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Abstract: In this study we identified single nucleotide polymorphism (SNP) and sequence
characteristic amplification region (SCAR) markers for specific identification of antler-shaped
Ganoderma lucidum strains. When the partial mitochondrial SSU rDNA gene sequence of various
antler- and kidney-shaped G. lucidum strains were analyzed and aligned, an SNP was found only
in the antler-shaped G. lucidum strain at position 456 bp. In addition, this SNP of antler-shaped
strains was digested by HinfI restriction enzyme. We further analyzed the polymorphism of various
G. lucidum strains by random amplified polymorphic DNA (RAPD) analysis. In RAPD analysis,
we isolated and sequenced a fragment, specific for antler-shaped G. lucidum strains. Based on this
specific fragment sequence, two sets of specific primer pairs for antler-shaped G. lucidum strains were
designed. PCR analysis revealed that two specific bands were observed only from antler-shaped
strains. These two molecular markers will be helpful for identification of morphological characteristics
of G. lucidum.

Keywords: antler-shape; Ganoderma lucidum; kidney-shape; mitochondrial SSU rDNA; SCAR marker;
SNP marker

1. Introduction

Ganoderma lucidum (Curtis) P. Karst. was named by Petter Adolf Karsten in 1881 based on
material from England [1,2]. The name G. lucidum has been applied to collections from various
countries, including East Africa, Oceania, North America, South America, Asia (China, Japan,
and Korea), and Europe [3]. G. lucidum has been used in traditional medicine for thousands of
years in East Asian countries, such as China, Japan, and Korea. The bioactive compounds such
as flavonoids, ganoderic acid, phenolics, and polysaccharides of G. lucidum have been reported to
show immunomodulatory effect, antitumor activity, and inhibitory activity against histamine release
and cholesterol synthesis [4–7]. Antler-shaped G. lucidum is a variant of G. lucidum that is rarely
found in nature [8]. This rare variant is famous for its medicinal effect in China and Japan [9]. It is
commonly called “Lu jiao Lingzhi” in China, “Rokkaku-Reishi” in Japan [10], and “Nokgak Yeongji”
in Korea. Antler-shaped G. lucidum has been reported to contains much larger amounts of β-D-glucans
and triterpenoids than kidney-shaped G. lucidum [11,12]. It is also known to be more effective in
immunostimulatory and anti-tumor activities than kidney-shaped G. lucidum [12,13]. Therefore,
antler-shaped G. lucidum is expected to show much stronger pharmacological activity. On phylogenetic
analyses of the genus, G. lucidum from different parts of the world were reported to belong to several
separated lineages [14–18]. Regarding research on the markers for Ganoderma species, there are several
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reports about taxonomic diversity by RAPD, RFLP, AFLP, and other methods [19–22]. However,
there is no marker for specific identification of antler-shaped G. lucidum strain.

Molecular markers are developed by several techniques, such as amplified fragment length
polymorphism (AFLP), polymerase chain reaction-restriction fragment length polymorphism
(PCR-RFLP), random amplified polymorphic DNA (RAPD), and sequence characterized amplification
region (SCAR) [23]. Among these techniques, PCR-RFLP and RAPD are the quickest and relatively
simplest methods and are particularly useful for genetic variation and mutation analyses [19,24]. Single
nucleotide polymorphisms (SNPs) have an important role in biomedical and biological researches,
including genetic variations, mutations, and investigation of complex genetic diseases [24,25].
SNPs are found most commonly between DNA sequences obtained from different individuals or
the same individuals [26–29]. Therefore, SNP is the most abundant marker system in animal, plant,
and microorganism genomes and has recently emerged as the new generation molecular marker
for various applications. Furthermore, SNP based technique allows the successful detection and
distinction of specific genetic variations even in a low diversity species [30]. The target SNPs are
distinguished by digestion using specific restriction enzymes in a process called “PCR-RFLP” [24].
In addition, the combination of RAPD and SCAR markers is a simple and useful tool for molecular
analysis or genetic characterization of different species [31].

Ganoderma species has different morphological characteristics due to environmental factors
and genetic variations [32]. In addition, development of cultivation techniques has enabled the
formation of antler-shaped pileus in China, Japan, and Korea [8,13]. Thus, genetic characterization
and accurate identification of antler-shaped G. lucidum are important. In this study, we attempted to
develop SNP and SCAR markers for specific identification of antler-shaped G. lucidum at the mycelial
stage. These SNP and SCAR markers will be helpful in genetically identifying the morphological
characteristics of G. lucidum.

2. Materials and Methods

2.1. Strains and Culture Conditions

Five antler- and nineteen kidney-shaped G. lucidum strains were collected from the Mushroom
Division of the Rural Development Administration (Eumseong, Korea), Incheon University (Incheon,
Korea), the Korean Agricultural Culture Collection (KACC, Suwon, Korea), the Korean Collection for
Type Culture (KTCT, Jeongeup, Korea) (Table 1). In addition, commercial kidney-shaped G. lucidum
(Imsil, Korea) was purchased and used in this study. G. lucidum mycelia were cultured in potato
dextrose broth (PDB; Difco, Detroit, MI, USA) at 28 ◦C for 2 weeks.

Table 1. Ganoderma lucidum strains used in this study.

No. Species Collection Origin Shape

1 Ganoderma lucidum 1 ASI-7013 Korea antler
2 Ganoderma lucidum ASI-7135 Korea antler
3 Ganoderma lucidum ASI-7146 Korea antler
4 Ganoderma lucidum ASI-7074 Korea antler
5 Ganoderma lucidum ASI-7094 Korea antler
6 Ganoderma lucidum ASI-7004 Korea kidney
7 Ganoderma lucidum ASI-7071 Korea kidney
8 Ganoderma lucidum ASI-7091 Korea kidney
9 Ganoderma lucidum ASI-7117 Korea kidney

10 Ganoderma lucidum 2 IUM-0047 Korea kidney
11 Ganoderma lucidum IUM-0757 Korea kidney
12 Ganoderma lucidum IUM-0938 Korea kidney
13 Ganoderma lucidum IUM-3986 Korea kidney
14 Ganoderma lucidum IUM-4002 Korea kidney
15 Ganoderma lucidum IUM-4100 Korea kidney
16 Ganoderma lucidum IUM-4304 Bangladesh kidney
17 Ganoderma lucidum IUM-4310 Bangladesh kidney
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Table 1. Cont.

No. Species Collection Origin Shape

18 Ganoderma lucidum 3 KACC42232 Japan kidney
19 Ganoderma lucidum KACC51689 Japan kidney
20 Ganoderma lucidum KACC51690 Japan kidney
21 Ganoderma lucidum ASI-7037 Papuanewguinea kidney
22 Ganoderma lucidum 4 KCTC 16802 Thailand kidney
23 Ganoderma lucidum ASI-7068 USA kidney
24 Ganoderma lucidum ASI-7152 Korea kidney
25 Ganoderma lucidum Commercial strain Korea Kideny

1 Agricultural Science Institute, 2 Incheon University Mushroom, 3 Korean Agricultural Culture Collection, 4 Korean
Collection for Type Cultures.

2.2. DNA Extraction and Amplification

Cultured mycelia [filtered through 2 layers of MiraCloth (Calbiochem, La Jolla, CA, USA)]
and fruiting bodies were ground in liquid nitrogen, and genomic DNA was extracted using the
cetyltrimethylammonium bromide (CTAB) method [33]. Samples (0.5 g) were mixed with 400 mL of
extraction buffer (100 mM NaCl, 50 mM EDTA, 0.25 M Tris-HCl, 5% SDS) and 400 mL of 2 × CTAB
buffer (2% CTAB, 100 mM Tris-Hcl pH 8.0, 20 mM EDTA pH 8.0, 1.4 M NaCl, 1% polyvinyl pyrrolidone).
The extracted DNA was clarified with an extraction solution (phenol–chloroform–isoamyl alcohol,
25:24:1) and then was precipitated with 1/30 volume of 3 M sodium acetate and 1 volume of
isopropanol. Purified DNA was sequentially washed with 70% ethanol and dried. The DNA pellet
was dissolved in 60 µL of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) and treated sequentially
with 6 µL of RNase A (20 mg/mL).

The extracted DNA was used as a template (adjusted to 100 ng/µL) for PCR amplification of the
partial mitochondrial SSU rDNA gene and for RAPD analysis. All PCR reactions were performed with
a premixed polymerase kit (Taq PreMix; TNT Research, Anyang, Korea) in a 20 µL reaction mixture
containing 1 µL DNA (100 ng/µL) and 2.5 pmol of each primer. All PCR primer sequences used are
shown in Table 2. Partial mitochondrial SSU rDNA gene was amplified using primer pairs of BMS 105
and BMS 173 [34]. Amplification conditions for the mitochondrial SSU rDNA were 3 min of initial
denaturation at 94 ◦C, followed by 25 cycles of denaturation at 94 ◦C for 30 s, annealing at 55 ◦C for
30 s, and extension at 72 ◦C for 2 min, and final extension at 72 ◦C for 10 min using TaKaRa Thermal
cycler (TaKaRa, Tokyo, Japan). RAPD-PCR amplification conditions were 10 min of initial denaturation
at 94 ◦C, followed by 35 cycles of denaturation at 94 ◦C for 1 min, annealing at 55 ◦C for 1 min, and
extension at 72 ◦C for 2 min, and final extension at 72 ◦C for 7 min using TaKaRa Thermal cycler
(TaKaRa, Tokyo, Japan). PCR products were detected by electrophoresis on 1.2% agarose gel in 0.5 ×
TAE buffer (Tris-acetic acid-EDTA), stained with ethidium bromide (EtBr), and visualized on a UV
transilluminator. The PCR product sizes were determined by comparison to 1 kb Plus Ladder Marker
(TNT research, Anyang, Korea).

Table 2. Primers used in this study.

Primer Sequences (5′—3′) Target

BSM105_F ATTAGTCGGTCTCGAAGCAAACG Partial mitochondrial SSU rDNA gene
BSM173_R TGCTATGACTTTTGAGATGTTAC Partial mitochondrial SSU rDNA gene

URP 1 ATCCAAGGTCCGAGACAACC 1 RAPD
URP 5 GGCAAGCTGGTGGGAGGTAC RAPD

KAGL1_F GGAGGCCGCTGGACTGAGG Antler-specific
KAGL1_R ATGGGACTGGATCTTGAGGAACA Antler-specific
KAGL2_F GGCGGCGGCAGAGGAGAG Antler-specific
KAGL2_R TCGCGACTTGAGAACTGGCATAGC Antler-specific

1 Random Amplified Polymorphic DNA.
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2.3. Cloning, Sequencing and Sequence Analysis

The PCR products and specific DNA fragments were ligated into pGEM-T easy vector (Promega,
Madison, WI, USA), according to the manufacturer’s instruction. After ligation, the plasmids were
transformed into competent cell (E. coli DH5α; RBC, New Taipei City, Taiwan) by the heat-shock
method [35]. Plasmid DNAs were extracted using FavorPrep™ Plasmid Extraction Kit (Favorgen
Biotech Corporation, Pingtung, Taiwan). Insert DNAs of the recombinant plasmids were confirmed by
restriction enzyme EcoRI. Sequences were determined by a commercial service (Genotech, Daejeon,
Korea) and analyzed using the BioEdit program (http://www.mbio.ncsu.edu/bioedit/bioedit.html).

2.4. SNP Detection and Validation

Restriction enzyme capable of cleaving antler-shaped G. lucidum specific SNP within partial
mitochondrial SSU rDNA sequences was analyzed using SeqBuilder program (DNAStar, Inc., Madison,
Wis., USA). PCR products of partial mitochondrial SSU rDNA gene were digested by the restriction
enzyme FastDigest HinfI (Fermentas, Vilnius, Lithuania). The restriction enzyme digestion reaction
was done by mixing 5 µL of PCR products in 0.5 µL of restriction enzyme and 1.2 µL of 10 × FastDigest
buffer. The total volume was made up to 12 µL using autoclaved distilled water and was then incubated
for 10 min at 37 ◦C. The digested product was visualized by electrophoresis in 1.2% agarose gel using
1 kb Plus Ladder Marker (TNT research, Anyang, Korea).

2.5. SCAR Primer Design and Validation

Specific DNA fragments were eluted using the Qiaquick Gel Extraction Kit (Qiagen INC.,
Chatsworth, CA, USA), according to the manufacturer’s instruction. Two sets of specific primer pairs
for antler-shaped G. lucidum were designed for SCAR marker. PrimerSelect in Lasergene (DNAStar,
Inc. Madison, WI, USA) was used for the primer design. Specific primers are shown in Table 2. PCR
reactions of specific primer pairs for antler-shaped G. lucidum were performed in a total volume of
20 µL, containing 1 µL of DNA (100 ng/µL) and 2.5 pmol of each primers (KAGL 1F/1R and KAGL
2F/2R primer pairs). The PCR conditions were 5 min of initial denaturation 94 ◦C, followed by
27 cycles of denaturation at 94 ◦C for 15 s, annealing at 61 ◦C for 15 s, and extension at 72 ◦C for 30 s,
and final extension at 72 ◦C for 10 min using TaKaRa Thermal cycler (TaKaRa, Tokyo, Japan). The PCR
product was visualized by electrophoresis in 1.2% agarose gel using 1 kb Plus Radder Marker (TNT
research, Anyang, Korea).

2.6. Cultivation of G. lucidum Fruit Body

Sawdust mixed with rice bran in 4:1 ratio was watered and placed into polypropylene bottles.
The substrate was sterilized at 121 ◦C for 40 min in an autoclave and cooled at room temperature for
24 h. Then, the sawdust medium was inoculated with the cultured Ganoderma mycelium in potato
dextrose agar (PDA; Difco, Detroit, MI, USA) medium. The inoculated sawdust media were incubated
at 28 ◦C for approximately one month until mycelia spread all over the media. When the mycelium had
colonized the substrate completely, it was transferred to a fruiting room at 26 ◦C. The substrate was
wetted to increase the moisture content to approximately 60%–80%. The artificially induced formation
of antler shape from kidney shape was achieved under dark and 0.1% CO2 conditions.

3. Results

3.1. SNP Analysis of Partial Mitochondrial SSU rDNA Gene

In PCR analysis, the amplified PCR product sizes from the partial mitochondrial SSU rDNA gene
sequences of the antler- and kidney-shaped G. lucidum were of identical length of 661-bp (Figure 1,
Figure 2A and Figure S1). Among them, SNPs were found only in the antler-shaped G. lucidum
strains at location 456 bp (Figure 1). At 456 bp location, antler-shaped G. lucidum strains contain the

http://www.mbio.ncsu.edu/bioedit/ bioedit.html
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nucleotide cytosine (C) but kidney-shaped counterparts contain the nucleotide adenine (A). This SNP
region in antler-shaped G. lucidum is recognized by the HinfI restriction enzyme. Consequently, the
PCR products of the antler-shaped G. lucidum strains were digested to 209-bp and 455-bp sizes by
HinfI restriction enzyme. (Figure 2B). Thus, antler- and kidney-shaped G. lucidum strains could be
distinguished by HinfI restriction enzyme.
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3.2. Development of SCAR Marker for Antler-Shaped G. lucidum

In this study, 12 URP primers were used to evaluate the specific polymorphism of G. lucidum
strains. Among them, the URP1 and URP5 primers revealed a good polymorphic amplification pattern
for antler- and kidney-shaped G. lucidum strains. In addition, amplification with URP1 and URP5
primers from all antler-shaped G. lucidum strains showed specific DNA bands of 273-bp and 994-bp,
respectively (Figure 3). The two target DNA bands (273-bp and 994-bp) for the specific identification
of antler-shaped G. lucidum were isolated and sequenced to design strain-specific primers.
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Figure 3. RAPD analysis of 24 Ganoderma lucidum strains using the (A) URP 1 and (B) URP 5 primers.
The arrows indicate the specific fragment sizes of antler-shaped G. lucidum strains. Lanes 1–5:
antler-shaped G. lucidum. Lanes 6–24: kidney-shaped G. lucidum (numbers 1–24, respectively, in Table 1).
M: size markers (1 kb ladder).

The DNA fragment sequences and specific primers of antler-shaped G. lucidum strain are shown
in Figure 4A,B. As predicted, the PCR results from all of antler-shaped G. lucidum strains were found
to have two specific DNA bands in 137-bp and 532-bp (Figure 4C). However, either one of the two
specific bands (137-bp or 532-bp) or no band was observed from kidney-shaped G. lucidum strains
(Figure 4C). This result indicates that two sets of specific primer pairs (KAGL 1F/1R and KAGL 2F/1R)
are specific to antler-shaped G. lucidum and could be used to differentiate it from kidney-shaped G. lucidum.
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Figure 4. Primers for specific detection of antler-shaped Ganoderma lucidum and PCR amplification.
The specific DNA fragments sequences amplified with (A) URP 1 and (B) URP 5 from the antler-shaped
G. lucidum. Black boxes indicate the primer positions; (C) PCR amplification. Arrows indicate the
antler-shaped G. lucidum-specific amplified fragments. Lanes 1–5: antler-shaped G. lucidum. Lanes 6–24:
kidney-shaped G. lucidum (numbers 1–24, respectively, in Table 1). M: size markers (1 kb ladder).

We checked SNP and SCAR markers for the specific identification of antler-shaped G. lucidum
fruit body and artificial forming of antler shape (Figure 5). Consequently, SNP marker was confirmed
to have two fragments of the sizes 209-bp and 455-bp by HinfI restriction enzyme digestion in the
antler-shaped G. lucidum fruit body (ASI-7013), except for kidney-shaped G. lucidum fruit bodies
(ASI-7071 and commercial G. lucidum) and artificial forming antler-shape from kidney-shape (ASI-7071)
(Figure 5B). Furthermore, SCAR marker revealed that both of two specific bands were found only in
the fruit body of antler-shaped G. lucidum strain (ASI-7013) (Figure 5C). These results showed that SNP
and SCAR markers can help distinguish between the antler- or kidney-shaped G. lucidum fruit body.
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antler-shaped fruit bodies by HinfI digestion; (C) SCAR marker validation for antler-shaped fruit
bodies. Lane 1: antler-shaped G. lucidum (ASI-7013). Lane 2: Kidney-shaped G. lucidum (ASI-7071).
Lane 3: artificially induced antler-shape (ASI-7071). Lane 4: commercial G. lucidum of kidney-shape.
M: size markers (1 kb ladder).

4. Discussion

This study aimed to develop the SNP and SCAR markers for specific identification of antler-shaped
Ganoderma lucidum strains. G. lucidum has been widely used as a valuable medicinal agent because of
its wide variety of anti-inflammatory, antitumor, antioxidant, and other biological activities [36,37].
It has been reported that antler-type G. lucidum produces higher levels of bioactive compounds such as
flavonoids, ganoderic acid, and phenolics than kidney-shaped G. lucidum [11,12,38].

Mitochondrial DNA is one of the most important genetic resources and it is used as a marker for
various phylogenetic classifications [39]. In addition, Hong et al. [34] reported that the information
of valuable domains in mitochondrial SSU rDNA gene was useful in phylogenetic analysis of the
Ganoderma species. In this study, we analyzed the partial mitochondrial small-subunit ribosomal
DNA gene sequence of various antler- and kidney-shaped G. lucidum strains. We found that the
antler-shaped G. lucidum has an SNP in the mitochondrial SSU rDNA gene sequence and can be
digested by the HinfI restriction enzyme.

We also designed two sets of specific primer pairs to develop SCAR-marker for the antler-shaped
G. lucidum strains based on RAPD analysis. PCR analysis with antler-shaped specific-primers revealed
that the artificially induced antler-shaped G. lucidum could also be specifically discriminated. RAPD
with random arbitrary primers has been widely used in genetic diversity studies of fungi [40–42].
In addition, genetic relationships can also be inferred even within fungal pathogen species using RAPD
markers. Manulis et al. [43] reported that specific banding patterns from RAPD were subsequently used
as probes to distinguish between races of the carnation wilt fungal pathogen Fusarium oxysporum f. sp.
dianthi. Moreover, RAPD markers have been reported to be useful in diagnostic studies of fungal
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pathogens such as Alternaria species (the causal agent of brown spot of citrus) and Leptosphaeria
maculans (the causal agent of blackleg of crucifers) [40,44]. However, RAPD analysis using random
arbitrary primers tends to result in low reproducibility. Universal rice primers (URPs) developed
from the repetitive sequences of rice genome can be used for PCR fingerprinting of various organisms
including plants, animals, and microorganisms due to their high reproducibility [45]. In addition,
RAPD analysis using URP primers is a useful tool for the characterization and grouping of fungal
species at intraspecific and interspecific levels [46–50].

Antler-shaped G. lucidum is a valuable herbal medicine in China, Japan, and Korea. Antler-shaped
G. lucidum can be cultivated naturally or artificially. A dark condition with poor ventilation does not
expand the pileus. In addition, high levels of carbon dioxide (CO2) have been reported to support the
production of antler-shaped fruiting bodies [9,38]. Thus, its morphology can be changed by artificially
modulating the cultivation conditions. Antler-shaped G. lucidum strain has been mainly distinguished
by morphological characteristics. However, this form is not easy to distinguish because of the various
formulations and development of cultivation techniques. Therefore, the SNP and SCAR markers for
the identification of antler-shaped G. lucidum strains will be useful for protection of the breed, breeding,
time saving, and the cost-effective part.

Supplementary Materials: The following figures are available online at http://www.mdpi.com/2076-2607/7/1/
12/s1. Figure S1: Alignment of partial mitochondrial SSU rDNA sequences of Ganoderma lucidum strains.
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