstrated a role for the TLR adaptor proteins 
MyD88 and MAL in spontaneous production of cytokines 
and MMPs from human RA synovial membrane 
cultures.32 Since then, a wealth of research studies has 
demonstrated the upregulation of potential endogenous 
TLR ligands within the serum and synovial joints of RA 
patients (Table 1), with all members of the TLR family 
having been associated with RA in some way (Table 2). 
However, for several TLRs, it is yet to be determined 
whether changes in expression or function are a cause or 
a consequence of inflammation in RA.

TLR2
To signal, TLR2 forms a heterodimer with TLR1 or TLR6 
and possibly TLR10, which will be discussed later. TLR2 

Figure 2 Two signal model for classical NLRP3 inflammasome activation by TLR4. During the priming stage, activation of TLR4 by MAMPs or DAMPs upregulates NLRP3 
and pro-IL-1β expression through NF-κB activation. This is closely followed by activation and assembly of the NLRP3 inflammasome, which can be induced by various stimuli 
including K+ efflux, Ca2+ signaling, mitochondrial dysfunction, and lysosomal rupture. Upon activation, caspase-1 cleaves pro-IL-1β and GSDMD resulting in pyroptosis and 
IL-1β release. Created with BioRender.com. 
Abbreviations: TLR, toll-like receptor; MAMPs, microbe associated molecular patterns; DAMPs, damage-associated molecular patterns; MAL, MyD88 adaptor-like; MyD88, 
myeloid differentiation primary response 88; IRAK, IL-1R–associated kinase; TRIF, TIR-domain-containing adaptor protein-inducing IFN-β; TRAM, TRIF-related adaptor 
molecule; TRAF, TNF receptor-associated factor; TAK, TGF-β-activated kinase; TAB, TAK1 binding protein; NEMO, NF-κB essential modulator; IKK, IκB kinase; NF-κB, 
nuclear factor-κB; NLRP3, nucleotide-binding domain and leucine-rich repeat pyrin containing protein-3; IL, interleukin; ASC, apoptosis-associated speck/like protein 
containing a CARD; GSDMD, gasderminD; ROS, reactive oxygen species.
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is highly expressed in RA blood and synovial fluid mono-
cytes and synovial lining macrophages.33,34 Compared 
with osteoarthritis (OA), TLR2 is also elevated at the 
mRNA level in RA synovial tissue, with the highest 
expression associated with patients that do not respond to 
anti-TNF treatment.35 Correspondingly, TLR1, 2 and 6 
mRNA levels in whole blood are reduced in patients that 
respond to anti-TNF therapy.35 However, within the syno-
vial tissue TLR6 mRNA is not upregulated and TLR1 
expression is mainly increased in seropositive RA.35,36 In 
addition to increased expression of TLR2, several endo-
genous TLR2 ligands are also present within RA serum 

and synovial tissue indicating the potential for TLR2 acti-
vation in RA pathogenesis (Table 1). Indeed, High- 
Mobility-Group-Protein B1 (HMGB-1) can stimulate 
TLR2 on RA monocytes to induce IL-23, IL-6 and IL-17 
promoting the differentiation of Th17 cells.37,38 Also, 
extracellular heat shock protein 96 within the RA syno-
vium correlates with inflammation and synovial lining 
thickness.39

Additionally, RA patient monocytes produce higher 
levels of cytokines compared to healthy donors upon acti-
vation of TLR1/2 and TLR2/6.33,40,41 However, despite 
increased TLR1 in seropositive RA, we found no associa-
tion of RF or ACPA status with the level of TLR1/2 
cytokine production; although TLR1/2 induced IL-6 did 
correlate with DAS28.36,40 TLR2 activation of RA FLS 
also strongly induces Receptor activator of nuclear factor 
kappa-Β ligand (RANKL) promoting osteoclastogenesis 
and TLR2 activated M2 macrophages derived from RA 
patient monocytes exhibit an impaired anti-inflammatory 
activity.42,43 In addition to cytokine production, TLR2 has 
also been demonstrated to promote cell invasion and 
migration in RA synovial explants.44 Indeed, inhibition 
of TLR2 in RA synovial explants with the anti-TLR2 
antibody OPN301 led to a decrease in spontaneous cyto-
kines, MMPs and FLS migration in response to explant 
conditioned media.45

Similar to RA, experimental arthritis models also 
report increased TLR2 expression, which is decreased in 
studies where anti-inflammatory agents are used to ame-
liorate disease.35,46–48 However, variable results have been 
described for TLR2 in the pathogenesis. In the IL-1Ra−/- 

spontaneous arthritis model, mice develop a more severe 
disease in the absence of TLR2 due to a modulation of 
T cell balance from T helper (Th)2 and regulatory T cells 
(Tregs) towards Th1 cells, suggesting a protective role for 
TLR2.49 However, TLR2 has been shown to be important 
in the development of arthritis induced by intra-articular 
injection of streptococcal cell wall fragments, with 
TLR2−/- mice having a reduced disease severity.50 

Furthermore, in the murine collagen induced arthritis 
(CIA) model, TLR2 becomes elevated in blood samples 
during the pre-onset stage and then falls during early 
arthritis, suggesting a possible role in disease induction.35

TLR3
TLR3 is also highly expressed in the RA synovium in both 
early and established disease, where it is potentially 

Table 1 Endogenous Toll-Like Receptor Ligands Associated with 
Rheumatoid Arthritis

TLRs Endogenous Ligands

TLR2 High-Mobility-Group-Protein B137

Heat shock protein 9639

Serum amyloidA127

SNAP-associated protein128

Heat shock protein 6034

TLR3 RNA released by necrotic synovial fluid cells54

TLR4 High-Mobility-Group-Protein B137

Citrullinated fibrinogen-containing immune complexes69

Tenascin-C129

S100 Calcium Binding Protein A8130

Soluble biglycan131

Heat shock protein B8132

Heat shock protein 9639

Heat shock protein 6034

Alpha-enolase133

TLR5 High-Mobility-Group-Protein B176

TLR7 Single-stranded RNA81

miR-let-7b88

Small extracellular vesicles -derived-miR-574-5p87

TLR8 Small extracellular vesicles -derived-miR-574-5p87

TLR9 DNA fragments94,134

TLR10

Abbreviation: TLR, toll-like receptor.
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activated by dsRNA released from cells within the 
joint.51,52 In culture, RA FLS release RNA under hypoxic 
conditions, as would be present in the pannus and corre-
spondingly extracellular RNA has been detected within the 
RA synovial lining layer of patient samples.53 

Additionally, RNA released from necrotic synovial fluid 
cells has been shown to stimulate TLR3 on FLS in culture 
and significantly increased levels of dsRNA are present in 
the synovial fluid of RA patient with an erosive disease 
course.54,55 Upon activation of TLR3, FLS induce IL-6, 
MMPs, B cell activating factor (BAFF) and VEGF that 

support inflammation, cartilage damage, angiogenesis, 
B cell activation and can enhance Th1 and Th17 cell 
expansion.56,57 In addition, TLR3 activation of monocytes 
induces osteoclast differentiation, which is further 
enhanced by TLR3 induced RANKL released from FLS.58

Elevated TLR3 expression has also been observed in 
the CIA model and in rat pristane induced arthritis (PIA), 
where treatment with methotrexate to suppress disease 
also prevented TLR3 induction.59 Likewise, suppression 
of TLR3 with the microRNA mimic miRNA-26a amelio-
rates disease in the PIA model.60 This increase in TLR3 

Table 2 Summary of Some of the Main Associations of TLRs with RA Pathogenesis in Human and Animal Disease Models

Rheumatoid Arthritis Experimental Animal Models

Altered TLR 
expression

↑TLR1,35,36 ↑TLR2,33–35 ↑TLR3,51,52 ↑TLR4,35,51,63– 

66 ↑TLR5,77 ↑TLR8,35,36,81 ↑TLR9,33,56,95 ↑TLR10 in B cells104 

and NK cells103 and ↓TLR10 in PBMCs from active RA vs 

inactive.101

↑TLR246–48 (pre-onset of disease in CIA35) 
↑TLR3 (CIA model, Rat PIA model)59,61

Association 
with disease 
activity

DAS28 correlates with TLR1/2 induced IL-6 from RA 

monocytes40 and expression of monocyte TLR577 and 
TLR7.81 

Synovial TLR4 expression correlates with synovitis.36 

Patients expressing the less inflammatory TLR8 M1V variant 
exhibit reduced disease severity.82 

TLR10 missense mutation associated with increased disease 

severity.102 

↑TLR10 expression in B cells104 and ↓TLR10 in PBMCs101 

associated with active disease and increased severity.

Murine CIA model: TLR4 andTLR7 deficient mice and 

therapeutic inhibition of TLR4 or the endosomal TLRs 
reduces disease severity.71,73,85,89,90 HTLR8tg mice are more 

susceptible to CIA.93 TLR9 activation by apoptotic cells is 

protective.96 

Rat CIA model: Intraarticular knockdown of TLR7 reduced 

disease.91 

Rat PIA model: MiRNA suppression of TLR3 reduces 
disease.60 Prophylactic TLR9 inhibition reduces disease 

onset.99 

IL-1Ra-/- spontaneous arthritis model: TLR2-/- more severe 
disease.49 Inhibition of TLR4 suppresses disease.73 

SCW model: TLR2-/-50 and TLR9-/-99 show reduced severity. 
K/BxN serum transfer model: TLR9-/-99 no effect, TLR4-/- 

mice are protected.72 

Intraarticular injection of bacterial DNA induces arthritis in 
C57/BL6 mice.97 

AIA rat model: TLR4 antagonist reduces joint inflammation 

and bone damage.74

Pro- 
inflammatory 
cytokine 
production

Activation of TLR1/2 and TLR2/6.33,40,41 

TLR4 activated RA SF macrophages65 and TLR5 activated 
monocytes induce elevated cytokines.40 

Inhibition of TLR245 and TLR883–85 reduces spontaneous 

cytokine release from RA synovial tissue.

TLR8 expression correlates with pro-inflammatory joint 

cytokines in hTLR8tg CIA.93 

Inhibition of TLR4 suppresses disease and reduces cytokine 

release from FLS in the AIA rat model.74

Osteoclasto- 
genesis

TLR2,42 TLR3,58 TLR5,78 TLR7 and TLR887 TLR4 (CIA model),70 TLR5 (CIA model)78 and TLR9 (rat PIA 

model)99

Cell invasion/ 
migration

TLR244,45 

TLR578

Abbreviations: AIA, adjuvant induced-arthritis; CIA, collagen-induced arthritis; DAS28, disease activity score 28; FLS, fibroblast-like synoviocytes; hTLR8tg, human TLR8 
transgenic; IL, interleukin; IL-1Ra, IL-1 receptor antagonist; M1V, methionine1valine; miRNA, microRNA; NK cells, natural killer cells; PBMCs, peripheral blood mononuclear 
cells; PIA, pristane-induced arthritis; RA, rheumatoid arthritis; SCW, streptococcal cell wall; SF, synovial fluid; TLR, toll-like receptor; ↑, upregulated; ↓, downregulated.
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expression may also be connected with T cell activation, as 
co-culture of pristane primed T cells or their conditioned 
media upregulated TLR3 on FLS.61 This effect may in part 
be associated with IL-17, a pathogenic cytokine released 
by Th17 cells, which increases TLR3 expression in FLS in 
culture.62

TLR4
Increased TLR4 is evident in synovial fluid cells of patients 
with early and longstanding RA, as well as in RA peripheral 
blood monocytes and CD8+ T cells.35,51,63–66 Furthermore, 
RA synovial fluid macrophages have an increased cytokine 
response upon TLR4 stimulation.65 In particular, seroposi-
tive RA patients are reported to have higher levels of syno-
vial TLR4, which positively correlates with synovitis.36 

Within the synovium, TLR4 may be upregulated in RA 
FLS due to overexpressed histone methyltransferase mixed- 
lineage leukemia 1, which in turn upregulates TLR4 
expression.67 However, miRNA regulation may also be 
important, for example, RA FLS have reduced expression 
of miR-506 which is suggested to limit TLR4 expression.68

Elevated TLR4 alongside the presence of 
a considerable number of TLR4 DAMPs such as 
HMGB-1 and ACPA immune complexes containing citrul-
linated fibrinogen within the serum and synovial fluid of 
RA patients, suggests TLR4 may play an active role in RA 
(Table 1).37,69 Indeed, in murine CIA, disease development 
leads to the upregulation of multiple endogenous TLR4 
ligands, which are associated with CIA pathogenesis and 
promote osteoclast differentiation.70 Furthermore, in CIA 
and the K/BxN serum transfer model, TLR4 deficient mice 
are protected from joint destruction with reduced cell 
infiltration.71,72 Additionally, the naturally occurring LPS 
from Bartonella Quintana that antagonizes TLR4, can also 
therapeutically suppress disease severity in both CIA and 
the spontaneous IL-1Ra−/- model.73 Similarly, the TLR4 
antagonist TAK-242 can suppress the expression of 
inflammatory cytokines from FLS and reduce local joint 
inflammation and bone damage in a complete Freund’s 
adjuvant (CFA)-induced arthritis (AIA) rat model.74 

However, despite these encouraging results from experi-
mental models, inhibition of TLR4 with a monoclonal 
antibody NI-0101 in RA patients produced no benefit in 
a recent clinical trial.75

TLR5
Similar to TLR2 and TLR4, TLR5 recognizes HMGB-1 as 
its endogenous ligand (Table 1).76 TLR5 was initially 

associated with RA pathogenesis due to increased expres-
sion in RA synovial tissue lining and sublining macro-
phages and endothelial cells.77 The expression of TLR5 on 
peripheral blood monocytes has since been correlated with 
DAS28, where this elevated expression is reduced in 
patients receiving anti-TNF treatment, suggesting 
a possible regulatory effect of TNF.77,78 Further influence 
on expression may also come from miRNAs, as miR-3926 
which limits TLR5 expression is down-regulated in FLS 
where TLR5 is accordingly upregulated.79

Functionally, a connection between TLR5 and RA 
pathogenesis may arise through its ability to promote 
angiogenesis and osteoclastogenesis. RA synovial fluid 
can induce endothelial cell migration and tube formation 
and also monocyte chemotaxis in a TLR5 dependent 
manner.78,80 Activation of TLR5 on RA peripheral blood 
mononuclear cells (PBMCs) can also synergise with TNF 
to facilitate osteoclast precursor cell differentiation.78 

Furthermore, the activation of TLR5 on RA monocytes 
with flagellin can also induce higher levels of IL-6 and IL- 
10 than healthy donor monocytes irrespective of RF or 
ACPA status; however, this did not correlate with 
DAS28.40

TLR7 and TLR8
TLR7 and TLR8 both recognise ssRNA and are expressed 
at higher levels in RA synovial tissue lining and sublining 
macrophages, synovial fluid macrophages and peripheral 
blood monocytes.36,81 In particular, TLR8 expression is 
notably raised within the synovial tissue of seropositive 
RA patients.36 However, when comparing mRNA levels 
within RA synovial tissue with OA samples, a strong trend 
towards increased TLR8 was observed but no difference 
was detected for TLR7.35 Interestingly, RA patients carry-
ing the M1V variant of TLR8 that induces lower cytokine 
levels upon TLR8 stimulation of monocytes exhibit 
a reduced disease severity.82 In agreement with this, we 
have demonstrated that inhibition of endosomal TLRs and 
in particular inhibitors that target TLR8 can suppress 
spontaneous cytokine production from human RA synovial 
membrane cultures.83–85 However, it is expression of 
TLR7 but not TLR8 in RA monocytes that is reported to 
be associated with DAS28 and TNF. Additionally, this 
study demonstrated that RNA present in RA synovial 
fluid could stimulate RA monocytes to produce TNF.81 

Although RNA released from cells is quite unstable, LL- 
37 which is upregulated within the RA synovium can 
protect it from degradation to enable activation of TLR7 
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and TLR8.86 Furthermore, FLS from ACPA+ patients 
release extracellular vesicles containing miR-574-5p, 
which activates TLR7 and TLR8 to induce 
osteoclastogenesis.87 Similarly, miR-let-7b can activate 
TLR7 on monocytes to induce TNF and IL-6 and promote 
differentiation to M1 macrophages when released in extra-
cellular vesicles by synovial fluid macrophages.88

Experimental arthritis models have also indicated 
a pathogenic role for TLR7 and TLR8. We have demon-
strated that inhibitors of the endosomal TLRs therapeuti-
cally suppress disease in the murine CIA model.85,89,90 

Moreover, mice deficient of TLR7, exhibit reduced disease 
severity in the CIA model following disease onset. This 
was associated with decreased IL-17 and elevated levels of 
Tregs, suggesting a role for TLR7 in regulating T cell 
responses.89 In agreement with this data, intra-articular 
knockdown of TLR7 also improves disease activity in 
the rat CIA model.91 In contrast, the investigation of 
TLR8 has proven more complicated, as unlike in human 
cells, murine TLR8 does not respond to stimulation with 
ssRNA.92 However, transgenic mice expressing human 
TLR8 have been generated and found to be more suscep-
tible to CIA with TLR8 expression correlated with pro- 
inflammatory cytokines within the joints.93

TLR9
As a receptor for unmethylated CpG motifs within DNA, 
TLR9 also has the potential to be activated in RA, where 
patients have elevated levels of circulating immune com-
plexes containing cell-free DNA compared to healthy 
controls.94 In addition, TLR9 is upregulated in FLS, 
B-cells, monocytes and neutrophils of RA patients.33,56,95 

However, there are few studies of TLR9 in RA pathology, 
instead, most data have been generated in experimental 
arthritis models. Although an anti-inflammatory effect has 
been reported in the CIA model, where addition of apop-
totic cells reduced the arthritis score in a DNA and TLR9 
dependent manner, most studies indicate a pro- 
inflammatory role for TLR9.96 Indeed, intra-articular 
injection of bacterial DNA containing CpG motifs in 
C57BL/6 mice induces arthritis.97 Furthermore, co- 
activation of TLR9 and the B cell receptor with DNA 
containing immune complexes can stimulate RF autoreac-
tive B cells.98 In more recent studies, TLR9 was suggested 
to participate in the T cell-dependent phase of inflamma-
tory arthritis models. In the rat PIA model, inhibition of 
TLR9 before the onset of disease reduced the severity of 
disease, serum IL-6, osteoclast formation and cartilage 

degradation, whereas therapeutic inhibition had no effect. 
In addition, TLR9−/- mice demonstrated a reduction in the 
T cell-dependent phase of streptococcal cell wall-induced 
arthritis. Whereas TLR9 deficiency had no effect on the 
T cell-independent K/BxN serum transfer model.99

TLR10
Currently, TLR10 is the least understood of the human 
TLRs. It has been suggested to form homodimers or het-
erodimers with TLR1, 2 or 6, permitting engagement with 
a diverse range of ligands including dsRNA and the TLR1/ 
2 ligand Pam3Cys. Furthermore, depending on the type of 
dimer formed, TLR10 is suggested to be able to produce 
a pro-inflammatory or an inhibitory effect.100 Similarly, 
mixed results have emerged for the role of TLR10 in 
RA. In line with TLR10 having an anti-inflammatory 
role, TLR10 mRNA is expressed at lower levels in 
PBMCs of RA patients with active disease, whilst 
a missense mutation (I473T) has been associated with 
increased disease severity and a lower response to the anti- 
TNF biological infliximab.101,102 However, TLR10 is con-
versely upregulated in RA natural killer cells compared to 
healthy controls and in B cell subsets where a correlation 
with disease activity was observed.103,104 Thus, the func-
tion of TLR10 in RA may be complex and cell type 
dependent.

The NLRP3-Mediated Immune 
Response in Rheumatoid Arthritis
In addition to the induction of proinflammatory cytokines 
by TLRs in RA, the NLRP3 inflammasome is likely to 
have a key role in the processing and release of IL-1β. 
This was first demonstrated in the CIA model, where 
NLRP3 expression is increased within synovial tissue 
and correlates with disease severity.105 Furthermore, 
when treated with the NLRP3 inhibitor MCC950, CIA 
mice exhibit a reduction in disease severity, synovial 
inflammation and cartilage erosion.106 NLRP3 is also ele-
vated in RA synovial tissue, as well as whole blood and 
CD4 T cells from RA patients with active disease.106–108 

In addition, active caspase-1 in CD4 T cells correlates with 
DAS28 and IL-17A in patient sera.108

The activation of NLRP3 in RA could be triggered by 
several different pathways. As discussed previously, TLR 
activation by DAMPs can induce NLRP3 and pro-IL-1β 
expression. However, several DAMPs are suggested to addi-
tionally activate NLRP3 assembly. Extracellular heat shock 
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protein 96 which is elevated in RA has a dual action activat-
ing TLR2 and NLRP3 in murine macrophages where 2 
signals are required for IL-1β release.39,109 Also, ACPA 
that can activate TLR4 when complexed with citrullinated 
fibrinogen can also indirectly stimulate NLRP3 induced IL- 
1β release in macrophages, due to activation of pannexin 
channels releasing ATP which then activates P2X7 receptors 
resulting in K+ efflux.69,110 Accordingly, higher levels of IL- 
1β are detected in the synovial tissue of ACPA+ compared to 
ACPA- patients and OA patients.110 In addition, the uptake 
of colloidal calciprotein particles by RA monocytes at sites 
of bone erosion has been suggested to activate the NLRP3 
inflammasome.111

Further enhancement of NLRP3 activity may arise in 
RA due to dysregulation of molecular regulators of inflam-
matory signaling. Mice deficient in the RA susceptibility 
gene A20, also known as tumour necrosis factor-α induci-
ble protein 3 (TNFAIP3), develop a spontaneous erosive 
arthritis associated with enhanced NLRP3 expression and 
IL-1β secretion, similar to that observed in RA patients. 
Moreover, A20 deficient murine BMDM demonstrates 
hyperactivation of NLRP3 inflammasome, IL-1β release 
and pyroptosis, suggesting a negative regulatory role for 
A20 on NLRP3.112 In addition, the PTPN22 R620W gain- 
of-function variant associated with RA susceptibility, has 
also been shown to regulate NLRP3 dephosphorylation 
and subsequent activation.113

Interestingly, the vitamin D receptor has also been 
suggested to negatively regulate NLRP3 inflammasome 
assembly through suppressing BRCC3-mediated deubiqui-
tination of NLRP3, which corresponds with the finding 
that RA patients frequently have low Vitamin D levels 
that correlate with disease activity.114,115 More recently, 
we demonstrated in RA monocytes that a reduced expres-
sion of SARM, which negatively regulates NLRP3, was 
associated with elevated TLR1/2-induced IL-1β and 
DAS28. Furthermore, RA patients responsive to anti- 
TNF therapy then displayed a transient increase in the 
expression of SARM in their monocytes, which was not 
observed in non-responders.116

Further compounding effects on NLRP3 activation 
have been suggested in the presence of key RA cytokines. 
TNF can prime cells such as FLS to upregulate NLRP3 
and pro-IL-1β. However, FLS require an additional signal 
to induce inflammasome activation but this can be 
achieved by extracellular calreticulin which is elevated in 
RA joint and serum where it correlates with disease activ-
ity leading to an increase in IL-1β release.117–119 In 

addition, IL-6 can enhance monocyte NLRP3 overactiva-
tion and pyroptosis, induced by pentraxin-3 (PTX3) and 
C1q which are elevated in RA serum.120 Furthermore, 
inhibition of IL-6 in the CIA model reduces NLRP3 acti-
vation and IL-1β release.121

Conclusion
Although there is a wealth of information supporting 
a contribution from both TLRs and the NLRP3 inflamma-
some in RA pathophysiology, there are still significant 
gaps in our understanding. Despite two decades of 
research, therapeutic interventions targeting these path-
ways have yet to be successfully translated into the clinic. 
Mechanistic insights have been forthcoming from experi-
mental arthritis models; however, these do not always 
translate to the human disease, as can be seen with the 
recent clinical trial of NI-0101 to inhibit TLR4.75 In 
recent years, numerous inhibitors targeting TLR activa-
tion have entered clinical trials for other inflammatory 
conditions or Phase I safety trials in healthy volunteers, 
but other than NI-0101, none have yet entered clinical 
trials for RA.122 However, several trials have commenced 
with inhibitors that target IRAK4 or Bruton’s tyrosine 
kinase (Btk) which lie downstream of many TLRs. 
A Phase II trial with Fenebrutinib (GDC-0853) a Btk 
inhibitor showed a moderate improvement in disease 
activity compared to placebo and a phase IIb trial of 
PF-06650833 an IRAK4 inhibitor, produced 
a significant clinical improvement in moderate and severe 
RA patients compared to placebo control.123,124 For the 
TLRs, it will now be important to determine which recep-
tors are pivotal in the disease process rather than simply 
dysregulated as a downstream consequence of the inflam-
matory environment. With so many TLRs potentially 
contributing to RA, it will also be important to gain 
a better understanding of how their expression and func-
tion is affected by LncRNA, miRNAs and shared down-
stream signaling regulators. This may provide insights 
into novel ways to limit inflammation. Several small 
molecular weight drugs have already been developed to 
inhibit the NLRP3 inflammasome. A phase II clinical trial 
for RA using CP-456,773 (later renamed MCC950) was 
discontinued due to liver toxicity; however, several new 
inhibitors that target NLRP3 activation are in develop-
ment either at the preclinical stage, in early clinical trials 
in healthy volunteers or trials for other inflammatory 
conditions.125,126 Although inhibition of IL-1 is not as 
effective as suppressing other cytokines such as TNF and 
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IL-6 in RA, NLRP3 inhibitors may still have a place 
alongside these biological therapies. Indeed, with the 
potential for many different pathways driving inflamma-
tion in parallel within the joint, blocking a single pathway 
may not be sufficient.
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