
sensors

Article

A Scalable Implementation of Anonymous Voting over
Ethereum Blockchain

Jae-Geun Song, Sung-Jun Moon and Ju-Wook Jang *

����������
�������

Citation: Song, J.-G.; Moon, S.-J.;

Jang, J.-W. A Scalable Implementation

of Anonymous Voting over Ethereum

Blockchain. Sensors 2021, 21, 3958.

https://doi.org/10.3390/s21123958

Academic Editor: Juan M. Corchado

Received: 19 April 2021

Accepted: 5 June 2021

Published: 8 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electronic Engineering, Sogang University, Seoul 04107, Korea; skj1080@sogang.ac.kr (J.-G.S.);
ckop1@nate.com (S.-J.M.)
* Correspondence: jjang@sogang.ac.kr; Tel.: +82-10-3744-8472

Abstract: We considered scalable anonymous voting on the Ethereum blockchain. We identified
three major bottlenecks in implementation: (1) division overflow in encryption of voting values
for anonymity; (2) large time complexity in tallying, which limited scalability in the number of
candidates and voters; and (3) tallying failure due to “no votes” from registered voters. Previous
schemes failed at tallying if one (or more) registered voters did not send encrypted voting values.
Algorithmic solutions and implementation details are provided. An experiment using Truffle and
Remix running on a desktop PC was performed for evaluation. Our scheme shows great reduction in
gas, which measures the computational burden of smart contracts to be executed on Ethereum. For
instance, our scheme consumed 1/53 of the gas compared to a state-of-the-art solution for 60 voters.
Time complexity analysis shows that our scheme is asymptotically superior to known solutions. In
addition, we propose a solution to the tallying failure due to the “no vote” from registered voters.
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1. Introduction
1.1. Motivation

Electronic voting (e-voting) should satisfy somewhat conflicting requirements: trans-
parency and anonymity. Transparency demands consistent and temper-resistant tallying
while anonymity prohibits exposing who votes for which candidate [1].

The Ethereum [2] blockchain platform is a good candidate for electronic voting. First,
no trusted third party is necessary. It would be easy to construct an electronic voting
system with a server (a typical trusted third party). However, the server may become a
single point-of-failure. Blockchain replaces the server by a group of independent nodes,
eliminating the single point-of-failure.

Second, the hashing and chaining of blocks in blockchain make tempering or modify-
ing voting data mathematically impossible [3,4].

Third, Ethereum blockchain allows us to program smart contracts, which are executed
automatically and forcefully by all participating nodes, guaranteeing precision [5].

However, we identified three major bottlenecks when attempting to implement previ-
ous systems or protocols [1,6,7] on Ethereum: (1) division overflow in computing encrypted
voting values for anonymity (cycle group theory involved); (2) large time complexity in
tallying, which severely limited scalability in the number of candidates and voters; and
(3) tallying failure due to “no votes” from registered voters. Previous schemes failed at
tallying if one (or more) registered voters did not send encrypted voting values.

In this paper, we address the three major bottlenecks by providing algorithmic solu-
tions as well as implementation details. An experiment using Truffle and Remix running
on a desktop PC was performed for evaluation.

Our scheme shows great reduction in gas [8], which measures computational burden
of smart contracts to be executed on Ethereum. For instance, our scheme consumed 1/53 of
the gas compared to a state-of-the-art solution for 60 voters.
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Time complexity analysis shows our scheme is asymptotically superior to known
solutions. In addition, we propose a solution to the tallying failure due to “no votes” from
registered voters.

1.2. Previous Work

McCorry, Shahandashti, and Hao [1] (OVNet) presented the first implementation
of decentralized and self-tallying anonymous voting on blockchain. The OVNet is a
boardroom scale voting protocol that is implemented as a smart contract in Ethereum.

The OVNet provides maximum voter privacy, as an individual vote can only be
revealed by a full-collusion attack that involves compromising all other voters; all encrypted
voting data are publicly available; and the protocol allows the tally to be computed without
requiring a tallying authority.

However, we find the scheme limited in two aspects; (1) it only allows a yes/no
vote for a single candidate; (2) it is not scalable in the number of voters. Hao, Ryan, and
Zielinski [6] devised an internet voting protocol for multiple candidates. However, it is
presented as a protocol not meant for blockchain implementation.

Shahzad and Crowcroft [9] proposed a framework based on adjustable blockchain that
can apprehend problems in the polling process, the selection of the suitable hash algorithm,
the selection of adjustments in the blockchain, the process of voting data management,
and the security and authentication of the voting process. However, it does not address
scalability issues in implementation on a specific blockchain platform.

K.M. Khan, Arshad, and M.M. Khan [10] investigated performance constraints for a
blockchain-based secure e-voting system. They focused on factors such as block generation
rate, transaction speed, and block size, which play an important role in determining the
performance of a general blockchain. Their research is useful for general blockchain systems.
However, it does not address problems that can only occur on the Ethereum network.

Dimitriou [11] also proposed a model for blockchain-based voting, which reduces
a large amount of computation and communication overhead. In the model, coercion
resistance and receipt-freeness are ensured by means of a randomizer token—a tamper-
resistance source of randomness that acts as a black box in constructing the ballot for the
user. However, it requires a trusted administrator to register voters and an aggregator to
aggregate the voting results.

S. Park, M. Specter, N. Narula, and R.L. Rivest [12] analyze and systematize prior
research on the security risks of online and electronic voting, and show that, not only do
these risks persist in blockchain-based voting systems, but blockchains may introduce
‘additional’ problems for voting systems.

Their concern about blockchain-based voting is summarized in the straw man design
(‘coins as votes’): the voter registry spends one coin to each public key, corresponding to
each voter. To vote, each user spends their coin to the candidate of their choice. After a
period, everyone can look at the blockchain, total each candidate’s coins, and select the one
with the most coins as the winner.

Using the ‘coins as votes’ design, the authors illustrated problems faced by known
blockchain-based voting proposals. We address their concerns by commenting after each
problem they suggested.

First, it does not provide a secret ballot. All votes are public, and users can prove (to a
third party) how they voted, enabling coercion and vote-selling. We agree with this claim,
but this problem is a rather general one for most online-based transactions. A burglar
may threaten a person to send money to a foreign account via digital banking that uses
public cryptography. We agree that guaranteeing a secure and private human interface to
blockchain-based voting remains an important issue. We do not claim we have provided a
solution to this issue.

Second, this design relies on users being able to cast their votes on the blockchain
in a given time period. The vote tallier cannot wait for all users to spend their coins,
because that means a single user could prevent the election from finishing—there must be
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a cutoff point. An adversary able to influence network connectivity or conduct a denial-of-
service attack could prevent users from voting until after the cutoff. Public blockchains, in
particular, are limited in throughput and require fees to submit transactions.

During periods of high transaction rates, fees can get quite high, and transactions
can be delayed. An attacker willing to spend enough money could flood the blockchain
with transactions to drive up fees and prevent users from voting until after the cutoff point
has passed.

We address the issue of a single user preventing an election from finishing. We provide
a solution for “no votes” from registered voters (lines 433–477). It is one of our contributions
in this paper. An attacker willing to spend enough money could flood the blockchain with
transactions to drive up fees; solutions depend on situations. If we use a public Ethereum
blockchain for small-scale voting, an attacker could spend a large amount of money to
disrupt the voting.

Third, the design only works if the blockchain properly implements the public bulletin
board interface. If the blockchain is compromised—e.g., if a majority of the miners or
validators collude—then they could sow discord by creating multiple versions of the
blockchain to show different people. Alternatively, they could censor certain users’ votes.
Several cryptocurrencies have suffered from these types of attacks, where their blockchains
were rewritten [13–15]. Blockchains are often referred to as “immutable”, but these attacks
show that this is not always true in practice, especially for smaller blockchains. We agree
with this concern, in a general perspective, but it is beyond the scope of our manuscript.

Fourth, security of this “straw man” hinges on key management. If users lose their
private keys, they can no longer vote, and if an attacker obtains a user’s private key, the
attacker could then undetectably vote as that user. This concern applies to most online
transactions, including digital banking. A more reliable interface, such as a biometric
certificate, will be developed in the future in response to this concern.

Finally, zero-knowledge proof is designed, for a setting, where a party with secret
information wants to keep that information secret—which is why they would use zero-
knowledge proof—it generally does not prevent a party from voluntarily revealing in-
formation. This weakness in privacy, resulting from human interface to ZKP, should be
handled in such a manner that nobody can coerce or buy votes from voters. We believe
that mail-in votes suffer this weakness. We may install a local booth where privacy is
guaranteed. We agree that this will remain a major issue if blockchain-based voting is to be
widely employed.

We identified three major bottlenecks in implementing blockchain voting on the most
popular platform (Ethereum) and devised schemes to overcome them.

1.3. Contribution of This Paper

(1) We devised and implemented a scalable anonymous voting system for multiple
candidates on the Ethereum blockchain. The anonymous voting system by McCorry,
Shahandashti, and Hao [1] was also implemented on Ethereum, but only works
for a yes/no vote for a single candidate. Hao, Ryan, and Zielinski [6] devised an
anonymous voting protocol for multiple candidates, but it is not meant for blockchain
implementation.

(2) We propose a solution to the division overflow problem in encryption of voting values
for anonymity. Voter i publishes gxiyi gvi as an encrypted voting value to guarantee
anonymity. The vi represents whom voter i votes for and, thus, should not be revealed.
For a yes/no vote in a single candidate case [1], vi is one of {1,0}. For multiple
candidates, vi can be encoded to facilitate tallying. To compute gyi voter i need
collect gxj for all j(j 6= i) and perform a division [1,6]. In regards to huge numbers
resulting from encryption, the division may introduce a round-off error. Modular
division using the cyclic group [16] can be used to prevent this. Modular division
can be performed by a multiplication by the inverse of a multiplicand. However,
computing the multiplicative inverse in the modular computation takes O

(
log(p)2

)
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time using the extended Euclidean algorithm. This limits scalability of the scheme
since an arbitrarily large p is usually chosen for encryption [17]. To circumvent this,
we remove computing the multiplicative inverse. We replace the modular division by
a multiplication exploiting a feature of the cyclic group. This removes O

(
log(p)2

)
time, enhancing scalability of our scheme.

(3) We devised a tallying scheme that is superior to known schemes [6,7] in terms of
time complexity. The tallying is individually performed in each voter. A tally value
is constructed in each voter after it collects all of the encrypted voting values from
all other voters. Each voter should resolve this tally value to identify how many
votes each candidate has won. The tallying scheme for multiple candidates used in
Hao, Ryan, and Zielinski [6] is not scalable if implemented in Ethereum. The tally
value grows enormously, even for the modest number of voters or candidates. The
tallying requires a division involving the tally number and may result in division
overflow. One way to avoid this is to precompute all possible mappings between the
tally values and the corresponding tally results (i.e., how many votes each candidate
has won). The size of the mapping table is kHn for k candidates and n voters. O

(
nk
)

time and memory space are needed for construction of this table. This can grow very
large, even for moderate values of n and k. We devised a new way to encrypt voting
values and a new scheme to encode candidates to reduce the time complexity from
O
(

nk
)

to O(k log2n).

(4) We proposed a solution to the tallying failure due to “no votes” from registered
voters. We identified this problem from a previous voting scheme for multiple
candidates [6]. The previous tallying scheme was unable to retrieve tally value if one
or more registered voters failed to send their encrypted voting values. In reality, we
may have this situation more often than not.

We devised a scheme to allow the remaining voters cooperate, to recover the appropri-
ate tally value excluding the failed voters. First, we show how to recover from the failure
of a single voter and then extend our algorithm to multiple failed voters.

The rest of this paper is organized as follows. Section 2 provides a mathematical
foundation. Section 3 identifies three major technical difficulties for implementation on an
Ethereum blockchain and presents our solutions. Performance evaluation is presented in
Section 4; Section 5 concludes this paper.

2. Mathematical Foundation

We provide a mathematical foundation needed in the derivation of our anonymous
voting scheme on the Ethereum blockchain. For self-completeness, we include as much
detail as possible.

2.1. ZKP (Zero-Knowledge Proof)

Zero-knowledge proof (ZKP) is an interactive procedure used for proving (to a verifier)
that something that a prover knows is true, without revealing it to the verifier [18]. This is
used in anonymous voting systems, to prove that a participant has the private key for a
public key published by it. This establishes the ownership of the private key to be used in
the encryption of voting values, without revealing the private key.

ZKP is also used to prove that the voter casts a well-formed vote. For example, ZKP
ensures that the vote belongs to {0,1} for a single candidate case or {0, 1, 2, . . . , k − 1} for
one-out-of-k candidate case. This will prevent potential mischievous voters from disturbing
the voting system. Tallying will not be correct if a voter chooses an invalid candidate. This
invalid vote should be prevented.
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Among the several types of proof, Schnorr Zero-knowledge proof [19] is the most
commonly used type. Assume that p is a random prime number and we choose a prime
number q that satisfies (p − 1) mod q = 0 as in Equations (1) and (2).

p < 2256 (1)

(p− 1)modq = 0 (2)

Let G, g denote a finite multiplicative cyclic group of q and a generator in G, respec-
tively, as in Equation (3).

gqmodp = 1 (3)

The (p, q, g) have to be set for performing zero-knowledge proof. The prover performs
the following three stages:

Commitment stage: each prover chooses a random value xi ∈ RZ q as a private key
and broadcasts the pairing public key Xi = gxi mod p. Moreover, the prover chooses a
private variable k ∈ Zq and produces a public variable K = gk mod p. The prover sends Xi
and K to the verifier without revealing xi or k.

Challenge stage: the verifier chooses a random variable c (c ∈ ZR) to send it to
the prover.

Response stage: the prover computes s = (xic + k)mod q and sends it to the verifier as
in Equation (4).

s = (xic + k)modq (4)

The verifier performs a verification using (Xi, K, s) as in (5).

Check gs = KXi
c (modq) (5)

2.2. Non-Interactive Zero-Knowledge Proof (NIZKP)

At times, the interactive procedure needed in ZKP [19] may be cumbersome or hard
to implement. To remove this interactive procedure, non-interactive zero-knowledge proof
(NIZKP) was proposed [20].

NIZKP only needs a verifier in the ‘Response Stage’. The prover generates c using
a hash function on the ‘challenge stage’. Let H be a hash function, then c is described in
Equation (6) as follows.

c = H(K)modq (6)

The ‘response stage’ remains the same as ZKP.

2.3. Two-Round Referenda

Assume G denotes a cyclic group of prime order q where the decision Diffie–Hellman
problem is intractable [21]. Let g be a generator in G, on which n participants agree.

For i = 0 to n − 1, the following is performed.
Participant Pi randomly chooses a secret value: xi ∈ RZq. We consider the single

candidate case first, in which a vote is either ‘yes’ or ‘no’. Then, participants perform the
following two-round protocol:

Round 1: Pi publishes gxi and a ZKP for xi. Pi checks the validity of all the ZKPs and
computes Equation (7).

gyi =
i−1

∏
j=0

gxj /
n−1

∏
j=i+1

gxj (7)

Round 2: Pi publishes gxiyi gvi and a ZKP showing that vi as shown in Equation (8).

vi =

{
1 if Pi votes ′yes′

0 if Pi votes ′no′
(8)
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n−1

∏
i=0

gxiyi gvi = g

n−1
∑

i=0
vi

(9)

Each participant is able to tally the ‘yes’ votes using Equation (9). ∑i vi is the number
of ‘yes’ votes and is denoted by γ. All ZKPs are performed to make sure that ballots are
properly cast (i.e., ‘yes’ or ‘no’). Equation (9) holds since ∏i gxiyi = 1 from Proposition 1 as
in Equation (10).

If γ is a small number, we can easily compute the discrete logarithm of gγ, by exhaus-
tive search or Shanks’ baby-step giant-step algorithm [22].

Proposition 1. For the xi and yi as defined in the above protocol, we have ∑i xiyi = 0.

Proof. By definition yi = ∑j<i xj −∑j>i xj, hence

n−1
∑

i=0
xiyi =

n−1
∑

i=0

i−1
∑

j=0
xixj −

n−1
∑

i=0

n−1
∑

j=i+1
xixj

=
n−1
∑

i=0

i−1
∑

j=0
xixj −

n−1
∑

j=0

j−1
∑

i=0
xixj

=
n−1
∑

i=0

i−1
∑

j=0
xixj −

n−1
∑

j=0

j−1
∑

i=0
xjxi

= 0

(10)

ZKPs are used to ensure participants faithfully follow the protocol, as in [23,24]. In
the first round, each participant proves his or her knowledge of the exponent without
revealing it. Schnorr’s signature [19] can be used for this purpose.

In the second round, each participant needs to prove that the encrypted vote is one of
{1,0} without revealing which one. For this, they can adapt an efficient technique proposed
by Cramer, Damgard, and Schoenmakers (CDS) in [25] (also see [26]). Refer to [25] or [26]
for details. �

2.4. Extend to Multiple Candidates

The above single-candidate protocol can be extended to accommodate multiple (more
than 2) candidates [23–25]. Each voter is permitted to select only one candidate. The k
independent generators g0, g1, . . . , gk−1 (one for each candidate) are obtained. The first
round is the same as the above. In the second round, participant Pi broadcasts gxiyi ·Qi with
a ZKP proving that Qi is one of g0, g1, . . . , gk−1 (the same CDS technique [25] used). Each
participant may perform tallying by computing ∏i gxiyi ·Qi = gc0

0 ·g
c1
1 · · · g

ck−1
k−1 where c0 to

ck−1 are the number of votes won by k candidates 0 to k − 1, respectively.
Given n voters and k candidates, the number of possible tallying results is(

n + k− 1
k− 1

)
= O(nk−1) [27].

This is not scalable if n or k is large [26]. Another demerit of this scheme is a require-
ment that the gi’s are appropriately independent, as represented in Equation (11), where N
is the number of voters.

∀ci, c′i ∈ N, ∏ gci
i = ∏ gc′i

i ,∀i ∈ {0, . . . , k− 1}, ci = c′i (11)
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Baudron et al. [7] proposed an improved scheme. The smallest integer, such that
2m > n is obtained, and a vote for candidate 0 is encoded as 20, for candidate 1 as 2m, for
candidate 2 is 22m and so on. If voter i votes for candidate j then vi = tj as in Equation (12).

tj =


20 if Voter i votes for candidate 0
2m if Voter i votes for candidate 1

. . . . . .
2m(k−1) if Voter i votes for candidate k− 1

(12)

The tally value is obtained, as in Equation (9). The super-increasing feature is used
for this purpose. The scheme requires 2m > n for unambiguous resolution. A vote for
candidate j is coded as 2jm. Since n ∗ 2jm < 2(j+1)m, even if all the n voters vote for candidate
j, the value is less than a single vote for candidate j + 1. This super-increasing nature
guarantees unambiguous resolution, as in Equation (13).

g

k−1
∑

i=0
vi
= g20·c0+21·c1+···+2(k−1)m ·ck−1 (13)

However, this resolution also requires searching over possible kHn combinations,
which may grow very large, even for moderate values of n or k.

2.5. Ethereum

Our voting system is implemented on Ethereum, which is the most popular plat-
form for smart contracts. A smart contract [28] is a computer program or a transaction
protocol, which is intended to automatically execute relevant actions according to the
agreed terms. The goals of smart contracts include the removal of trusted intermediators,
arbitrations and enforcement costs, fraud losses, as well as the removal of malicious and
accidental exceptions.

Ethereum supports two types of accounts [2]:

• An externally owned account (user-controlled) is controlled by a user. We denote
these accounts by EOA.

• A contract account is controlled by the smart contract itself. We denote a contract
account by CA.

Both account types can store the Ethereum currency ‘ether’. Ethereum does not
perform functions (computations) in a smart contract without user interaction. Thus, a
CA must be activated by an EOA before its functions are executed. Executing functions
requires the EOA to purchase ‘gas’ using the ether currency.

‘Gas price’ determines the conversion rate of gas to ether. The ‘gas’ is essentially a
transaction fee to encourage miners to include transaction executions into blocks of the
public Ethereum blockchain. As such, gas is a standardizing metric that estimates the cost
of executing code on the Ethereum network. Each assembly operation (opcode) has a fixed
gas cost based on its expected execution time.

‘Gas limit’ is set to prevent infinite loops, which would abuse the resources on the
Ethereum block. If the limit is exceeded, the transactions are not completed, and the
corresponding block is not mined.

The structure of an Ethereum transaction is illustrated in Table 1:

• From: a signature from the owner of the EOA is needed to authorize the transaction.
• To: the receiver of the transaction can either be an EOA or CA.
• Data: the code to deploy a new contract or to execute transactions for the contract.
• Gas price: the conversion rate from gas to ether currency.
• Total gas: the maximum amount of gas that may be consumed by the transaction.
• Nonce: a counter that is incremented per each new transaction from an account.
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Table 1. Illustration of the structure of an Ethereum transaction.

Field Example

From EOA (External Owned Account) A
To CA (Contract Address)

Gas Price 2× 10−8 ether
Total Gas 2,000,000

Nonce 35
Data Contract code made by A

The Ethereum blockchain can be considered an orderly transaction-based state ma-
chine. If multiple transactions invoke the same contract, then the final state is determined
by the order of transactions that are stored in the block.

Blockchain relies upon miners performing ‘proof of work’, which entitles the chosen
miner to append a new block. This proof of work is a computationally intensive race to
find a nonce, which results in a hash value below the preset threshold. The successful
miner is rewarded five ethers.

Ethereum blockchain is also selected for the Open Vote Network [1].

3. Technical Bottlenecks in Ethereum Implementation and Proposed Solutions

We identified three major bottlenecks in implementing the above voting protocol on
the Ethereum blockchain: (1) division problem in encryption of voting values; (2) large time
complexity in tallying; and (3) tallying failure due to “no votes” from registered voters.

We describe the bottlenecks and propose our solutions. The solutions are implemented
in our scalable and anonymous voting system on Ethereum.

3.1. Division Problem in Encryption of Voting Values

Voter i publishes gxiyi gvi as an encrypted voting value to guarantee anonymity. The vi
represents whom voter i votes for and, thus, should not be revealed. For a yes/no vote in
a single candidate case [1], vi is one of {1,0}. For multiple candidates, vi can be coded to
facilitate tallying as in Equation (12) [7]. For candidate j, vi becomes 2jm. In our scheme, if
voter i votes for candidate j, then vi = tj, where tj is the j-th smallest prime number as in
Equation (14).

t0 = 2, t1 = 3, t2 = 5 . . . (14)

Equation (14) simply changes the encoding in Equation (12) to unique prime numbers,
which also guarantees unambiguous resolution and further facilitates recovery from “no
vote after registration”

To compute g yi in Equation (7), voter i(i 6= j) collects gxj for all j(j 6= i, j = 0 to n− 1)
and performs the division [1,6]. While xj is hidden as a private key of node j, the gxj is
broadcast as its corresponding public key. The division introduces a round-off error, which
makes it hard to obtain the exact value. Figure 1 illustrates this problem with an example
(p = 1091659, q = 181943, g = 9, x1 = 5, x2 = 2, x3 = 3). The answer should be 1 instead of
0.9999999997, as shown in the screen printout.

Modular division using the cyclic group [16] can be used to prevent this. The modular
division is performed by a multiplication by its inverse. Computing the multiplicative
inverse in the modular computation takes O((log p)2) time using the extended Euclidean
algorithm [17].
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Our Solution

To circumvent this, we replace divisions by multiplications exploiting a feature of the
cyclic group. Let p and q be prime numbers where (p− 1) mod q = 0 and gq mod p = 1.
Then, we have g−x mod p = g q−x mod p from the cyclic group theory [29]. This implies a
division by gx in this cyclic group can be replaced by a multiplication by gq−x.

However, xi is hidden as a private key of node j, thus voter i(i 6= j) cannot possibly
compute (q − xi) from gxi . If node i only receives gxj as in a previous scheme [1], it is
unable to compute gq−xj . To solve this problem, we arrange for node j(j = 0 to n− 1) to
precompute gq−xj and broadcasts it along with gxj .

Although voter i broadcasts gq−xi along with gxi , any receiver is unable to com-
pute q− xi and xi with gq−xi and gxi [21]. Even if a malicious attacker k gets xk (gxk mod
p = gxi mod p), voter i still can protect his own key xi because xk = nq+ xi (n = 0, 1, 2, 3, . . .)
in the cyclic group [29].

Now, we can replace the division in Equation (15) by a multiplication, as shown in
Equations (16) and (17).

Yi = gyi =
i−1

∏
j=0

gxj /
n−1

∏
j=i+1

gxj (15)

gyi =
i−1

∏
j=0

gxj ×
n−1

∏
j=i+1

gq−xj (16)

yi =
i−1
∑

j=0
xj +

n−1
∑

j=i+1
(q− xj)

=
i−1
∑

j=0
xj −

n−1
∑

j=i+1
xj + (n− i− 1)q

(17)

This solves the division problem in O(1) time instead of O(log(p)2) time using the
extended Euclidean algorithm.

3.2. Large Time Complexity in Tallying

For i = 0, 1, 2, . . . , n − 1, voter i broadcasts gxiyi gvi to all other voters. After collecting
all broadcasts, each voter performs verification of arriving NIZKP proofs first, and then
computes Equation (9) for tallying on its own. By Proposition 1, in the above, each voter
executes Equation (18) to obtain a tally value Z. Each voter resolves this tally value to
identify how many votes each candidate has won.

∏n−1
i=0 gxiyi gvi = ∏n−1

i=0 gvi = g∑n−1
i=0 vi = Z (18)

First, we consider a previous tallying scheme for multiple candidates by Baudron et al. [7].
The encoding scheme, to represent a vote for each candidate, is of super-increasing nature
as dictated in Equations (11)–(13). We illustrate the scheme in an example where each of the
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four voters vote for one of the four candidates (n = 4, k = 4). We assume g = 3 for simplicity
and all voters share a tally value = g∑ vi = 3137 and try to tally individually.

g137 = g

3
∑

i=0
vi
= g20×3·c0+21×3·c1+22×3·c2+23×3·c3 (19)

Then the tallying in this example is to obtain a unique 4-tuple <c0, c1, c2, c3> from
Equation (19). The <c0, c1, c2, c3> is a 4-tuple representing the numbers of votes won by
candidates 0, 1, 2, and 3, respectively.

In their scheme, all possible 4-tuples are pre-computed for a mapping table, which
pairs each 4-tuple with the corresponding tally value. Once the tally value is obtained, the
table can be used to identify the corresponding 4-tuple. The number of possible 4-tuples is
4H4 = 4+4−1C3.

In general, if the number of candidates and the number of voters are k and n, respec-
tively, the mapping table would have kHn = n+k−1Ck−1 entries, which can grow very large,
even for moderate values of n and k. Thus the construction of the table, or to identify the
k-tuple (c0, c1, c2, . . . , ck−1) for n voters, may take O(nk) time. Therefore, this method can be
used only for small values of n, k, severely limiting the scalability of this voting scheme.
Otherwise, the number of possible results easily explode beyond practical implementation
(the gas needed for program execution can easily exceed the gas limit).

Our Solution

First, we devised a new encryption scheme for voting values. In the previous scheme
by Hao, Ryan, and Zielinski [6], voter i broadcasts gxiyi gvi mod p as its encrypted voting
value. Thus, a tally value is ∏i gxiyi gvi mod p = g∑i vi mod p.

Our new encryption scheme for voting value for voter i is as in Equation (20).

vi × gxiyi modp (20)

In our scheme, vi is a prime number, which represents a candidate. For example,
we have three candidates, which are represented by three prime numbers, 2, 3, and 5,
respectively. An attacker may try to reveal vi by dividing the encrypted voting value
vi × gxiyi modp with 2, 3, or 5 to see if the remainder is zero. However, this attack does
not reveal vi since gxiyi modp belongs to [0, p−1] and there exist many multiples of 2, 3, 5,
2 × 3, 2 × 5, 3 × 5 and 2 × 3 × 5 in [0, p−1] for large p. If vi × gxiyi modp is a multiple of
30, the attacker cannot tell if vi is 2, 3, or 5.

One may find our scheme weak in the anonymity requirement. “If vi × gxiyi is a
multiple of 30, the attacker cannot tell if vi is 2, 3, or 5.” That is true, but he can say it is not
7 or 11 and so on”. We rebut this claim with a counter example where p = 11, q = 5, g = 3,
vi = 3 and gxiyi = 9. vi × gxiyi modp = 5 and it is not divisible by 3, but there still exists 3 in
vi × gxiyi .

Second, our encoding scheme to represent a vote for each candidate is different from
Baudron et al. [7] (refer to Equations (11)–(13)).

In our scheme, if voter i votes for candidate j, then vi = tj, where tj is the j-th smallest
prime number as in Equation (14).

Thus, the tally value in our scheme is as in Equations (21) and (22), using Proposition 1.

n−1
∏
i=0

vigxiyi modp =
n−1
∏
i=0

vimodp =
n−1
∏
i=0

vi = Z

(assuming
n−1
∏
i=0

vi < p)
(21)

Z = t0
c0 × t1

c1 × . . . .× tk−1
ck−1 (22)
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The tallying is to identify the k-tuple (c0, c1, c2, . . . , ck−1) in Equation (22). We illustrate
our scheme in Equation (23) as an example where each of the four voters vote for one of the
four candidates (n = 4, k = 4). We assume g = 3 and all voters share a tally value Z = 126.

Z = 126
= tc0

0 × tc1
1 × tc2

2 × tc3
3

= 2c0 × 3c1 × 5c2 × 7c3

= 21 × 63 (c0 = 1)
= 21 × 32 × 7 (c1 = 2)
= 21 × 32 × 50 × 7 (c2 = 0)
= 21 × 32 × 50 × 7 (c3 = 1)

(23)

For j = 0 to k − 1, cj = [0, n]. Note that cj is the maximum mj such that Z mod t
mj
j is

equal to 0. Since cj can be identified in O(log n) steps, we have time complexity of O(klog
n), which is asymptotically smaller than the O(nk) time in Baudron et al. [7].

3.3. Tallying Failure Due to “No Votes” from Registered Voters

We identify this problem from previous voting schemes [6,7]. The tallying is not
possible if one or more registered voters fail to send their encrypted voting values. This
is because Equation (12), which is used to retrieve the encrypted tally value, depends on
Proposition 1, which requires that all registered voters send their encrypted voting values.
In reality, we may have this failure more often than not.

If we have four voters and four candidates, then we expect all four voters to send their
encrypted voting values for the tally value to be retrieved, as in Equation (24).

3

∏
i=0

vigxiyi modp =
3

∏
i=0

vi (24)

If we assume voter 3 did not send his/her voting value, then Equation (24) changes to
Equation (25).

2
∏
i=0

vigxiyi modp =
2

∏
i=0

vi·g∑2
i=0 xiyi modp

=
2

∏
i=0

vi·gx0(−x1−x2−x3)+x1(x0−x2−x3)+x2(x0+x1−x3)modp

=
2

∏
i=0

vi·g−x0x3−x1x3−x2x3modp

=
2

∏
i=0

vi·g−x3y3modp

(25)

Certainly we could not resolve the incomplete tally value in Equation (25) into the
correct 4-tuple <c0, c1, c2, c3>.

Our Solution

Our solution is to remove the g−x3y3 in the tally value at the end of Equation (25) by a
multiplication with gx3y3 . We show how to compute gx3y3 without help from voter 3, who
fails to send his/her encrypted voting value.

After the voting round expires, every voter is notified about which voter(s) has (have)
failed to vote. First, we show how to recover from the failure of a single voter and then
extend our algorithm to multiple failed voters.
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Assume a registered voter j out of n voters has failed to vote. Upon discovering this,
voter i broadcasts an additional value, according to Equation (26). Voter i knows its private
key xi, but does not know xj. However, it knows g xj when voter j has registered.{

gxixj modp i f i < j
g(q−xi)xj modp i f i > j

(26)

By multiplying all the values broadcast by all the voters except j, each voter can obtain
gxjyj as shown in Equation (27).

j−1
∏
i=0

gxixj modp×
n−1
∏

i=j+1
g(q−xi)xj modp

= gx0xj+x1xj+...+xj−1xj−xj+1xj−...−xn−1xj+(n−j−1)qmodp
= gxjyj modp

(27)

This solves the failure of a single voter, as shown in Equation (28)

(
2

∏
i=0

vi·g−x3y3modp)× (gx0x3 ·gx1x3 ·gx2x3)modp

=
2

∏
i=0

vi·g−x3(x0+x1+x2)gx3(x0+x1+x2)modp

=
2

∏
i=0

vi·g−x3(x0+x1+x2)+x3(x0+x1+x2)modp

=
2

∏
i=0

vimodp

= v0·v1·v2

(28)

Now, we extend our scheme with a case of two failed voters, 2 and 3 out of 0, 1, 2, and
3. The incomplete tally value would be like Equation (29).

1
∏
i=0

vigxiyi modp = v0v1g∑1
i=0 xiyi modp

= v0v1gx0(−x1−x2−x3)+x1(x0−x2−x3)modp
= v0v1g−x0x2−x0x3−x1x2−x1x3modp

(29)

On finding the failure of voters 2 and 3, voter 0 and voter 1 send two additional values
each, respectively, according to Equation (30).{

gx0x2modp, gx0x3 modp i f i = 0
gx1x2modp, gx1x3 modp i f i = 1

(30)

Then voter 0 and voter 1 can retrieve the correct tally value as in Equation (31).

v0·v1·g−x0x2−x0x3−x1x2−x1x3modp×
(gx0x2 ·gx0x3 ·gx1x2 ·gx1x3)modp
= v0·v1·g−x0x2−x0x3−x1x2−x1x3+x0x2+x0x3+x1x2+x1x3modp
= v0·v1·modp

(31)

Now we extend this to the general case in which m out of n voters have failed to
vote. Let U denote a set of m failed voters. We have U = {u0, u1, u2, . . . , um−1} and
(0 ≤ u0 < u1 < . . . < um−1 ≤ n− 1).
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Then, the incomplete tally value would be like in Equation (32).

n−1
∏

i=0(i/∈U)
vigxiyi modp =

n−1
∏

i=0(i/∈U)
vi·g

(
n−1
∑

i=0(i/∈U)
xiyi)

modp

=
n−1
∏

i=0(i/∈U)
vi·g

(−
n−1
∑

i=0

uj<i

∑
uj=u0

xixuj+
n−1
∑

i=0

um−1
∑

uj>i
xixuj )

modp

(32)

Then voter i who does not belong to U should send additional values according to
Equation (33).

g
(xi

uj<i

∑
uj=u0

xuj−xi

um−1
∑

uj>i
xuj )

modp (33)

Multiplying all of the additional values broadcast by the n − m voters who do not
belong to U, each voter is able to obtain the value in Equation (34).

n−1
∏

i=0(i/∈)
g

xi

uj<i

∑
uj=u0

xuj−xi

um−1
∑

uj>i
xuj

modp

= g

n−1
∑

i=0

uj<i

∑
uj=u0

xixuj−
n−1
∑

i=0

um−1
∑

uj>i
xixuj

modp

(34)

Now, the correct tally value can be retrieved by multiplying Equation (32) by Equation
(34) to obtain Equation (35).

(
n−1
∏

i=0(i/∈U)
vi·g

−
n−1
∑

i=0

uj<i

∑
uj=u0

xixuj+
n−1
∑

i=0

um−1
∑

uj>i
xixuj

·g

n−1
∑

i=0

uj<i

∑
uj=u0

xixuj−
n−1
∑

i=0

um−1
∑

uj>i
xixuj

)modp

= (
n−1
∏

i=0(i/∈U)
vi·g

−
n−1
∑

i=0

uj<i

∑
uj=u0

xixuj+
n−1
∑

i=0

um−1
∑

uj>i
xixuj+

n−1
∑

i=0

uj<i

∑
uj=u0

xixuj−
n−1
∑

i=0

um−1
∑

uj>i
xixuj

)modp

= (
n−1
∏

i=0(i/∈U)
vi)modp

(35)

This solves the general case of m (0 < m < n − 1) failed voters out of n.

4. Performance Evaluation

We use Truffle [30] and Remix [31] running on a desktop PC with four cores (3.40GHz
Intel Core i5-7500 and 64 GB DDR4 RAM) for performance evaluation. A private Ethereum
is built with Truffle and transactions are generated by using Remix [31]. The simulation
is performed with different pairs of (n,k) where n, k are the number of voters and the
number of candidates, respectively. The performance of our scheme is evaluated in terms
of scalability, gas cost, and time complexity.

4.1. Scalability

We define scalability in e-voting system as the maximum number of allowed voters
and/or candidates for given values of p.

Figure 2 compares the number of allowed candidates when there are 60 voters for our
system against McCorry, Shahandahti, and Hao [1] and Hao, Ryan, and Zieliński [6].
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Figure 2. Comparison: the number of allowed candidates for our scheme against previous schemes
(number of voters n = 60).

Up to two candidates (or yes/no vote for one candidate) are allowed in [1]. Up to
60 candidates are allowed in [6], but only the protocol is provided without blockchain
implementation.

As shown in Equation (21), the number of allowed candidates may increase as p
increases before the gas limit is reached in our scheme, allowing for scalability in terms of
candidates. For instance, the number of allowed candidates is around 1000 for p > 10230.

Figure 3 compares the maximum number of allowed voters when there are two
candidates for our scheme against McCorry, Shahandahti, and Hao [1] and Hao, Ryan, and
Zieliński [6]. Up to 60 voters are allowed in [1] and 112 voters are allowed in [6]. Since
only the protocol is provided in [6], we implement the protocol on our own for the purpose
of comparison.
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Figure 3. Comparison of the number of allowed voters when there are two candidates for our scheme
against previous schemes (number of candidates k = 2).

In our system, the maximum number of voters may increase as p increases, as shown
in Figure 3. This shows the scalability of our scheme in terms of voters. For instance,
1000 voters are allowed for p > 10300.

Figure 4 compares the maximum number of allowed voters when there are 10 candi-
dates for our scheme against Hao, Ryan, and Zieliński [6]. While six voters are allowed
in [6], our scheme allows more voters as p increases, as shown in Figure 4.
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Figure 4. Comparison of the maximum number of allowed voters for our scheme against [6] (number
of candidates k = 10).

In terms of scalability, our scheme can hold large-scale voting by using a huge value
of p. For example, our scheme can hold a voting in a town, which has 5000 voters and
10 candidates, by choosing p ≈ 105000.

4.2. Gas Cost

Gas is a unit that measures the amount of computational effort required to execute
specific transactions on the Ethereum blockchain [8].

Gas fees keep the Ethereum blockchain network from abuse by malicious or irre-
sponsible nodes. Requiring fees for computations to be executed on the network prevents
abusers from spamming the network. To prevent possible infinite loops, each transaction
is asked to set a limit on how many computational steps to use. The fundamental unit of
computation is gas and the limit for specific transaction is called gas limit. The transaction
is aborted if the preset gas limit is reached before finish.

In this section, we compare gas costs for our scheme against previous schemes [1,6].
Figure 5 compares the gas cost of the tallying transaction in our scheme against

McCorry, Shahandahti, and Hao [1] and Hao, Ryan, and Zieliński [6] when the number of
candidates (k) is 2.
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As the number of voters (n) grows, the gas costs for tallying increases in [1] and [6]
while the gas cost of our scheme grows very little. If we preset the gas limit as 3 ∗ 106 (red
dotted line), the tallying transaction for 40 voters for [1] may cost more than the limit and,
hence, will be aborted.

For 60 voters, our scheme costs around 0.09 ∗ 106 gas, while the scheme in [1] costs
4.7 ∗ 106 gas. Our scheme excels [6] by reducing gas cost to 1/53 of the scheme in [6],
showing the scalability of our scheme.

Figure 6 shows gas costs vs. number of candidates (k) in our scheme when the number
of voters (n) is 10, 30, 50, 100, and 200. It shows the gas cost increases modestly as n and/or
k increases. At the maximum (n = 200, k = 50), the gas cost is slightly over 1 ∗ 106.
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Figures 5 and 6 plots gas costs against the number of voters and candidates in our
simulation with limited pairs of (candidates, voters) and a chosen p. The p should grow
to accommodate a large number of voters or candidates. Simulation time would grow
too large to be finished in a reasonable amount of time. Since gas cost is proportional to
the amount of computations, which grows in O(klog n) where k, n denote the number of
candidates and the number of voters, respectively. We expect the total gas would grow
similarly. However, we do not claim our scheme can be directly applied to “big voting”,
such as a national-scale vote in its current form. Rather, we claim our scheme extends a
previous small-scale blockchain-based voting system to a medium-size one.

4.3. Computational Burden for Tallying

Figure 7 shows how fast the number of possible tally combinations increases for Hao,
Ryan, and Zieliński [6], which uses the protocol in Baudron et al. [7]. If a mapping table
is to be constructed for all possible tallying combinations as entries, the size of the table
may grow formidably as n and k grow. For instance, the number of entries grows up to
1019 for 10 candidates and 500 voters, greatly increasing the time to construct or search the
corresponding table.

Figure 8 shows the number of computations needed for tallying in our scheme as the
number of candidates (k) grows. Note that the numbers in our scheme are much smaller
than those in Figure 7.
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Figure 8. Number of computations for tallying in our scheme as the number of candidates (k) grows.

This implies our scheme greatly reduces the number of computations. For 10 candi-
dates and 500 voters, our scheme requires 1/1017 of the computations needed for tallying
in Hao, Ryan, and Zieliński [6] and Baudron et al. [6,7], as shown in Figure 7.

Figure 9 compares our scheme against Hao, Ryan, and Zieliński [6] and Baudron et al. [7].
The number of computations in our scheme grows much slower than that of [6], exhibiting
the scalability of our scheme when implemented on Ethereum blockchain.
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We identified three major bottlenecks in implementing anonymous and scalable
voting on the Ethereum blockchain. These include the division problem in the encryption
of voting values, large time complexity in tallying, and tallying failure due to “no votes”
from registered voters. Algorithmic solutions and implementation details are provided.
An experiment using Truffle and Remix running on a desktop PC was performed for
evaluation. Our scheme shows great reduction in gas needed for execution of anonymous
voting on Ethereum.

For instance, our scheme consumes 1/53 of the gas needed for a state-of-the-art
solution for 60 voters. Time complexity analysis shows our scheme is asymptotically
superior to known solutions. Finally, we proved our solution in regards to the tallying
failure due to “no votes” from registered voters. To the best of our knowledge, our solution
is the first to address this problem in the literature.
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