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Abstract
This review aims to summarize the health benefits of exposure to hypoxic 
conditions during exercise in patients with type 2 diabetes mellitus (T2DM). 
Exposure to hypoxic conditions during exercise training positively changes the 
physiological response in healthy subjects. Exposure to hypoxic conditions during 
exercise could markedly increase skeletal muscle glucose uptake compared to that 
in normoxic conditions. Furthermore, post-exercise insulin sensitivity of T2DM 
patients increases more when exercising under hypoxic than under normoxic 
conditions. Regular exercise under short-term hypoxic conditions can improve 
blood glucose control at lower workloads than in normoxic conditions. Addi-
tionally, exercise training under short-term hypoxic conditions can maximize 
weight loss in overweight and obese patients. Previous studies on healthy subjects 
have reported that regular exercise under hypoxic conditions had a more positive 
effect on vascular health than exercising under normoxic conditions. However, 
currently, evidence indicating that exposure to hypoxic conditions could 
positively affect T2DM patients in the long-term is lacking. Therefore, further 
evaluations of the beneficial effects of exercise under hypoxic conditions on the 
human body, considering different cycle lengths, duration of exposures, sessions 
per day, and the number of days, are necessary. In this review, we conclude that 
there is evidence that exercise under hypoxic conditions can yield health benefits, 
which is potentially valuable in terms of clinical care as a new intervention for 
T2DM patients.
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Core Tip: Current research shows that exercise interventions performed under hypoxic 
conditions have positive effects on healthy subjects and athletes. Exercise intervention 
under hypoxic conditions can be beneficial as a new treatment for patients, including 
those with diabetes. This review summarizes recent studies on the potential 
cause‒effect relationship for exercise interventions under hypoxic conditions in type 2 
diabetes mellitus patients and discusses health benefits and risk factors.

Citation: Kim SW, Jung WS, Chung S, Park HY. Exercise intervention under hypoxic condition 
as a new therapeutic paradigm for type 2 diabetes mellitus: A narrative review. World J 
Diabetes 2021; 12(4): 331-343
URL: https://www.wjgnet.com/1948-9358/full/v12/i4/331.htm
DOI: https://dx.doi.org/10.4239/wjd.v12.i4.331

INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a severe global public health problem. The 
worldwide diabetes prevalence in 2019 was estimated to be 463 million people, with a 
projected increase to 578 million by 2030 and 700 million by 2045[1]. Diabetes is a 
primary cause of preventable lower limb amputations, blindness, and end-stage renal 
failure[2]. It is also associated with increased cardiovascular complications and 
premature death[3].

Insulin is the main hormone produced by pancreatic β-cells in the islets of 
Langerhans. It reduces blood glucose by stimulating glucose absorption into tissues, 
including fat and muscles. Insulin action refers to insulin signal cascade activation that 
is stimulated by insulin binding to its receptor, causing glucose and lipid absorption 
and metabolism, gene expression and protein synthesis, cell growth, and survival[4]. 
Skeletal muscle is the leading glucose-uptake site[5], one of the principal organs of 
insulin action, and is involved in glucose homeostasis regulation in healthy and 
diabetic conditions[6]. In hyperinsulinemia, uptake of insulin-mediated blood glucose 
in skeletal muscle accounts for about 95% of whole-body-based glucose disposal 
during hyperglycemia[5]. Glucose requires specific transfer proteins to be transported 
across the cell membrane[7].

Glucose transporter 4 (GLUT4) is primarily responsible for this action[8-10]. GLUT4 is 
the primary transporter of glucose in skeletal muscle[9]. Increased GLUT4 expression in 
the skeletal muscle membrane is an essential indicator of exercise-related 
improvement[11]. The carrying rate of glucose in skeletal muscle is the limiting stage for 
glucose uptake at rest, and the translation and expression of GLUT4 in response to 
exercise determine the acute regulation of glucose uptake[11]. Previous studies have 
reported impaired insulin-stimulated glucose uptake and a decreased rate of glycogen 
synthesis in insulin-resistant muscles[12,13]. The reduction of glycogen synthesis due to 
insulin-stimulated glucose transport disorder plays an important role in muscle 
insulin-resistance development[14]. Therefore, skeletal muscle insulin-resistance has 
been regarded as a significant defect in T2DM[12]. The precise mechanism underlying 
insulin-resistance in skeletal muscle has not yet been fully elucidated[15]. According to 
previous reports, the decrease in insulin-stimulated glucose uptake in skeletal muscle 
is caused by the degradation of insulin signals and a defect in multicellular cascades, 
such as glucose transport inhibition, glucose phosphorylation, and the reduction of 
glucose-oxidizing glycogen synthesis, which plays a decisive role in the development 
of insulin-resistance in skeletal muscle[16]. Thus, it has been reported that the decrease 
in insulin action in insulin-resistant skeletal muscle is related to the decrease in 
glycogen synthesis, caused by insulin-stimulated glucose transport disorder and 
decreased mitochondrial oxidation related to physical inactivity[12,17,18].

It has been established that exercise intervention can enhance insulin action and 
glycemic regulation ability in individuals with T2DM, which may be due to the 
increased oxidation capacity of skeletal muscle, resulting in improved β-cell 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1948-9358/full/v12/i4/331.htm
https://dx.doi.org/10.4239/wjd.v12.i4.331


Kim SW et al. Exercise intervention under hypoxic for T2DM

WJD https://www.wjgnet.com 333 April 15, 2021 Volume 12 Issue 4

function[19-22]. Patients with T2DM do not release enough insulin to control glucose due 
to loss of cells, deterioration of their function, or both[23]. Obesity increases the risk of 
T2DM[24,25] partly by decreasing insulin sensitivity, i.e., insulin does not cause a normal 
reduction in blood glucose.

Given the relationship between diabetes, increased cardiovascular disease, and 
decreased life expectancy[26], the concept of effective treatment for diabetes is 
important. Exercise interventions promise to enhance glycemic control and 
cardiovascular condition[19]. It is important to find a more effective strategy for treating 
this metabolic disease[27]. Recently, many studies have investigated treatment of 
diabetes by widely applying hypoxic conditions, based on studies that showed that 
exercising at high altitudes reduced the risk of diabetes, cardiovascular disease, and 
obesity-related diseases, as compared to exercising at sea level[27-31]. Hypoxic therapy is 
a novel treatment used as a common practice in many developed countries[28,32-35]. 
Hypoxic therapies such as hypoxic exposure or hypoxic exercise intervention have 
been recommended to treat and prevent diabetes by affecting glucose uptake, insulin 
sensitivity, and vascular health[27].

This narrative review aims to summarize any possible benefits of exposure and 
exercise under artificially generated hypoxic conditions in T2DM patients.

EFFECT OF HYPOXIC EXPOSURE ON PHYSIOLOGICAL RESPONSES
Short- or/and long-term exposure to hypoxic conditions causes extensive 
physiological changes[36]. Normobaric (i.e., simulated altitude) and hypobaric hypoxia (
i.e., real and simulated altitude) can reduce oxygen partial pressure in tissues and in 
blood. The acute compensatory response activates the sympathetic nerves and 
increases ventilation, and causes an altitude-dependent increased cardiac output upon 
exposure of inhabitants of low-lying areas to high altitudes[37]. Hyperventilation is one 
of the essential processes involved in supplying sufficient oxygen to tissues[38]. 
Moreover, peripheral chemical receptors in the carotid body react to reduced arterial 
partial pressure of oxygen[39]. When a decrease in arterial oxygen saturation is detected 
by these receptors, the signal leads to sympathetic nerve activation and stimulation of 
ventilation, increasing the metabolic demand[40]. Exposure to dry and cold 
environments may increase water loss as ventilation increases[41]. As such, ventilation 
and cardiovascular reactions ensure that tissues’ metabolic demands are met at rest 
and during exercise at high altitudes. Sustained exposure to hypoxia results in a 
reduced cardiac output to a similar level as under normoxia. These adaptive responses 
are facilitated by an increased stimulated red cell mass and further increases in 
ventilator responses to hypoxia[36].

Intermittent hypoxia intervention has been studied over the past decades as a 
means of treatment for various health conditions[42-44]. It has been suggested that 
exposure to mild hypoxia for 1 h, with or without simultaneous exercise, had an acute 
effect on insulin-resistance and blood glucose level in T2DM patients[45,46]. In addition 
to these adaptations, exposure to the hypoxic environment positively affected body 
composition (e.g., fat mass, percent body fat, and fat-free mass)[28,30]. It has also been 
proven that several weeks of exercise under moderate hypoxia resulted in more 
weight loss in obese individuals than did exercising at the same or higher intensity 
under normoxia[29,30,47,48]. Previous studies have also reported the beneficial effects of 
repeated exposure to intermittent hypoxic interventions for a few weeks, in the 
absence of other types of intervention, on fasting blood glucose and insulin levels[49,50]. 
However, the fundamental mechanism underlying changes in glycemic control and 
insulin sensitivity due to hypoxia have been unclear[51]. In addition to the insulin-
dependent regulatory mechanism, it has been speculated that hypoxia may affect 
glucose uptake in a way similar to exercise[51]. Therefore, exposure to hypoxic 
conditions is a new method of intervention for health-promotion and prevention or 
treatment of chronic diseases by improving body weight, cell metabolism, 
cardiovascular, and respiratory function (Figure 1)[32,52].

HYPOXIC THERAPY FOR T2DM AND ITS APPLICATIONS
Review and meta-analysis suggest that exposure to hypoxic conditions during exercise 
can improve insulin sensitivity and enhance cardiovascular health more than exposure 
to normoxic conditions[28,53-55]. Furthermore, exposure to hypoxic conditions has been 
shown to increase endurance performance in athletes[56-58]. Exercising under hypoxic 
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Figure 1 Effect of hypoxic exposure on the physiological response to exercise. Exposure to hypoxic conditions is a new intervention method for 
health-promotion and for preventing or treating chronic diseases by improving body weight, cellular metabolism, and cardiovascular and respiratory function. HIF-1: 
Hypoxic inducible factor-1; VEGF: Vascular endothelial growth factor; GLUT-4: Glucose transporter-4; Hg: Hemoglobin; O2: Oxygen; CO: Carbon monoxide; C2: 
Carbon dioxide; Sa2: Arterial oxygen saturation.

conditions can enhance the exercise adaptations and exercise tolerance of T2DM 
patients[27]. Previous studies of exposure to hypoxia during acute and chronic exercise 
in T2DM and insulin-resistant patients are summarized in detail in Tables 1 and 2.

To date, various technical equipment has been developed to create hypoxic 
conditions artificially. Artificially produced hypoxia can be obtained by changing 
barometric pressure (hypobaric hypoxia) or by changing the fraction of oxygen (FiO2) 
(normobaric hypoxia). FiO2 is always constant at sea level (ca. 21%), and barometric 
pressure decreases with higher altitude. Hypoxic conditions can be created by using a 
special chamber at rest or during exercise. Such an environment control chamber is 
shown in Figure 2.

Therapeutic effects of exercise intervention under hypoxic conditions on T2DM
Effects of exercise intervention under hypoxic conditions on glucose uptake and 
insulin sensitivity: Exposure to hypoxia increases glucose uptake in the skeletal 
muscles of healthy and obese adults[59]. Brooks et al[60] demonstrated that 3 wk of 
hypoxic exposure at an altitude of ca. 4300 m improves glucose turnover and decreases 
blood glucose in healthy males. Lippl et al[61] showed that short-term hypoxic exposure 
(1 wk at an altitude of ca. 2650 m) decreased glycated hemoglobin (HbA1c) levels in 
obese males. Exposure to hypoxia can markedly improve glucose uptake, and 
exposure continuously improves blood glucose regulation over the long term.

A previous review article reported that regular physical activity and exercise could 
markedly increase peripheral glucose uptake and improve blood glucose 
regulation[62]. It is necessary to clarify whether exercise and hypoxia can have positive 
combined effects in T2DM and whether patients with this condition can benefit from 
short- or long-term exposure to hypoxia during exercise. Mackenzie et al[63] examined 
short-term hypoxic exposure during acute exercise on the glucose homeostasis in 
T2DM patients. They proved that glucose loss and sustained glucose infusion during 
cycling under hypoxic conditions were more significantly increased than under 
normoxic conditions[46,63]. Glucose tolerance tests performed immediately after cycling 
showed that blood glucose regulation improved more under hypoxic conditions. 
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Table 1 Effects of acute exercise under hypoxia vs under normoxia in patients with type 2 diabetes mellitus

Ref. Participants Design and protocol Exercise 
intensity Main results

Mackenzie 
et al[63]

(2011)1

n = 8; sex: Male; 
age: 58 ± 4.0 yr; 
BMI: 29.2 ± 6.7 
kg/m2

(1) 60 min rest in normoxia; (2) 60 min rest in 
hypoxia normobaric hypoxia (FiO2: 14.6%, 
simulated altitude: ca.3100 m); (3) 60 min cycling in 
normoxia; and (4) 60 min cycling in hypoxia 
(normobaric hypoxia: FiO2: 14.6%)

(3) and (4): 90% 
lactate threshold

Blood lactate: ↔ (1), (2); ↑ (3), (4). Blood 
glucose: ↔ (1); ↓ (2), (3), (4). Insulin 
sensitivity (during glucose tolerance test): 
(4) > (3) > (2) > (1)

Mackenzie 
et al[46]

(2012)1

n = 8; sex: Male; 
age: 58.7 ± 2.2 yr; 
BMI: 28.3 ± 2.1 
kg/m2

(1) 60 min continuous cycling in hypoxia 
(normobaric hypoxia: FiO2: 14.7%, simulated 
altitude: ca.3100 m); (2) 60 min interval training 
with passive recovery (5:5 min) in hypoxia 
(normobaric hypoxia: FiO2: 14.7%); and (3) 60 min 
interval training with passive recovery (5:5 min) in 
normoxia

(1): 90% lactate 
threshold; (2): 120% 
lactate threshold; 
(3): 120% lactate 
threshold

HR and blood lactate: ↑ (1), (2), (3). Blood 
glucose decrease (pre- to post-exercise): 
(1) > (2). Glucose disappearance: ↑ (1); ↔ 
(2), (3). HOMA-IR index improved after 
24 h: ↑ (1), (2); ↔ (3); after 48 h: ↑ (1); ↔ 
(3)

Brinkmann 
et al[76]

(2017)2

n = 8; sex: Male; 
age: 58.0 ± 15.0 yr; 
BMI: 33.0 ± 6.0 
kg/m2

40 min cycling: (1) Normoxia; (2) Hypoxia 
(normobaric hypoxia: FiO2: 14%, simulated 
altitude: ca. 3400 m); and (3) Hypoxia (normobaric 
hypoxia: FiO2: 14%) + hyperoxia (normobaric 
hyperoxia: FiO2: 30%) intervals (5:5 min)

Blood lactate: 2.5 
mmol/L

Blood lactate (post-exercise lower): (3) > 
(2). BORG RPE: ↔ (1), (2), (3). Pro-
angiogenic factors: VEGF: ↑ (2), (3). Anti-
angiogenic factor: endostatin: ↑ (2), (3)

1Data are presented as mean ± SE.
2Data are presented as mean ± SD. BMI: Body mass index; HR: Heart rate; BORG RPE: BORG rating of perceived exertion; FiO2: Fraction of inspired 
oxygen; HOMA-IR: Homeostatic model assessment for the quantification of insulin-resistance; VEGF: Vascular endothelial growth factor.

Table 2 Effects of hypoxia vs normoxia chronic exercise in patients with type 2 diabetes mellitus or insulin-resistance

Ref. Participants Intervention Intensity Frequency 
and duration Main results

Wiesner 
et al[69]

(2010)1

n = 45. NTG: sex: 8 male, 13 
females; age: 42.1 ± 1.7yr; BMI: 32.5 
± 0.8. HTG: sex: 10 male, 14 
females; age: 42.2 ± 1.2 yr; BMI: 33.1 
± 0.3

60 min running on a treadmill; 
normobaric hypoxia: simulated 
altitude: ca. 2740 m

VO2peak: 
65%

3 d/wk, 4 wk Lactate levels at the anaerobic 
threshold: ↓ HTG; fasting insulin, 
HOMA-IR: ↓ NTG, HTG; body fat 
decreased: HTG > NTG; BP, LDL-c: 
↔ NTG, HTG

Schreuder 
et al[66]

(2014)2

n = 19. NTG: sex: 5 male, 4 females; 
age: 52.0 ± 8.0 yr; BMI: 36.0 ± 6.5 
kg/m2. HTG: sex: 9 male, 1 female; 
age: 57.0 ± 6.0 yr; BMI: 30.9 ± 4.1 
kg/m2

45 min endurance training 
(cycling) + series of strength 
training exercises; normobaric 
hypoxia: FiO2: 16.5%: simulated 
altitude: ca. 2100 m

HRR: 
70%-75%

3 d/wk, 8 wk VO2max: ↑ NTG, HTG; BMI, BP, 
HOMA-IR, HDL-c, LDL-c, TC, TG, 
fasting glucose, HbA1c: ↔ NTG, 
HTG; Vasodilatory function: ↔ 
NTG, HTG

1Data are presented as mean ± SE.
2Data are presented as mean ± SD. NTG: Normoxia training group; HTG: Hypoxia training group; BMI: Body mass index; Fi2: Fraction of inspired oxygen; 
HDL-c: High-density lipoprotein cholesterol; HbA1c: Glycated hemoglobin; HOMA-IR: Homeostatic model assessment for the quantification of insulin-
resistance; HRR: Heart rate reserve; LDL-c: Low-density lipoprotein cholesterol; VO2peak: Peak oxygen uptake; VO2max: Maximal oxygen uptake; BP: 
Blood pressure; TC: Total cholesterol; TG: Triglyceride.

Insulin sensitivity increased only after 24 h and 48 h after exercise under hypoxic 
conditions. It also reported that exercising at a continuous submaximal intensity under 
hypoxic conditions effectively increased glucose uptake and insulin sensitivity than 
interval training[46]. Thus, previous research suggests that acute exercise under hypoxic 
conditions positively affects glucose uptake and insulin sensitivity in T2DM patients. 
The increase in glucose uptake during hypoxia has been thought to be due to the 
upregulation in the glycolytic energy pathway, which compensates for decreased 
energy production by the aerobic system[64]. Katayama et al[65] reported that the 
respiratory exchange ratio was lower during submaximal cycling exercise for 30 min at 
sea levels in healthy males than similar cycling under hypoxic conditions (at an 
altitude of ca. 2000 m). However, Schreuder et al[66] found no change in insulin 
sensitivity and blood glucose regulation in T2DM patients after exercise training under 
normoxia or short-term hypoxia.

Previous studies were also conducted on insulin-resistance in healthy adults and 
T2DM patients. Haufe et al[67] reported significant improvements in the values for the 
homeostatic model assessment of insulin-resistance (HOMA-IR) index in healthy 
males, only during exercise under hypoxic conditions. However, Lecoultre et al[68] 
showed increased glucose and insulin concentrations and higher insulin-to-glucagon 



Kim SW et al. Exercise intervention under hypoxic for T2DM

WJD https://www.wjgnet.com 336 April 15, 2021 Volume 12 Issue 4

Figure 2 Environment control chamber. Various technical equipment has been developed to create hypoxic conditions. Artificially produced hypoxia can be 
obtained by changing barometric pressure (hypobaric hypoxia) or by changing the fraction of oxygen (FiO2) (normobaric hypoxia). The FiO2 is always constant at sea 
level (FiO2 ca. 21%), and the barometric pressure decreases with higher altitude. The hypoxic conditions can be created using a special chamber at rest or during 
exercise.

rates after exercise training under hypoxic conditions, as compared to under normoxic 
conditions. Wiesner et al[69] showed that exercise training performed under short-term 
hypoxia did not change the HOMA-IR index in overweight and obese subjects. 
However, the training workload was significantly lower in the hypoxic group than in 
the general group, and exercise under hypoxic conditions was a more efficient method. 
These previous studies also demonstrated improvements in the HOMA-IR index with 
reduced body fat in the hypoxia groups[67,69]. Decreasing body fat helps to increase 
insulin sensitivity, particularly in T2DM patients, because there is a positive 
association between body fat, peripheral insulin-resistance, and pro-inflammatory 
conditions[70].

Thus, the combination of short-term hypoxia exposure and exercise has a beneficial 
effect. Nevertheless, there is a lack of biochemical evidence in human research. 
Therefore, further studies are needed to clarify whether exercise under short-term 
hypoxia can effectively increase blood glucose uptake and insulin sensitivity, as 
compared to exercise under normoxia[27].

Effects of exercise intervention under hypoxic conditions on skeletal muscle: The 
decrease in skeletal muscle capillarization can have a negative effect on blood glucose 
regulation, and a negative relationship between skeletal muscle capillary density and 
insulin concentration has been shown previously[71]. Regular physical activity has been 
shown to have a positive effect skeletal muscle capillaries[53]. Lundby et al[72] concluded 
in a previous review that combining exercise and hypoxia may accelerate structural 
and functional adaptation. In contrast, prolonged exposure to hypoxia does not result 
in significant changes in human capillarization during rest[72]. Mizuno et al[73] reported 
that exposure to ca. 5300 m for 75 d did not change the ratio between capillaries and 
muscle fibers. However, because the reduction in fiber size can be adapted to hypoxic 
exposure, capillaries per region were increased at a similar altitude[74]. Recent meta-
analysis studies have shown that exercise under hypoxic conditions positively affects 
the skeletal muscle capillaries and function of the vascular dilator[53].

A temporary increase in pro-angiogenic factors due to acute exercise may be related 
to the initiation and control of angiogenesis[75]. Brinkmann et al[76] found that acute 
exercise under hypoxia could lead to upregulation of serum pro-angiogenic factors, as 
compared to exercise under normoxia, in T2DM patients. Additionally, there are other 
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mechanisms that contribute to increased pro-angiogenic regulator release after 
exercise under hypoxic conditions. First, tissue hypoxia during exercise can be 
enhanced by environmental hypoxic conditions and is increased by activation of 
hypoxia-induced factor-1α (HIF-1α), which initiates expression of proteins related to 
angiogenesis regulation[77]. However, responses to hypoxia in diabetes have been 
impaired, and hyperglycemia is a very important result in the HIF-1α regulation[78]. 
The second mechanism is increased sympathetic nerve activity and increased skeletal 
muscle blood flow and shear stress at the vessel walls, which induce intracellular 
signal transduction through mechanical stimulation of capillaries, thereby increasing 
angiogenesis via vascular formation[79].

Effects of exercise intervention under hypoxic conditions on vascular health: 
Exercise can help prevent disease progression and protect T2DM patients from 
secondary complications by improving long-term increases in skeletal muscle 
capillarization and vascular function. Patients with diabetes develop not only 
abnormal angiogenesis but also macroscopic and microscopic angiogenesis with 
endothelial dysfunction[80]. The current meta-analysis suggested that exercise improves 
vascular dilation when performed under hypoxia than under normoxia[53]. Exercise 
under hypoxic conditions is associated with a compensatory increase in blood flow to 
active muscles to meet the oxygen demand[81,82]. Exercise-induced blood flow is 
important in inducing vascular adaptation. The combination of exercise and hypoxia 
can positively affect vascular adaptation in normoxic exercise training, particularly in 
T2DM patients who typically exhibit attenuated exercise-induced blood flow[83]. 
However, Schreuder et al[66] showed no effect of training on the vascular dilation in 
T2DM patients, both when exercise was performed in normoxia and hypoxia. These 
differences may be due to the different training protocols or oxygen concentrations 
used, and other possible adaptation mechanisms in T2DM patients[84].

The effects of hypoxia and exercise may be related to subsequent increased blood 
flow to muscles, and high shear stress, nitric oxide (NO), and oxygen tension 
reduction[81,83,85,86]. While the specific mechanisms that underlie the effects of exercising 
under hypoxia remain unclear, it has been demonstrated that exposure of endothelial 
cells to hypoxia increases[87]. In this regard, the expression and activation of endothelial 
NO synthase (eNOS) as a potent vascular dilator can be increased and produce eNOS 
and NO levels. Therefore, exercise under hypoxic conditions is thought to have high 
potential to improve vascular health. However, further studies are needed to confirm 
that long-term exercise under hypoxia can improve skeletal muscle capillarization 
more significantly than exercise under normoxia in T2DM patients. Previous studies 
can also demonstrate how training protocols should be modified to induce effective 
adaptation of physiological variables. Schreuder et al[66] have reported that the vascular 
dilation in T2DM patients could be positively affected by exercise training under 
short-term hypoxic conditions. However, additional studies should be conducted to 
apply various training protocols and oxygen concentrations.

Effects of exercise intervention under hypoxic conditions on body composition: 
There are positive correlations between increased fat mass, insulin-resistance, chronic 
inflammation, and cardiovascular disease[70]. Decreasing fat mass is one of the 
important goals in the treatment of overweight and obese patients with T2DM. 
Previous studies have reported that exercise under hypoxia can help reduce body 
weight and body fat mass in overweight and obese patients with T2DM[27,88,89]. Kong 
et al[47] showed that combined aerobics and strength training under hypoxic conditions 
(simulated altitude: ca. 2100-3200 m, FiO2: 14.5%-16.5%) for 4 wk (11 sessions/wk) 
decreased weight more than under normoxic conditions in obese young adults. 
Wiesner et al[69] reported that hypoxia exercise training for 4 wk improved body 
composition in obese men and women without diabetes and with insulin-resistance. 
Acute exposure to hypoxia (2 h) at a simulated altitude of 4300 m has been reported to 
decrease the leptin reaction to glucose uptake in healthy humans[90]. The results of 
previous studies may be related to changes in hormones that control appetite. 
However, the effects of acute exposure to hypoxia on leptin levels and appetite in 
T2DM patients have not been demonstrated. Therefore, a future study on appetite 
regulation mechanisms is needed, considering that T2DM patients have leptin 
resistance[91].

Effects of exercise intervention under hypoxic conditions on blood lipids and 
oxidative stress: Another perspective of the effect of exercise under hypoxic conditions 
is its effects on blood lipid variables in patients with diabetes. Simpson et al[92] 
examined how exposure to hypoxic conditions during moderate exercise, as well as 16 
d of rest in normoxia and continuous normobaric hypoxia (simulated altitude: ca. 3400 
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m, FiO2: 14%), changes total cholesterol, high-density lipoprotein (HDL), and low-
density lipoprotein (LDL) levels in healthy men. Exposure to hypoxic conditions 
during moderate exercise significantly reduced total cholesterol, HDL, and LDL levels. 
Schreuder et al[66] and Wiesner et al[69] reported no positive effect of exposure to hypoxic 
conditions during exercise on blood lipids variables in overweight and obese patients 
with T2DM and insulin-resistance. To date, there have been no studies providing 
evidence of an effect of exposure to hypoxic conditions during exercise on blood 
lipids.

T2DM patients may experience increased oxidative stress as free radicals increase, 
further exacerbating insulin-resistance or causing cardiovascular disease[93]. However, 
more research is needed on whether exercise under short-term hypoxic conditions can 
reduce oxidative stress in T2DM patients and protect against secondary complications 
caused by free radicals than exercise performed under normoxic conditions. A single 
bout of interval training under hypoxic conditions (simulated altitude: ca. 4000 m, FiO2

: 13%) has been reported to increase ventilatory responses in T2DM patients[45]. These 
results demonstrate the potential of such training to benefit individuals with diabetes 
with autonomic regulation imbalances. Future research requires verification of the 
effectiveness of exercise under short-term hypoxic conditions in improving blood lipid 
levels and oxidative stress.

Possible health risks of exercise intervention under the hypoxic condition on T2DM
This narrative review describes some health risks that may arise when exercising 
under hypoxic conditions. The definition of the range of oxygen-availability under 
which exercise can be performed under hypoxic conditions without negatively 
affecting health needs to be defined. Previous studies have set short-term hypoxic 
conditions similar to simulated altitudes of up to ca. 4000 m for healthy participants 
and ca. 3400 m for T2DM patients. These hypoxic conditions did not result in health 
problems in previous studies. However, breathing air with rapidly reduced oxygen 
levels or prolonged exposure to very high altitude conditions increases the risk of 
neurocognitive impairment, myocardial infarction, and stroke[94]. Clinical effects on the 
human body have not been apparent, but T2DM patients have been shown to respond 
to hypoxic conditions with low ventilation reactions[95]. A previous study has 
suggested that cardiac output and heart rate is changed in T2DM patients upon 
exposure to hypoxic conditions[84]. In particular, T2DM patients with neurological 
disorders could be negatively affected during exercise involving exposure to hypoxic 
conditions. In terms of body composition, exposure to long-term hypoxic conditions 
may facilitate reduction in body weight and fat mass, but exposure to extreme altitude 
(> 5000 m) has been shown to affect fat-free mass negatively[96]. The effect of increased 
capillarization in skeletal muscle after exercise training under hypoxic conditions 
requires further study, and the clinical relevance of excessive abnormal angiogenesis 
in diabetes needs to be shown[80].

Oxidative stress is exacerbated under hypoxic conditions by both intense and long-
term exercise[97]. The actual protocol for exposure to hypoxia has varied significantly 
across studies in terms of cycle length (e.g., weeks), the duration of exposure (e.g., 
minutes and hours), the number of exposures per day (e.g., session), and the number of 
days. Exposure to extreme acute hypoxic conditions may be similar to the findings 
obtained with animal models of ischemia or reperfusion, with acute release of 
excessive free radicals and decreased antioxidant capacity[98]. Oxidative stress can 
cause cell and tissue damage and be harmful to the human body. However, redox 
balance changes can play a positive role as a potential stimulus for adaptation to 
prolonged exercise[99]. Previous studies have shown that regular moderate exercise can 
weaken oxidative stress associated with hypoxia[100-103]. Therefore, there is potential 
health risks when T2DM patients exercise under hypoxic conditions. However, its 
value as an effective treatment method would be marked, if appropriate safety 
precautions are implemented.

CONCLUSION
Short- and long-term exposure to hypoxic conditions during exercise may improve 
glucose uptake and insulin sensitivity in T2DM patients more than when exercising 
under normoxic conditions. Additionally, exercising under hypoxic conditions could 
help reduce body weight and fat mass in overweight and obese patients with T2DM. 
Several previous studies have reported positive effects of exercise training under 
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hypoxic conditions on the bodies of T2DM patients. However, there is currently a lack 
of research on the long-term adverse effects of exposure to hypoxic conditions during 
exercise training in T2DM patients. Future studies should evaluate the potential 
benefits of exposure to hypoxic conditions during exercise, to design new intervention 
methods (normobaric hypoxia vs hypobaric hypoxia) for treating T2DM patients. 
Overall, exposure to hypoxic conditions during exercise in T2DM patients have the 
potential value of adaptation to stress stimulation in terms of clinical treatment, which 
can protect against pathological biology and other stresses in diabetes. Overall, the 
literature suggests that exposure to hypoxic conditions during exercise (simulated 
altitude of ca. 3000 m) is highly likely to improve the health condition of patients with 
diabetes. However, there is insufficient evidence for the safety of exposure to short-
term hypoxic conditions during exercise in T2DM patients, and further research is 
needed to develop suitable interventions. Thus, exposure to hypoxic conditions during 
exercise should be performed with consideration of safety precautions, and patients 
should be advised by a medical doctor before undertaking exposure to hypoxic 
conditions.
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