
sensors

Article

Hand Motion Capture from a 3D Leap Motion Controller
for a Musculoskeletal Dynamic Simulation

Robin Fonk † , Sean Schneeweiss † , Ulrich Simon and Lucas Engelhardt *

����������
�������

Citation: Fonk, R.; Sean, S.; Simon, U.;

Engelhardt, L. Hand Motion Capture

from a 3D Leap Motion Controller for

a Musculoskeletal Dynamic

Simulation. Sensors 2021, 21, 1199.

https://doi.org/10.3390/s21041199

Academic editor: Zimi Sawacha

Received: 17 December 2020

Accepted: 2 February 2021

Published: 8 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Scientific Computing Centre Ulm (UZWR), Ulm University, 89081 Ulm, Germany; robin.fonk@gmx.de (R.F.);
publication@seanschneeweiss.de (S.S.); ulrich.simon@uni-ulm.de (U.S.)
* Correspondence: publication@lucasengelhardt.de
† These authors contributed equally to this work.

Abstract: The AnyBody Modeling System™ (AMS) is a musculoskeletal software simulation solution
using inverse dynamics analysis. It enables the determination of muscle and joint forces for a
given bodily motion. The recording of the individual movement and the transfer into the AMS is
a complex and protracted process. Researches indicated that the contactless, visual Leap Motion
Controller (LMC) provides clinically meaningful motion data for hand tracking. Therefore, the aim
of this study was to integrate the LMC hand motion data into the AMS in order to improve the
process of recording a hand movement. A Python-based interface between the LMC and the AMS,
termed ROSE Motion, was developed. This solution records and saves the data of the movement
as Biovision Hierarchy (BVH) data and AnyScript vector files that are imported into the AMS
simulation. Setting simulation parameters, initiating the calculation automatically, and fetching
results is implemented by using the AnyPyTools library from AnyBody. The proposed tool offers a
rapid and easy-to-use recording solution for elbow, hand, and finger movements. Features include
animation, cutting/editing, exporting the motion, and remote controlling the AMS for the analysis
and presentation of musculoskeletal simulation results. Comparing the motion tracking results with
previous studies, covering problems when using the LMC limit the correctness of the motion data.
However, fast experimental setup and intuitive and rapid motion data editing strengthen the use of
marker less systems as the herein presented compared to marker based motion capturing.

Keywords: musculoskeletal hand model; hand motion; leap motion controller; motion capture; range
of motion; anybody modeling system; AMS; bvh

1. Introduction

Joint reaction forces, moments, as well as muscle activities are crucial parameters for
medical implant design, rehabilitation, or biomechanical research questions. To address
those musculoskeletal questions, the inverse dynamics modeling approach is an increas-
ingly applied method. In contrast to implanted sensors for experimental measurements,
this simulation approach is ethically not questionable and adaptable for parameter studies.
The work of Engelhardt and Melzner et al. [1] introduced a musculoskeletal hand model
developed for inverse-dynamics simulations with the AnyBody Modeling System™ (AMS).
This was used to further analyze the resulting human hand joint and muscle forces in an
ongoing motion sequence. The work of Rasmussen et al. [2] described the computational
procedure for using the AMS. As indicated, movements of the body model are based
on kinematic measurements [2]. The kinematic data are frequently recorded by using a
marker-based camera motion capture system (MoCap). MoCap can be time-consuming,
cost-intensive, and possibly inaccurate because tracked markers attached to the skin move
relative to the bone [3]. A motion capture tracking system can take an enormous effort for
the experimental setup. Applying non-anatomical parameters as video tracking markers to
the model is overall a complex task. As many as 39 reflective markers have to be placed
on the subject’s hand, and the camera system needs to be manually calibrated and set up.

Sensors 2021, 21, 1199. https://doi.org/10.3390/s21041199 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5001-7087
https://orcid.org/0000-0002-7177-2986
https://orcid.org/0000-0001-9574-4552
https://orcid.org/0000-0002-6814-0320
https://doi.org/10.3390/s21041199
https://doi.org/10.3390/s21041199
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041199
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1199?type=check_update&version=1


Sensors 2021, 21, 1199 2 of 14

The data have to be edited and optimized to be able to transfer the motion data to the AMS
skeleton. In Gragg et al. [4], this is described as having a Cartesian space on the motion
capture system and transferring the positions into joint space. Alternatively, physiological
joint angles could be directly applied for driving the human model. Therefore, similar to
the posture reconstruction method proposed by Gragg et al., marker-less motion capture
systems could be used to apply motion to body models. For gait analysis or full body
modeling the Microsoft Kinect Sensor (Microsoft Corp., Redmond, WA, USA) has been
used [3] and for an accurate motion capture of the hand, the Leap Motion Controller (LMC)
(Leap Motion, San Francisco, CA, USA) has been identified to suit the needs for medical
applications [5–7]. Studies [8–13] have measured the accuracy of the motion tracking
of the hand with the LMC. The conclusion of Smeragliuolo et al. [12] indicated that the
LMC provides clinically meaningful data for wrist flexion/extension, mostly meaningful
data for wrist deviation, and inaccurate measurements of forearm pronation/supination.
Chophuk et al. [11] for finger joint angles compared the LMC and a finger goniometer,
with the results displaying a mean error of 5.73 degree. The finger goniometer might be
the more accurate reference measurement but unable to track motions of the entire forearm
in the desired way. The LMC provides the positions and orientation of the bones and
joints of the entire recorded hand. Based on these values, joint drivers in the AMS can
be applied to reproduce the same posture and movement. This is done by driving joint
angles and therefore rotating the attached bones as part of the kinematic analysis in the
AMS. The created motion is then used for the inverse-dynamic simulation that calculates
musculoskeletal forces and moments.

The aim of the present work was to engineer an automatic interface between an LMC
and the AMS to capture hand movements and integrate them into an inverse-dynamic
musculoskeletal simulation. It should be investigated, if a sensor—mainly developed for
media and entertainment purpose—is able to be used as a motion input for musculoskeletal
models in biomechanical research. Limitations due to covering problems as reported by
Rühlicke [14] were analyzed, proposing an accuracy measurement using video tracking in
comparison to the marker-less motion capture recording. To evaluate how precise the LMC
works within this new framework, the motion was compared between the video tracking
and the LMC recording.

2. Methods
2.1. General Approach

This work explains the developed tool set ROSE Motion, featuring an automated
workflow from a motion recording with the LMC, generation of motion files, and import
into the AMS with a subsequent kinematic analysis. This interface software connects the
LMC with AMS using Python [15] and core features of the Python libraries Gooey [16]
(graphical user interface for settings), AnyPyTools [17] (interface for AMS), LeapCxx [18]
(interface for the LMC), and PyMO [19] (motion data handling and animation). The source
code and the required Python packages are available in [20]. The software solution ROSE
Motion controls the LMC. ROSE Motion is a Python program to save motion data of
recorded positions, angles, finger lengths, and bone segments. The AMS uses the motion
data for driving finger joint movement. This work compares two approaches to process the
recorded motion within AMS:

• Marker-based C3D (three-dimensional time-sequence data) and Biovision Hierarchy
(BVH) files for MoCap simulation:
Imported trajectories of marker coordinates are fitted to model attached points using
the AnyMoCap™ Framework [21]. An optimization algorithm calculates the motion
of the arm while maintaining the minimum distance to the linked markers (Figure 1a)
possible. This procedure requires manual adaptions of the initial position, marker
alignment, and mapping prior to the simulation.

• Joint angle interpolation:
For each joint (i.e., wrist) and each degree of freedom (flexion/extension, abduc-



Sensors 2021, 21, 1199 3 of 14

tion/adduction, and pronation/supination) a (time)series of recorded angles is in-
terpolated with a B-spline and the resulting continuous function is used to drive the
respective joint. For that, the recorded motion has to be converted into subsequent
joint angles and transferred into the AMS study. A neutral-zero position of the arm is
used as a reference position to which all following positions are compared. The calcu-
lated joint angles will therefore describe the motion to drive the joints from the initial
position to the recorded position (Figure 1b).

Motion Capture Framework
using marker positions

B-Spline interpolation
using joint angle drivers

(a) (b)

Figure 1. Possibilities to process recorded motion in the AMS. (a) MoCap simulation uses motion files with trajectories of
marker coordinates. The distances between the recorded coordinates of the blue points from the movement file and the red
reference points on the skeleton are minimized by solving an optimization problem. The arrows represent the orientation of
the local and global coordinate systems. (b) Joint angle interpolation is based on B-spline interpolation of recorded motion
and uses the resulting continuous function for driving the joint according to flexion/extension, abduction/adduction, and
pronation/supination.

2.2. Workflow

The Python based ROSE Motion software implements the following steps (Figure 2):
First, the LMC records the hand movement. Meanwhile, the software stores time-sequence
data. Following termination of the recording, the Cardan angles in each joint are internally
calculated. The angle values and recording information are exported to AMS data files.
ROSE Motion automatically initiates the AMS simulation, and dumps the selected results
for postprocessing.

1. Recording
with LMC

ROSE Motion

2. Calculate
Joint Angles

3. Transfer
Motion Data

to AMS
4. AMS
Analysis

Figure 2. Workflow of the developed tool ROSE Motion. After the hand movement is recorded, the cardan angles of the
various finger joints are calculated for each frame. The calculated time-sequence data is transferred via data files to the
AMS. The simulation starts automatically.



Sensors 2021, 21, 1199 4 of 14

2.2.1. Recording with the LMC

In the first step, the LMC recognizes the motion of a single or both hands and ROSE
Motion stores the positions and basis of each bone segment from elbow to finger tip (green
and blue dots in Figure 3) according to the LMC internal hand model. The joint angle
calculation is based on recorded frames, each frame holding the position and the basis of
the bone segments in-between the joints.

LMC

Motion
and joint angle
calculation based on:

• bone segments coordinates
• bone segments orientation
• frames

Figure 3. Recording the hand motion with a LMC. The LMC software visualizes the finger bones
and joints of the internal hand model—marked on the screen as green and blue dots. The software
ROSE Motion processes the LMC data and saves frames with motion data while recording, e.g., bone
segments coordinates and bone segments orientation (source of image: the work in [22]).

2.2.2. Calculate Joint Angles

To transfer the motion into the AMS, the corresponding angles must be calculated
for each recorded frame/time step and for each joint. Accordingly, three joint angles
(Cardan angles) were exported per joint, each describing a relative angle between two
bone segments, i.e., metacarpal to proximal phalanx, along a selected axis [23]. In this
work, the joint coordinate system followed the standards of the International Society of
Biomechanics as described by Disselhorst-Klug et al. [24]. The three angles (φ, θ, ψ) and
the corresponding axes in Figure 4 are

• rotation about the flexion and extension axis (X-axis, φ),
• rotation about the resultant abduction and adduction axis (Y-axis, θ), and
• rotation about the resultant rotation axis (Z-axis, ψ).

An initial position (neutral-zero position) of the hand is set in the AMS. The joint angle
calculation is based on the reference position and bone bases of the flat outstretched hand
exported from the AMS. The angles for the following motion are calculated depending
on this reference position. ROSE Motion saves the basis for each bone—per frame/time
step—from the LMC recording. From this basis, the required joint angles (φ, θ, ψ) are
calculated by matrix multiplications and angle functions. As an example, the index finger
is shown in Figure 4. The index finger is shown in its initial position and below, in the
following position, the index finger is flexed. To reproduce this motion, in each frame the
angles φMC,PP, φPP,IP and φIP,DP are calculated (θ and ψ accordingly).



Sensors 2021, 21, 1199 5 of 14

+X
+Y

+Z

+X

+Y

+Z

0

+X
+Y

+Z

Index finger at initial frame (initial position):

Wrist

+X
+Y

+Z

Index finger at following frame:

Wrist

φMC,PP

φPP,IP

φIP,DP

MCPPIPDP

Wrist

MC

PP

IP

DP

(a) (b)

(c)

Figure 4. Definition of the joint angles. (a) The skeletal structure of a hand. (b) The stretched position of the index finger
(wrist, metacarpals (MC), proximal phalanges (PP), intermediate phalanges (IP), and distal phalanges (DP)) represents the
reference position. (c) Angles are calculated in a followed bending position of the index finger. The angles φMC,PP, φPP,IP

and φIP,DP represent the angles around the X-axis (flexion/extension).

The basis of a bone represents a rotation matrix, which defines the rotation from the
global coordinate system into the current orientation of the bones local coordinate system.
Using the basis of an arbitrary bone, for example, bone A, at time ti and at time ti+1,
another rotation matrix can be calculated, which reflects the rotation between time ti and
ti+1. The matrix RA,0(ti) represents the rotation from the origin 0 to the bone A at the time
frame i. R0,A(ti) represents the rotation from the bone A to the origin 0 and is equal to
(RA,0(ti))

T . With matrix multiplication [23,25], it is possible to calculate the rotation matrix
RA(ti, ti+1) from bone A between the time frame ti and ti+1. From the rotation matrix
RA(ti, ti+1) the Cardan angles φ, θ, and ψ can be calculated [23,26] and implemented as in
the Blender mathutils library [27].

RA,0(ti) =

xbasisx ybasisx zbasisx
xbasisy ybasisy zbasisy

xbasisz ybasisz zbasisz

 RA,0(ti+1) =

xbasisx ybasisx zbasisx
xbasisy ybasisy zbasisy

xbasisz ybasisz zbasisz


RA(ti, ti+1) = RA,0(ti) ·R0,A(ti+1) = RA,0(ti) · (RA,0(ti+1))

T

→ (φ, θ, ψ) calculated from RA(ti, ti+1)

To simplify the transfer of the angles to the AMS, the angles of the joints are always
calculated in relation to the initial position t0 of the hand. The calculation of the Cardan
angles is shown by an example in Figure 5. The angle between the proximal phalanges (PP)
and intermediate phalanges (IP) of the index finger is calculated. The calculation is divided
into two steps. In the first step, the rotation matrix R(t0, ti) of the IP and PP is calculated at
the time t0 to the bones IP and PP at the time ti. The calculation is made by the basis R(t0)
and R(ti) of the bones and is the same as in Equation (1). To calculate the Cardan angle
between the PP and IP, the difference of both rotation matrices RPP(t0, ti) and RIP(t0, ti)
must be determined in the same way as in Equation (2).



Sensors 2021, 21, 1199 6 of 14

φPPφIP - = φPP,IP

RIP(t0)

RIP(ti)

RPP(t0)

RPP(ti)

RPP(t0, ti)

RIP(t0, ti)

Figure 5. To obtain the angle φPP,IP between the proximal phalanges (PP) and intermediate phalanges
(IP) the angles φIP and φPP are needed. Consequently, first the angle φIP will be calculated with the
rotation matrix from RIP(t0) at the initial condition (t0) and RIP(ti) at the time step ti. Second, the
angle φPP will be calculated with the rotation matrix from RPP(t0) at the initial condition (t0) and
RPP(ti) at the time step ti. The difference between φPP and φIP defines the required angle φPP,IP.

The calculation of the example as graphically illustrated in Figure 5 is applied to all
finger joints.

RIP(t0) =

xbasisx ybasisx zbasisx
xbasisy ybasisy zbasisy

xbasisz ybasisz zbasisz


RIP(ti) =

xbasisx ybasisx zbasisx
xbasisy ybasisy zbasisy

xbasisz ybasisz zbasisz


RPP(t0) =

xbasisx ybasisx zbasisx
xbasisy ybasisy zbasisy

xbasisz ybasisz zbasisz


RPP(ti) =

xbasisx ybasisx zbasisx
xbasisy ybasisy zbasisy

xbasisz ybasisz zbasisz


RIP(t0, ti) = RIP(t0) · (RIP(ti))

T RPP(t0, ti) = RPP(t0) · (RPP(ti))
T (1)

RIP,PP(t0, ti) = RPP(t0, ti) · (RIP(t0, ti))
T (2)

→ (φPP,IP, θPP,IP, ψPP,IP) calculated from RIP,PP(t0, ti)

2.2.3. Transfer Motion Data to the AMS

To transfer the calculated joint angles to the AMS, the angles must be stored in data
files. For each finger (1: thumb; 2: index; 3: middle; 4: ring; 5: pinky) as well as for the wrist
and the elbow such files are written (Figure 6, Interpolation). In each file, three vectors
are stored for each joint to fully represent the movements of a joint: flexion/extension,
abduction/adduction, and rotation. along the longitudinal side). In addition, a time series
vector is needed for the interpolation. This file TimeSeries.any holds a vector with evenly
spaced numbers between zero and one. The length of all vectors are equal to the number
or recorded frames. Because the LMC tracks the coordinates of the joints, it is also possible
to extract the length of the fingers (Figure 6, Scaling). The solution records and saves the
data of the movement as BVH data file and vector files, which are imported into the AMS
simulation. Using the BVH file standard allows other tools to edit and view the recorded
motion (Figure 6, Animation).



Sensors 2021, 21, 1199 7 of 14

Elbow.any
Wrist.any
Finger1.any
Finger2.any
Finger3.any
Finger4.any
Finger5.any
TimeSeries.any

.bvh file

FingerLength.any

Interpolation

Scaling

Animation

Figure 6. The transfer of data from the LMC to the AMS is divided into three categories. Interpolation:
The angles of all joints of the fingers: 1—thumb, 2—index, 3—middle, 4—ring, and 5—pinky, as well
as for the wrist and the elbow are stored in vector files. In each file up to three vectors are stored for
each joint in order to fully represent the movement in a joint: flexion/extension, abduction/adduction,
and rotation. Scaling: The positions of the joints are used to calculate the lengths of the fingers, which
are transmitted via the file (FingerLength.any). Animation: The complete movement is stored in a
BVH motion file. This serves to restore the recording and visualize the movement. (Source: Leap
Motion logo [28] and AnyBody logo [29]).

2.2.4. AMS Analysis

The AMS can be controlled via the Python library AnyPyTool enabling remote con-
trolled simulation and result analysis. The workflow is shown in Figure 7. Depending on
the selected operations, each task will be executed automatically. First, the model is loaded
(load) and initialized (initial conditions). In addition, parameters to control the model
behavior could be set (set parameter). ROSE Motion allows a change in the number of
steps for the calculation. The initial position of the model represents an outstretched hand
and fingers, by setting all joint angles to zero. Subsequently, the motion (kinematics) is
calculated, based on the vector files with the recorded joint angles. In more detail, the joints
are driven by a function described in Section 2.1. Finally, the inverse-dynamic problem can
be solved. This calculates individual muscle and joint forces. When selected, a dump file of
the results is saved to make the data available for further processing and replays.

2.3. Validation

For validation, the motion was captured simultaneously with a Garmin Virb Ultra
30 action video camera and the LMC to evaluate how precisely the LMC records a motion.
These two recordings (LMC and video camera) were compared. Each recording started
with an outstretched hand and ended with a fist, which was repeated multiple times for
comparison. The recording was made at two different shooting positions. In the first shoot,
the hand was positioned horizontally above the sensor (Figure 8a). The camera looked at
the side of the index finger. Pre-experimental assessments indicated that measurements of
the flexion angle of the proximal interphalangeal joint were the most inaccurate. Therefore,
the index finger of the proximal interphalangeal joint is used for further analysis.



Sensors 2021, 21, 1199 8 of 14

start program

load

set parameter

initial condition

kinematics

inverse dynamics

dump

results

Figure 7. The Python library AnyPyTools can be used to control the AMS. Various actions can be
performed using Python and AnPyTool: start the AMS, load the simulation model, set parameter, set
the model to its initial conditions, start the kinematic, and inverse dynamics analysis and dumping
the result values (source: AnyPyTool logo [30]).

The flexion angle (φPP,IP) was calculated using both recordings, the LMC recording
used ROSE Motion and the recording from the Garmin camera. The video analyzing
tool Tracker [31] measured the positions of the black markers on each joint of the index
finger (Figure 9). The tracking software returned the position of the joints for each frame.
From these positions, the angle could be calculated using vectors and angle functions.
The same procedure was also used for the vertical hand shoot (Figure 8b). The hand was
held vertically above the sensor. To follow the angulation of the hand, the camera was
positioned over the sensor. The angle from ROSE Motion and from the camera video were
compared accordingly.

Leap
Motion
Controller

Leap
Motion
Controller

(a) (b)

Figure 8. Experimental setup to validate the motion recording of the LMC. (a) Experimental setup for a flat hand above the
sensor. The position of the camera was on the right to the sensor, to obtain the best view of the index finger making a fist.
(b) Experimental setup for a vertical hand over the sensor. The position of the camera is above the sensor, to obtain the best
view of the index finger making a fist (source: Leap Motion Sensor [28] and icons [32]).



Sensors 2021, 21, 1199 9 of 14

(a) (b)

Figure 9. View of the camera on the index finger to track the movement. Black points at the joints of
the index finger were tracked by the video tracking software Tracker [31]. With the positions from
the tracking software the proximal interphalangeal joint angles (flexion, φPP,IP) could be calculated.
(a) Camera on left side of the sensor. (b) Camera above the sensor.

3. Results
3.1. Motion Recording and Simulation with ROSE Motion

The solution ROSE Motion is written in Python and combines useful tools to rapidly
integrate the recorded motion in the body simulation. Its main work flow is depicted in
Figure 10 and consists of four main features:

• Record
In the Record function, various settings can be made. It can be specified with how
many frames per second the recording is executed. Furthermore, it can be decided
whether interpolation files and/or a BVH file is written and its storage location. While
recording, a window opens in which the tracked hand movement is visualized in
real-time. Upon completion of the recording, an animation to view every frame of the
recorded hand is shown.

• AnyBody
The AMS simulation can be started in the AnyBody feature. Different file sources
(including BVH) can be selected, which are modified and copied to the correct location.
In addition, one can specify which frames should be included in the simulation (start
frame and end frame). Then, all studies to be run by the AMS (initial conditions,
kinematic analysis, and inverse-dynamic analysis) can be selected (see Section 2.2.4).
Once the simulation has finished, the AMS will be opened and shows a replay of the
calculated movement. Further analyses inside the AMS are then directly possible.

• Converter
In the Convert component, a given BVH file can be converted to the interpolation files
used for the AMS.

• Animation
Opens a BVH file to animate it, a slider can be used to iterate through the frames.



Sensors 2021, 21, 1199 10 of 14

ROSE
MOTION

Figure 10. The program ROSE Motion provides an automated interface. The hand movement is
recorded with the LMC. With the help of Python and the library AnyPyTools, the movement is
transferred to the AMS, which can then be analyzed (source: Leap Motion logo [28], Python logo [33],
AnyPyTools logo [30], and AnyBody logo [29]).

The source code and further instructions are available in [20].

3.2. Accuracy Measurement

To evaluate how precisely the LMC records a motion, the motion was captured
simultaneously with an action camera and the LMC. These two recordings were compared.
The angle from the video and the recording by the LMC matched. In extreme situations, i.e.,
the proximal interphalangeal joint angle exceeding 80 degrees, the LMC may not display
hand movement correctly. When the fingers are fully extended, the angle should be close to
zero degrees. The sensor has a basic angle in the joints, which is assumed to be due to the
hand’s basic posture. The difference is shown in Figure 11b. The video has an angle from
almost zero degrees, whereas the LMC covers an angle from approximately 10 degrees.
Additionally, with a strong buckling, such as a fist, there are major differences. According
to video recording, the angle should be approximately 100 degrees, but the sensor cannot
detect this extreme bending (Figure 11a). The difference between the recording of the
horizontal hand and the vertical hand is the occlusion when shooting. In the horizontal
hand, the stretched hand is still relatively well recognized. Strong settlements cannot be
distinguished from this perspective. When forming a fist, there are overlaps of finger and
hand, causing the LMC to recognize inaccurate values. In the vertical recording, the flat
hand is even more difficult to recognize. This is because the sensor can actually only
pick up the little finger, while the other fingers are hidden. The inclusion of the fist is
better compared to the horizontal recording. The angulation can be better obtained by the
perspective. For that reason, the angle is closer to the required 100 degrees.



Sensors 2021, 21, 1199 11 of 14

0 100 200 300 400 500
0

20

40

60

80

100

120

frames

an
gl

e
in

de
gr

ee

Angle of proximal interphalangeal index (horizontal)

Video Tracking LMC

(a)

0 100 200 300 400 500
0

20

40

60

80

100

120

frames

an
gl

e
in

de
gr

ee

Angle of proximal interphalangeal index (vertical)

Video Tracking LMC

(b)

Figure 11. Comparison of the flexion φPP,IP, angle between the proximal phalanges (PP), and the intermediate phalanges
(IP) while forming a fist, recorded by the LMC (red, solid) and the motion tracking of the video camera (blue, dotted).
(a) The hand is horizontally above the sensor. (b) The hand is vertically above the sensor. Because of finger covering, palm
covering, and a lack of contrast, the LMC makes a mistake during the recording of a movement in extreme situations (angle
> 80 degrees).

4. Discussion

The aim of this work was to engineer an automatic interface between a LMC and
the AMS to capture hand movements and integrate them into an inverse-dynamic muscu-
loskeletal simulation. The LMC provides the positions and orientation of the bones and
joints of the recorded hand which can be accessed to calculate joint angles to reproduce the
same posture and movement within the AMS using joint drivers.

The publicly available, open source software ROSE Motion fully integrates the LMC
and allows integrated hand movement recording and analysis, and editing of the recorded
motion. It provides patient specific motion data and finger lengths for the AMS model.
The setup, run, and result evaluation of the AMS is directly possible within ROSE Motion.
Recorded data can be widely exchanged and used for further applications using the well
known BVH format for motion files. Benefits of the proposed solution include rapid motion
recording and evaluation of results. The LMC itself is internationally available at low cost
and can be used with all major operating systems. No complex experimental setup is
required, compared to the time consuming and expensive marker based motion capturing
using multiple cameras and complex software. With ROSE Motion it is possible to use the
LMC for motion input for musculoskeletal models in biomechnical research.

Inaccuracies can potentially occur either within the AMS hand model (see in [1]) or
by LMC recording limitations. The proposed solution is in active development and is
currently limited to the integration of the AMS, whereas other inverse-dynamic simulation
software as OpenSim [34,35] are out of scope. Although motion export as BVH file might
be a solution to work with other tools, a direct integration is preferable. The calculation of
joint angles and output to vector files is based on a specific AMS hand model. Updates to
the used hand model could introduce breaking changes, requiring fixes of the integration.
In addition, a hand model specific neutral-zero position of the arm is used as a reference
position for all joint angle calculations. A remapping of coordinate systems might be
required if changing the AMS model.

The following limitations correspond to the LMC recorded motion data. The overall
functionality of the workflow and integration was proven by the accuracy measurement
in Section 2.3. Corresponding limitations because of covering problems—as reported by
Rühlicke et al. [14]—were thereby analyzed, proposing an accuracy measurement using
video tracking in comparison to the marker-less motion capture recording. Inaccuracy of
the anatomical representation of the movement can occur through finger covering, palm
covering, or lack of contrast [14]. A similar outcome was discovered in the accuracy mea-
surements comparing the calculated LMC data with tracked video recordings (Section 3.2).



Sensors 2021, 21, 1199 12 of 14

The data error was particularly noticeable for the edge cases: rapid movements, forming a
strong fist and LMC distant, and covered fingers. In general, it can be said that the LMC
provides accurate results for the finger dimensions, palm orientation, and position as well
as the orientation of outstretched or slightly flexed fingers.

Inaccuracies could be reduced by various approaches. As Leap Motion evolves, the anatom-
ical presentation and internal hand model will improve. Furthermore, LeapUVC—new interface
for Education, Robotics, and more—allows the user to make multiple settings. LeapUVC pro-
vides access to the LMC through the industry standard Universal Video Class (UVC) interface.
With this application, settings like light-emitting diode brightness, gamma, exposure, gain,
and resolution can be changed. The new settings could reduce the error of occlusion [36].
Another approach is the use of two LMCs as in Placidi et al. [37]. The two sensors are posi-
tioned in such way that the covering of the hand is minimized. An experimental multiple
device support [38] enabling the connection of two LMC devices to a single computer is in
active development. The recordings of two sensors could be synchronized and compared.
In a future release, the confidence value might allow a statement on how well the internal
hand model fits the observed data. The sensor with the better fit should then be selected
for each frame to extract the hand data. Consequently, self-coverage, and as a result the
error, could be reduced. The herein presented tool can easily be adjusted to benefit from
the enhancements in terms of using multiple LMCs.

5. Conclusions

An automatic interface between an LMC and the AMS to capture hand movements
and integrate them into an inverse-dynamic musculoskeletal simulation was established.
This linking shows a fast and low-priced alternative to track forearm motions in biomechan-
ical applications as musculoskeletal simulation models. Limitations because of covering
problems were analyzed, proposing to measure the accuracy by using video tracking in
comparison to the marker-less motion capture recording. The ROSE Motion software
framework is currently limited to the integration of the LMC into the AMS simulation.
The approach and software code can be further adapted to be used for additional research
cases. Developers and scientists are welcome to contribute, improve, or report issues. The
software’s source code is publicly available at [20] and released as open source software
under the Massachusetts Institute of Technology license.

Author Contributions: Conceptualization: L.E.; Formal analysis: S.S., R.F., and L.E.; Funding
acquisition: U.S.; Investigation: R.F. and S.S.; Methodology: R.F. and S.S.; Software: R.F. and S.S.;
Supervision: L.E.; Validation and Visualization: R.F. and S.S.; Writing—original draft: R.F., S.S., and
L.E.; Writing—review and editing: L.E. and U.S. All authors have read and agreed to the published
version of the manuscript.

Funding: Funding by the SNF (320030L_170205), DFG (SI 2196/2-1, IG 18/19-1), and FWF (I 3258-B27)
for the DACHFX Project is gratefully acknowledged.

Institutional Review Board Statement: Ethical review and approval were waived for this study,
as the only human data used in this work was from one of the authors and his participation was
voluntarily. All procedures performed involving human participation were in accordance with ethical
standards and with the 1964 Helsinki Declaration and its later amendments.

Informed Consent Statement: Informed consent was obtained from the subject involved in the study.

Data Availability Statement: The source code and further instructions are available in [20].

Conflicts of Interest: The authors declare no conflicts of interest.



Sensors 2021, 21, 1199 13 of 14

Abbreviations
The following abbreviations are used in this manuscript:

AMS AnyBody™ Modeling System
BVH Biovision Hierarchy
C3D Three-Dimensional Time-Sequence Data
DP Distal Phalanges
IP Intermediate Phalanges
LMC Leap Motion Controller
MC Metacarpals
MDPI Multidisciplinary Digital Publishing Institute
MoCap Motion Capture
PP Proximal Phalanges
UVC Universal Video Class

References
1. Engelhardt, L.; Melzner, M.; Havelkova, L.; Christen, P.; Dendorfer, S.; Simon, U. A new musculoskeletal AnyBody™ detailed

hand model. J. Comput. Methods Biomech. Biomed. Eng. 2020. [CrossRef] [PubMed]
2. Rasmussen, J.; Damsgaard, M.; Surma, E.; Christensen, S.T.; de Zee, M.; Vondrak, V. AnyBody-a software system for ergonomic

optimization. In Proceedings of the Fifth World Congress on Structural and Multidisciplinary Optimization 2003, Milano, Italy,
19–23 May 2003; pp. 231–232.

3. Skals, S.; P. Rasmussen, K.; M. Bendtsen, K.; Yang, J.; Andersen, M. A musculoskeletal model driven by dual Microsoft Kinect
Sensor data. Multibody Syst. Dyn. 2017, 41, 297–316. [CrossRef]

4. Gragg, J.; Yang, J.J.; Boothby, R. Posture Reconstruction Method for Mapping Joint Angles of Motion Capture Experiments
to Simulation Models. In Proceedings of the International Conference on Digital Human Modeling 2011, Orlando, FL, USA,
9–14 July 2011; pp. 69–78. [CrossRef]

5. Khademi, M.; Mousavi Hondori, H.; McKenzie, A.; Dodakian, L.; Lopes, C.V.; Cramer, S.C. Free-hand interaction with leap
motion controller for stroke rehabilitation. In Proceedings of the Extended Abstracts of the 32nd Annual ACM Conference on
Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; pp. 1663–1668. [CrossRef]

6. Iosa, M.; Morone, G.; Fusco, A.; Castagnoli, M.; Fusco, F.R.; Pratesi, L.; Paolucci, S. Leap motion controlled videogame-based
therapy for rehabilitation of elderly patients with subacute stroke: A feasibility pilot study. Top. Stroke Rehabil. 2015, 22, 306–316.
[CrossRef] [PubMed]

7. Holmes, D.E.; Charles, D.K.; Morrow, P.J.; McClean, S.; McDonough, S. Using Fitt’s Law to Model Arm Motion Tracked in 3D by
a Leap Motion Controller for Virtual Reality Upper Arm Stroke Rehabilitation. In Proceedings of the 2016 IEEE 29th International
Symposium on Computer-Based Medical Systems (CBMS), Dublin, Ireland, 20–24 June 2016; pp. 335–336. [CrossRef]

8. Weichert, F.; Bachmann, D.; Rudak, B.; Fisseler, D. Analysis of the Accuracy and Robustness of the Leap Motion Controller.
Sensors 2013, 13, 6380–6393. [CrossRef] [PubMed]

9. Guna, J.; Jakus, G.; Pogačnik, M.; Tomažič, S.; Sodnik, J. An Analysis of the Precision and Reliability of the Leap Motion Sensor
and Its Suitability for Static and Dynamic Tracking. Sensors 2014, 14, 3702–3720. [CrossRef]

10. Niechwiej-Szwedo, E.; Gonzalez, D.; Nouredanesh, M.; Tung, J. Evaluation of the Leap Motion Controller during the performance
of visually-guided upper limb movements. PLoS ONE 2018, 13, e0193639. [CrossRef] [PubMed]

11. Chophuk, P.; Chumpen, S.; Tungjitkusolmun, S.; Phasukkit, P. Hand postures for evaluating trigger finger using leap
motion controller. In Proceedings of the 2015 8th Biomedical Engineering International Conference (BMEiCON), Pattaya,
Thailand, 25–27 November 2015; pp. 1–4. [CrossRef]

12. Smeragliuolo, A.H.; Hill, N.J.; Disla, L.; Putrino, D. Validation of the Leap Motion Controller using markered motion capture
technology. J. Biomech. 2016, 49, 1742–1750. [CrossRef] [PubMed]

13. Nizamis, K.; Rijken, N.; Mendes, A.; Janssen, M.; Bergsma, A.; Koopman, B. A Novel Setup and Protocol to Measure the Range of
Motion of the Wrist and the Hand. Sensors 2018, 18, 3230. [CrossRef] [PubMed]

14. Rühlicke, M. Fusion der Daten Zweier Leap Motion Sensoren. Master’s Thesis, Technische Universität Dresden, Dresden,
Germany, 2017.

15. Python Software Foundation. Python. Version 3.7.2. 2019. Available online: https://www.python.org/downloads/release/
python-372 (accessed on 4 September 2019).

16. Kiehl, C. Gooey. Version 12 March 2019. 2019. Available online: https://github.com/chriskiehl/Gooey (accessed on 6 December 2019).
17. Lund, M.; Rasmussen, J.; Andersen, M. AnyPyTools: A Python package for reproducible research with the AnyBody Modeling

System. J. Open Source Softw. 2019, 4, 1108. [CrossRef]
18. Leap Motion. LeapCxx. Version 8 August 2018. 2018. Available online: https://github.com/leapmotion/LeapCxx (accessed on

16 October 2019).
19. Alemi, O. PyMO. Version 19 November 2017. 2017. Available online: https://github.com/omimo/PyMO (accessed on

20 September 2019).

http://doi.org/10.1080/10255842.2020.1851367
http://www.ncbi.nlm.nih.gov/pubmed/33300810
http://dx.doi.org/10.1007/s11044-017-9573-8
http://dx.doi.org/10.1007/978-3-642-21799-9_8
http://dx.doi.org/10.1145/2559206.2581203
http://dx.doi.org/10.1179/1074935714Z.0000000036
http://www.ncbi.nlm.nih.gov/pubmed/26258456
http://dx.doi.org/10.1109/CBMS.2016.41
http://dx.doi.org/10.3390/s130506380
http://www.ncbi.nlm.nih.gov/pubmed/23673678
http://dx.doi.org/10.3390/s140203702
http://dx.doi.org/10.1371/journal.pone.0193639
http://www.ncbi.nlm.nih.gov/pubmed/29529064
http://dx.doi.org/10.1109/BMEiCON.2015.7399560
http://dx.doi.org/10.1016/j.jbiomech.2016.04.006
http://www.ncbi.nlm.nih.gov/pubmed/27102160
http://dx.doi.org/10.3390/s18103230
http://www.ncbi.nlm.nih.gov/pubmed/30257521
https://www.python.org/downloads/release/python-372
https://www.python.org/downloads/release/python-372
https://github.com/chriskiehl/Gooey
http://dx.doi.org/10.21105/joss.01108
https://github.com/leapmotion/LeapCxx
https://github.com/omimo/PyMO


Sensors 2021, 21, 1199 14 of 14

20. Fonk, R.; Schneeweiss, S. ROSE Motion. Version 1.0.0. 2020. Available online: https://github.com/seanschneeweiss/RoSeMotion
(accessed on 10 April 2020).

21. Lund, M.E.; Tørholm, S.; Jung, M. The AnyBody Managed Model Repository (AMMR) (Version 2.1.1). Zenodo 2018,
[CrossRef]

22. PubNub Staff. Motion-controlled Servos with Leap Motion & Raspberry Pi. Available online: https://www.pubnub.com/blog/
2015-08-19-motion-controlled-servos-with-leap-motion-raspberry-pi (accessed on 19 August 2015).

23. Schmidt, R.; Disselhorst-Klug, C.; Silny, J.; Rau, G. A marker-based measurement procedure for unconstrained wrist and elbow
motions. J. Biomech. 1999, 32, 615–621. [CrossRef]

24. Disselhorst-Klug, C.; Besdo, S.; Oehler, S. Biomechanik des muskuloskelettalen Systems. Biomed. Tech. Rehabil. 2015, 10, 53–105.
[CrossRef]

25. Williams, S.; Schmidt, R.; Disselhorst-Klug, C.; Rau, G. An upper body model for the kinematical analysis of the joint chain of the
human arm. J. Biomech. 2006, 39, 2419–2429. [CrossRef] [PubMed]

26. Goldstein, H.; Poole, C.P.; Safko, J.L. (Eds.) Klassische Mechanik, 3rd ed.; Lehrbuch Physik, Wiley-VCH: Weinheim, Germany, 2006.
27. Barton, C. Blender-Mathutils. Version 26 September 2018. 2018. Available online: https://gitlab.com/ideasman42/blender-

mathutils (accessed on 20 September 2019).
28. Leap Motion. Logo. Available online: https://www.leapmotion.com/press/ (accessed on 21 May 2019).
29. Danish Yellowpages. AnyBody Technology. Available online: https://www.yellowpages.dk/c/anybody-technology-a-s

(accessed on 21 May 2019).
30. Lund, M.E. AnyPyTools’ Documentation! Version 1.1.2. 2019. Available online: https://anybody-research-group.github.io/

anypytools-docs (accessed on 27 September 2019).
31. Douglas Brown and Robert Hanson and Wolfgang Christian. Tracker Video Analysis and Modeling Tool. Version 4.11.0. 2018.

Available online: https://physlets.org/tracker/index.html (accessed on 12 March 2020).
32. Flaticon. Best Icons. Available online: https://www.flaticon.com/ (accessed on 21 May 2019).
33. WorldVectorLogo. Python Vector Logo. Available online: https://worldvectorlogo.com/logo/python-4 (accessed on

21 May 2019).
34. Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-source

software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [CrossRef]
[PubMed]

35. Seth, A.; Hicks, J.L.; Uchida, T.K.; Habib, A.; Dembia, C.L.; Dunne, J.J.; Ong, C.F.; DeMers, M.S.; Rajagopal, A.; Millard, M.;
et al. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement.
PLoS Comput. Biol. 2018, 14, e1006223. [CrossRef] [PubMed]

36. Leap Motion. 2018. Version 8 December 2018. Introducing LeapUVC: A New API for Education, Robotics and More. Available
online: http://blog.leapmotion.com/leapuvc/ (accessed on 11 September 2019).

37. Placidi, G.; Cinque, L.; Polsinelli, M.; Spezialetti, M. Measurements by A LEAP-Based Virtual Glove for the Hand Rehabilitation.
Sensors 2018, 18, 834. [CrossRef] [PubMed]

38. Leap Motion. Version 20 December 2018. 2018. Experimental Release 2: Multiple Device Support. Available online: http:
//blog.leapmotion.com/multiple-devices/ (accessed on 6 February 2020).

https://github.com/seanschneeweiss/RoSeMotion
http://dx.doi.org/10.5281/zenodo.1287730.
https://www.pubnub.com/blog/2015-08-19-motion-controlled-servos-with-leap-motion-raspberry-pi
https://www.pubnub.com/blog/2015-08-19-motion-controlled-servos-with-leap-motion-raspberry-pi
http://dx.doi.org/10.1016/S0021-9290(99)00036-6
http://dx.doi.org/10.1515/9783110252262-007
http://dx.doi.org/10.1016/j.jbiomech.2005.07.023
http://www.ncbi.nlm.nih.gov/pubmed/16159659
https://gitlab.com/ideasman42/blender-mathutils
https://gitlab.com/ideasman42/blender-mathutils
https://www.leapmotion.com/press/
https://www.yellowpages.dk/c/anybody-technology-a-s
https://anybody-research-group.github.io/anypytools-docs
https://anybody-research-group.github.io/anypytools-docs
https://physlets.org/tracker/index.html
https://www.flaticon.com/
https://worldvectorlogo.com/logo/python-4
http://dx.doi.org/10.1109/TBME.2007.901024
http://www.ncbi.nlm.nih.gov/pubmed/18018689
http://dx.doi.org/10.1371/journal.pcbi.1006223
http://www.ncbi.nlm.nih.gov/pubmed/30048444
http://blog.leapmotion.com/leapuvc/
http://dx.doi.org/10.3390/s18030834
http://www.ncbi.nlm.nih.gov/pubmed/29534448
http://blog.leapmotion.com/multiple-devices/
http://blog.leapmotion.com/multiple-devices/

	Introduction
	Methods
	General Approach
	Workflow
	Recording with the LMC
	Calculate Joint Angles
	Transfer Motion Data to the AMS
	AMS Analysis

	Validation

	Results
	Motion Recording and Simulation with ROSE Motion
	Accuracy Measurement

	Discussion
	Conclusions
	References

