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Forecasting adverse surgical events using self-supervised
transfer learning for physiological signals
Hugh Chen 1, Scott M. Lundberg2, Gabriel Erion 1,3, Jerry H. Kim4 and Su-In Lee 1✉

Hundreds of millions of surgical procedures take place annually across the world, which generate a prevalent type of electronic
health record (EHR) data comprising time series physiological signals. Here, we present a transferable embedding method (i.e., a
method to transform time series signals into input features for predictive machine learning models) named PHASE (PHysiologicAl
Signal Embeddings) that enables us to more accurately forecast adverse surgical outcomes based on physiological signals. We
evaluate PHASE on minute-by-minute EHR data of more than 50,000 surgeries from two operating room (OR) datasets and patient
stays in an intensive care unit (ICU) dataset. PHASE outperforms other state-of-the-art approaches, such as long-short term memory
networks trained on raw data and gradient boosted trees trained on handcrafted features, in predicting six distinct outcomes:
hypoxemia, hypocapnia, hypotension, hypertension, phenylephrine, and epinephrine. In a transfer learning setting where we train
embedding models in one dataset then embed signals and predict adverse events in unseen data, PHASE achieves significantly
higher prediction accuracy at lower computational cost compared to conventional approaches. Finally, given the importance of
understanding models in clinical applications we demonstrate that PHASE is explainable and validate our predictive models using
local feature attribution methods.
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INTRODUCTION
Globally, the number of surgical operations performed each year
exceeds 300 million [1]. Although surgeries are crucial compo-
nents of medical care, they have a high prevalence of adverse
events (i.e., patients harmed as a result of their medical treatment)
relative to other medical specialties (46–65% of all adverse events
are surgery-related [2]). In fact, several international studies have
shown rates of adverse events ranging from 3 to 22% in surgical
patients [3–5]. Fortunately, these studies also conclude that the
majority of adverse events are preventable, indicating a tremen-
dous opportunity for improvement by predictive models.
The accuracy of such models is largely dependent on the

availability of training data. As of 2014, a large portion (>40%) of
invasive, therapeutic surgeries take place in hospitals with either
medium or small numbers of beds [6, 7]. These smaller institutions
may lack either sufficient data or computational resources to train
accurate models. Furthermore, patient privacy considerations
mean that large public EHR datasets are unlikely, leaving many
institutions with insufficient resources to train performant models
on their own. In the face of this insufficiency, one natural way to
make accurate predictions is transfer learning, which has already
shown success in medical images as well as clinical text [8–10].
Particularly with the popularization of wearable sensors for health
monitoring [11], transfer learning techniques that train models in
one dataset and use them in another are arguably underexplored
for physiological signals, which account for a significant portion of
the hundreds of petabytes of currently available worldwide health
data [12, 13]. One promising avenue of transfer learning research
is deep embedding models which learn to extract generalizable
features from images or time-series data [14, 15] which improve
over traditional domain-specific hand engineered features.

Our approach, PHASE (PHysiologicAl Signal Embeddings), trains
deep embedding models on physiological signals to better
forecast and facilitate prevention of potentially millions of adverse
surgical outcomes. Furthermore, these models not only improve
predictive accuracy but can be transferred from an institution with
plentiful computational resources to institutions with less. PHASE
improves over previous approaches in two important ways:

● PHASE improves predictive accuracy by leveraging deep
learning to embed physiological signals. Using long-short
term memory networks (LSTMs), PHASE embeds physiological
signals prior to forecasting adverse events with a downstream
model. We investigate a number of self-supervised
approaches (training with inputs and outputs derived from
the signal data itself) [16] to effectively train embedding
models. Our results show that gradient boosted tree (GBT)
models trained with features extracted by self-supervised
LSTMs improves accuracy over conventional approaches for
forecasting surgical outcomes that rely on a single model (i.e.,
predicting adverse outcomes with an LSTM with raw features
or a GBT with raw or hand engineered features).

● PHASE shares models rather than data to address data
insufficiency and improves over alternative methods including
GBTs trained with raw features, hand engineered features, and
embeddings jointly learned by a single LSTM. Data insuffi-
ciency is especially important for surgical data because
protecting patient privacy makes it difficult to share large
amounts of medical data which exacerbates the lack of
publicly available data [17]. By transferring performant models
as has been done in medical images and clinical text [8–10],
scientists can collaborate to improve accuracy of predictive
models without exposing patient data.
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In contrast to prior research on transfer learning for
physiological signals that focus on a single medical center’s
electroencephalograms (EEGs) [18] or intensive care unit (ICU)
stays [19], we evaluate transfer learning across three distinct
medical center datasets (two from operating rooms and one
from an ICU). Furthermore, we focus on evaluating self-
supervised approaches (Fig. 1) to train embedding models that
we validate with feature attributions. To achieve this, we use data
collected by the Anesthesia Information Management System
(AIMS) from two medical centers as well as the Medical
Information Mart for Intensive Care (MIMIC-III) dataset [20]. We
utilize fifteen physiological signal variables and six static variable
inputs (variables listed in Results section “Five perioperative
outcomes from three hospital datasets”) to forecast six possible
outcomes: hypoxemia, hypocapnia, hypotension, hypertension,

phenylephrine administration, and epinephrine administration.
We show in a standard embedding setting, PHASE outperforms a
number of conventional approaches across six outcomes of
interest: hypoxemia, hypocapnia, hypotension, hypertension,
phenylephrine administration, and epinephrine administration.
Our results suggest that if the previous state of the art machine
learning model (a gradient boosted tree model using hand
engineered features [21]) captured 15% of hypoxemic events,
PHASE captures approximately 19% of hypoxemic events based
on a fixed precision. Although 19% of events may seem low,
PHASE stands to benefit practitioners in two ways: (1) offloading
mental burden from practitioners who are not trained to forecast
adverse events and (2) a higher detection rate than that of
practicing anesthesiologists (who were outperformed by the
previous state of the art [21]). Quantitatively speaking, we

Fig. 1 The high-level goal of PHASE. a PHASE learns models that embed (i.e., extract features from) physiological signals. We concatenate
these embeddings with static data to predict adverse events. We describe the model extracting features as an upstream embedding model and
the model making the final prediction as the downstream prediction model. b PHASE enables researchers at different hospitals to work together
without sharing data. Researchers can perform transfer learning where upstream embedding models are trained on data drawn from a source
hospital and used to embed signals and make a downstream prediction in data drawn from a target hospital. We show that this approach
outperforms conventional deep learning and tree models trained with raw or hand engineered features. In addition, this approach reduces
computational cost for users in target hospitals. c PHASE comprises LSTM embedding models trained per physiological signal that predict the
future of the signal based on the past (self-supervised learning). We train self-supervised embedding models using data drawn in three
distinct ways: (1) from the target hospital (standard embedding), (2) from a distinct source hospital (transferred embedding), and (3) from a
distinct source hospital and then the target hospital (fine-tuned embedding) (More details in Results section “Overview of the PHASE
framework”).
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observe ~2.3 hypoxemic events per surgery in our data, in the US
alone our method could forecast roughly 5 million hypoxemic
events that the previous state of the art model fails to capture
(given that there are an estimated 50 million surgeries in the US
annually [22]).
Furthermore, we show that PHASE improves performance in a

transferred embedding setting where LSTM embedding models
are trained in one dataset and used to extract features in a
completely unseen dataset. Building upon this finding, we show
that fine-tuning the LSTMs on unseen data leads to faster
convergence and improved predictive performance compared to
randomly initialized models across all outcomes. Finally, we
validate our models by identifying important variables using state
of the art local feature attribution methods [23]. We interpret our
models to validate that the models uncover statistical patterns
that agree with prior literature and demonstrate that models
trained using PHASE are explainable. Importantly, explainability
ensures that models are fair, trustworthy, and valuable to scientific
understanding [24]. PHASE takes a step in the direction of allowing
scientists to collaborate on EHR data which is typically accessible
by only a single group (data silos [25]) by investigating approaches
to train embedding models th at generalize to unseen data.

RESULTS
Five perioperative outcomes from three hospital datasets
We are interested in forecasting important outcomes associated
with surgical morbidity. The first is hypoxemia (i.e., low blood
oxygen level), a historically important risk factor associated with
anesthesia-related morbidity [26–28], that has been shown to
result in harmful effects on nearly every end organ in a variety of
animal models [29, 30]. The next three outcomes are hypocapnia
(i.e., low blood carbon dioxide), hypotension (i.e., low blood
pressure), and hypertension (high blood pressure). Negative
physiological effects associated with hypocapnia include reduced
cerebral blood flow and reduced cardiac output [31] and intra-
operative hypocapnia is associated with delays in the return of
spontaneous respiration, increased probability of post-operative
nausea and vomiting, and postoperative cognitive dysfunction
[32, 33]. Prolonged episodes of perioperative hypotension are
associated with end-organ ischemia as well as assorted other
adverse postoperative complications [34–37]. In addition, perio-
perative hypertension has been tied to increased risk of post-
operative intracranial hemorrhage in craniotomies [38] and end
organ dysfunction [39]. Although it is impossible to design
experiments aimed at identifying causality of morbidity or post-
operative complications, our outcomes represent important and
well-known risk factors. Phenylephrine is a medication frequently
used to treat hypotension during anesthesia administration [40].
Epinephrine is often used as an additive in local anesthetics (to
improve the depth and duration of the anesthesia), as well as to
reduce bleeding [41]. Predicting phenylephrine and epinephrine
use lets us further evaluate PHASE because they represent clinical
decisions rather than an aspect of patient physiology as in the
previous outcomes.
To evaluate our methodology with these outcomes, we utilize

data from three different hospital datasets, summarized in Table 1
(Methods section “Datasets” and Supplementary Note 2). In brief,
we consider two operating room datasets from distinct medical
centers which we denote as OR0 and OR1. We also use the publicly
available intensive care unit MIMIC-III dataset which we refer to as
ICUM [20]. As inputs, we use fifteen physiological signal variables:
SAO2 Blood oxygen saturation, ETCO2 End-tidal carbon dioxide,
NIBP[S/M/D] Non-invasive blood pressure (systolic, mean, diasto-
lic), FIO2 Fraction of inspired oxygen, ETSEV/ETSEVO End-tidal
sevoflurane, ECGRATE Heart rate from ECG, PEAK Peak ventilator
pressure, PEEP Positive end-expiratory pressure, PIP Peak

inspiratory pressure, RESPRATE Respiration rate, TEMP1 Body
temperature in addition to six static variables: Height, Weight,
ASA Code, ASA Code Emergency, Gender, and Age. All variables
are consistently measured in the operating room datasets, but
only SAO2 is consistently measured in the ICU dataset.
Our metric of evaluation is the area under a precision recall

curve, otherwise known as average precision (AP), which is more
informative than the area under a receiver operating curve (ROC
AUC) for binary predictions with low base rates [42], as in the
outcomes we consider. In particular, we focus on the percent
improvement over using the raw, unprocessed physiological
signals as an evaluation metric, which is analogous to transfer loss:
the difference between the transfer error and the in-domain
baseline error [43]. We additionally report the absolute value of
the AP (and ROC AUC for a subset of results) in Supplementary
Discussion section “Results in AP and ROC AUC scale”.

Overview of the PHASE framework
PHASE is an approach to embed physiological signals. We
consider an embedding framework using upstream embedding
models U that are trained for each physiological signal in a source
hospital dataset Hs. We evaluate upstream embedding models
with a downstream prediction model D whose inputs are the
embedded physiological signals concatenated to static variables
and outputs are adverse surgical outcomes. D is trained in a target
hospital dataset Ht. We evaluate our models in three ways (Fig. 1c):
(1) standard embedding where the source hospital is the same as
the target hospital Hs= Ht (Fig. 2b, d), (2) transferred embedding
where the source hospital is different to the target hospital Hs ≠ Ht

(Fig. 2c, d), and (3) fine-tuned embedding where the upstream
embedding model is first trained to convergence in a different
source hospital Hs ≠ Ht and then used to initialize a model that is
trained to convergence in the target hospital Hs= Ht (Fig. 3).
The modeling decision of per-signal upstream embedding was

driven by several advantages: (1) we showed that per-signal
embedding models produce embeddings that outperform down-
stream prediction models trained on the raw signals or hand-
engineered signal features (described in Results section “Compar-
ing approaches to embed physiological signals”) (2) we found that
per-signal embedding models worked better than a single
embedding model trained on all signals jointly in (Supplementary

Table 1. Training set statistics for different data sources.

Dataset OR0 OR1 ICUM

Department OR OR ICU

Number of procedures/stays 29,035 28,136 1,669

Gender (% female) 57% 38% 44%

Age (yr) Mean 51.859 48.701 63.956

Age (yr) Std. 16.748 18.419 17.708

Weight (lb) Mean 185.273 181.608 176.662

Weight (lb) Std. 54.042 54.194 55.448

Height (in) Mean 66.913 67.502 66.967

Height (in) Std. 8.268 8.607 6.181

ASA Code Emergency 7.65% 15.31% -

Hypoxemia Base Rate 1.09% 2.19% 3.93%

Hypocapnia Base Rate 9.76% 8.06% -

Hypotension Base Rate 7.44% 3.53% -

Hypertension Base Rate 1.70% 1.66% -

Phenylephrine Base Rate 10.57% 10.95% -

Epinephrine Base Rate 4.73% 7.71% -

Each outcome has a different number of samples due to missing data.
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Fig. 2 Performance of PHASE embedding models. Comparing the performance of downstream models trained with different embeddings of
physiological signals concatenated to static features. We report the average precision (% improvement over GBTmodel trained with raw signal
data, 99% confidence intervals from bootstrapping the test set). We use OR0 and OR1 as target datasets and then aggregate across both by
averaging the resultant means and standard errors of the % improvement. a The upstream embedding models we use to extract the
physiological signal features where raw is the identity function, ema is an exponential moving average, and the rest are LSTMs trained in
specific ways.b The performance of downstream prediction models for a variety of standard embedding approaches (when the source
hospital is the same as the target hospital). We compare combinations of downstream models and embeddings for three adverse surgical
outcomes (hypoxemia, hypocapnia, and hypotension). c The performance of transferred embedding (next', nextM,min', minM, hypo', and hypoM)
vs. non-transferred (next, min, and hypo) models for the above three adverse outcomes. In the transferred approaches the source hospital is
different to the target hospital. d Performance of approaches for standard and transferred embedding on additional outcomes: hypertension
(high, rather than low, blood pressure); phenylephrine and epinephrine (doctor action prediction). We do not evaluate hypo embeddings in
this setting, because the outcomes are not “hypo” events. Model architectures in Supplementary Note 6. We report the average precision
value of the raw model in parenthesis on the x-axis.
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Fig. 3 Performance of fine-tuned embedding models. a The convergence of fine-tuned models. The top eight plots fix OR0 as the target
dataset (we plot eight out of the total fifteen signals). Dark green lines show the convergence of a randomly initialized LSTM trained in OR0
and light green show the convergence of an LSTM trained in OR0 initialized using weights from the best model in OR1 (fine-tuning). The
bottom two rows show the analogous plots with OR1 as the target dataset. Because deep models are typically trained iteratively using some
variant of stochastic gradient descent, convergence plots are used to assess the convergence of deep models as a function of the number of
iterations (epochs) based on the performance on a held out validation set (validation loss). b The performance of GBT models trained on
embeddings from standard embedding models (next), transferred embedding models (next'), and fine-tuned embedding models (nextft) (best
models from light green in (a)). We report the average precision value of the raw model in parenthesis on the x-axis.
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Discussion section “Benchmarking against a jointly trained
embedding model”), and (3) we demonstrate that per-signal
embedding models work even in a heterogeneous setting where
the variables available in the target hospital are different to the
variables available in the source hospital (Supplementary Discus-
sion section “Applying PHASE for heterogeneous features”).
Here, we briefly describe the embeddings: raw, ema, rand, auto,

next, min, and hypo in Fig. 2a (more details in Methods section
“Set-up”). Raw and ema are not deep learning models. Instead, raw
is the raw signal itself and ema are exponential moving averages
and variance features from Lundberg et al. [21]. The remaining
embeddings all use the final hidden layer of LSTMs trained in a
source hospital Hs to embed the signals. The first embedding is
rand, which uses an untrained LSTM with random weights. The
second is an unsupervised approach called auto, which uses an
LSTM trained to autoencode the input. The following two
approaches (next and min) are self-supervised: the LSTM outputs
are drawn from the same physiological signal variable as the
input, but are taken from different parts of the signal. Next uses
LSTMs trained to predict the next 5 min of a particular signal; min
uses LSTMs trained to predict the minimum of the next 5 min of a
particular signal. The final approach, hypo, is a traditional
supervised approach to transfer learning where the embedding
model has the same output as the downstream prediction model
(either hypoxemia, hypocapnia, or hypotension).

Comparing approaches to embed physiological signals
As a start, we first compare two popular machine learning models
(GBTs and LSTMs) trained on the raw signal data (i.e., without
embedding) concatenated to static patient data. In this section we
will refer to results according to (1) the downstream model type
and (2) the signal embedding type (for instance, GBT raw denotes
a gradient boosted tree model trained with the raw minute by
minute signal data). In Fig. 2b, GBT raw performs comparably to
LSTM raw for hypoxemia and better for hypocapnia and
hypotension even though the LSTM should be more suitable to
the time series signal data. Based on prior literature, we
hypothesize that the GBT better captures patterns in the static
patient data which is tabular [23], but the LSTMs better capture
patterns in the time series data. In order to leverage the
advantages of both model types, we propose PHASE which
utilizes LSTMs to embed physiological signals and GBTs to perform
the final prediction using the extracted features concatenated to
static patient data (Fig. 1a). In the following sections we primarily
use GBTs as the downstream model and when we refer to our
results solely by the signal data embedding they are assumed to
use GBTs as the downstream model (for instance, next denotes a
GBT model trained with next embedded data).
We first evaluate the PHASE methods that include two self-

supervised embeddings (next and min) and a supervised
embedding (hypo) in a standard embedding setting where the
source dataset is the same as the target dataset (Fig. 2b). We train
GBT downstream models on the physiological signal embeddings
concatenated to static patient features to see if the embeddings
are more informative than the raw signals. Rand (which serves as a
lower bound) transforms physiological signals in an uninformative
manner and makes it harder to predict the outcomes of interest in
comparison to the raw signals. Furthermore, ema and auto fail to
consistently improve or impair performance relative to raw and
thus are not viable features. In contrast, the PHASE methods (next,
min, and hypo) consistently yield models that outperform the
alternative approaches across all three outcomes (all p-values <
0.05). In particular, ema is a gradient boosted tree model trained
with hand engineered features (exponential moving average)
shown to be on par with practicing anesthesiologists at
forecasting hypoxemia (Lundberg et al. Nature BME 2018 [21]).
PHASE embeddings further improve over this approach

suggesting that PHASE outperforms clinicians for forecasting
hypoxemia by approximately 5% (Fig. 2b).
In order to see how the choice of embedding model output

affects downstream model performance we can take a closer look
at auto, next, min, and hypo. Contrasting PHASE embeddings to
auto suggests that incorporating the future in the source task is
crucial (as in next, min, and hypo). However, while taking the
minimum (min) and thresholding (hypo) make the upstream
embedding model’s outcome more similar to the downstream
prediction model’s outcome, min and hypo embeddings do not
consistently improve downstream prediction performance com-
pared to next.
The previously described results show that PHASE works when

forecasting hypoxemia, hypocapnia, and hypotension; however
these outcomes are all associated with low signals (hence the
“hypo” prefix). In order to validate that PHASE performs well for
“non-hypo” outcomes as well, we consider three additional
outcomes: hypertension (i.e., high blood pressure), phenylephrine
administration, and epinephrine administration (doctor action
prediction) (Fig. 2d). For hypertension we empirically demonstrate
that next embeddings are better than min embeddings. This is to
be expected because min focuses on the minimum of the future
signal, whereas hypertension is defined as blood pressure being
too high and it therefore addresses the maximum of the future
signal. For phenylephrine, both the next and min models improve
over standard approaches. One potential reason is that pheny-
lephrine is typically administered in response to low blood
pressure and thus min models are relevant to phenylephrine
administration. For epinephrine, auto, next, and min models all
improve over raw and ema. Interestingly, auto improves over
alternative approaches, perhaps due to the low sample size for the
epinephrine outcome (Supplementary Table 2). However, auto is
not the best approach overall, because only next and min
consistently improve over raw and ema approaches for the other
outcomes.

Evaluating upstream embedding models on unseen data
Previously we focused on a standard embedding setting in a
single medical center; in this section, we examine the performance
of PHASE when the upstream LSTM embedding models are
trained in one dataset but used to embed signals in an unseen
dataset (i.e., transferred embedding setting). We analyze two
distinct transfer learning settings where the source hospital differs
to the target hospital (more details in Methods section
“Transferred embedding”). We utilize a superscript notation
(0 and M) to denote transfer learning. The apostrophe (0) denotes
that we trained LSTMs in one operating room dataset and then
fixed them to embed signal variables and evaluate performance
with a downstream GBT model in the other. The superscript M (M)
denotes that we trained the LSTM for SAO2 in ICUM and the other
LSTMs in the target dataset. Note that MIMIC-III (ICUM) has high
rates of missingness for signals except for ECG (which is not
directly present in the OR datasets) and SAO2. This means we
were able to train an upstream LSTM only for SAO2 from ICUM and
we extracted features from the remaining signals using LSTMs
trained in the target domain. This result is still meaningful,
because it means we can use upstream embedding models
trained in different domains synergistically.
Training the LSTM embedding models on a source dataset that

differs from the target dataset and using a GBT downstream
model (0 and M in Fig. 2c, d) generally outperforms conventional
approaches: the LSTM trained on raw data and the GBT trained on
raw or engineered features (LSTM raw, GBT raw, and ema in
Fig. 2b, d). The next and min embeddings in the transferred
embedding settings (next0, min0, nextM, minM) outperform
the conventional approaches for all possible outcomes
(Fig. 2c) including hypertension, phenylephrine, and epinephrine
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(Fig. 2d). However, for hypo, the supervised embedding, hypo0
improves over raw embeddings for hypoxemia and hypocapnia,
but actually hurts performance for hypotension. Furthermore the
hypoM embedding also hurts performance for hypoxemia relative
to using the raw embedding. This suggests that the choice of
LSTM embedding model output is important and the supervised
learning outcome (hypo0, hypoM) does not generalize to unseen
data as well as the self-supervised approaches (next0, nextM,
min0, minM).
Comparing the transferred embedding models (0 and M in Fig.

2c, d) to the standard embedding models (next, min, hypo in Fig.
2c, d) we see that the transferred embedding models generally
perform comparably to the standard embedding models even
though they are evaluated on previously unseen data. In
particular, we see that the next0, min0, nextM, and minM

embeddings perform comparably to their standard, non-
transferred counterparts (next and min). It is worth noting that
the transferred embeddings are equally performant for hypocap-
nia and hypotension; however, slightly reduce downstream
performance for hypoxemia and hypertension, which may be
due to differences in the hospital datasets (e.g., covariate shift). As
before, we see that the hypo0 and hypoM embeddings perform
substantially worse than their non-transferred counterpart hypo.
Although transferred PHASE embeddings perform slightly

worse in the hypoxemia and hypertension prediction settings,
one important advantage of transferring models is that end users
in the target domain can use them at no additional training cost.
Training all upstream LSTM embedding models for next con-
stituted roughly 66 hours on an NVIDIA GeForce RTX 2080 Ti GPU.
Clinicians who lack either computational resources or deep
learning expertise to train their own models from scratch can
instead use an off-the-shelf, fixed embedding model. Given that
machine learning is usually not the primary concern of hospital
staff, fixed embedding models are a straightforward way to
improve the performance of models trained on physiological
signal data at minimal cost to the end users.
There are two additional considerations for transfer learning: (1)

In our results, we focus on evaluation using GBT downstream
models. In order to show that the features we extract consistently
boost performance and are robust to the choice of the
downstream model we replicate our results for a multilayer
perceptron (MLP) downstream model in Supplementary Discus-
sion section “MLP downstream model”. (2) Per-signal LSTM
embedding models outperform a single LSTM embedding model
jointly trained with all signals in Supplementary Discussion section
“Benchmarking against a jointly trained embedding model”.
However, per-signal embedding models have an additional
advantage: they work even when the variables available in the
target hospital do not exactly match the ones in the source
hospital (feature heterogeneity). Per-signal LSTM embedding
models work in heterogeneous settings because end users can
pick and choose models that correspond to the signals available at
their institution. In comparison, a model trained on all possible
variables would be unusable on a new hospital dataset with
different variables. In Supplementary Discussion section “Applying
PHASE for heterogeneous features”, we show that in hetero-
geneous settings where the target hospital has fewer features
than the source hospital, GBTs trained with PHASE consistently
outperform GBTs trained with the raw signals.

Fine-tuning upstream embedding models improves
performance and reduces computational cost
In Results section “Evaluating upstream embedding models on
unseen data” we discussed that using PHASE embedding models
in the transferred embedding setting are preferable to the
standard embedding setting in terms of training cost; however,
the standard embedding models still showed slightly better

performance for hypoxemia and hypertension. Alternatively, we
propose a fine-tuned embedding approach where we assume an
end user in the target hospital has been provided a pre-trained
embedding model trained in a distinct source hospital. Fine-
tuning posits that deep models initialized using pre-trained
models from a separate domain work better than randomly
initialized models [44]. We train PHASE in a fine-tuning setting
where upstream embedding models are trained in an OR target
hospital initialized using the weights from the best model from
the other OR hospital dataset (detailed setup in Methods section
“Fine-tuned embedding”).
We find that PHASE in the fine-tuned embedding setting boosts

performance over both standard embedding (Results section
“Comparing approaches to embed physiological signals”) and
transferred embedding (Results section “Evaluating upstream
embedding models on unseen data”) in Fig. 3b. We focus on
next for the following experiment because it performed and
generalized well across most outcomes in previous sections. In Fig.
3, we evaluate the convergence and performance of fine-tuning
LSTM embedding models. Figure 3a shows the convergence of
fine-tuned models. The top two rows fix OR0 as the target dataset.
Dark green lines show the convergence of a randomly initialized
LSTM and light green show the convergence of an LSTM initialized
using weights from the best model in OR1. The bottom two rows
show the analogous plots with OR1 as the target dataset. In Fig. 3a
we see that fine-tuning LSTMs rather than training them from
scratch consistently leads to much faster convergence. In Fig. 3b,
we see that LSTMs obtained from fine-tuning (nextft) consistently
outperform those trained in a single dataset: standard embed-
dings (next) and transferred embeddings (next0). These results
indicate that end users can fine-tune PHASE LSTMs to boost
performance at lower computational cost in comparison to
training models from scratch. Although fine-tuning is more
computationally costly than a pre-trained model (transferred
embedding), the performance gains from fine-tuning are more
consistent.

Validating models with local feature attributions
We summarize key variables used by downstream GBT models
using summary plots (Fig. 4). In these plots, each point represents
a feature’s importance for a single sample, with the x-axis showing
the feature’s impact on the model’s output and the colors
indicates the feature’s value (attribution method details in
Methods section “Local Feature Attributions”). We focus on
explaining GBT models trained on PHASE next embeddings in
terms of each variable because next embeddings were performant
across most of the outcomes we considered. The colors are the
sum of all features associated with a single signal variable (200
extracted features) which are not naturally interpretable because
the embedding values can be arbitrarily positive or negative
based on the embedding models.
Standard approaches to train embedding models would use all

signal variables as inputs to a single model. These approaches are
harder to interpret, because each embedding dimension may be
dependent on multiple signals simultaneously. Having per-signal
embedding models as in PHASE allows us to clearly interpret each
embedding as being dependent on a single physiological signal
variable.
We validate important variables against prior literature for

models trained on next embeddings for all five outcomes (Fig. 4).
For hypoxemia, the important variables includes variables logically
connected to blood oxygen: SAO2, ETCO2, and FIO2 are all
associated with the respiratory system, while PIP is tied to
mechanical ventilation which is naturally linked to blood oxygen
[45, 46]. For hypocapnia ETCO2 is logically the most important
feature. Furthermore, using FIO2, RESPRATE, PIP, and TV to forecast
hypocapnia makes sense because these variables all relate to

H. Chen et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021)   167 



either ventilation or respiration. As one would expect, for
hypotension and hypertension, key variables are generally the
three non-invasive blood pressure measurements: NIBPM, NIBPD,
NIBPS. Furthermore, a number of studies validate the importance
of ECGRATE (heart rate measured from ECG signals) to forecasting
hypotension and hypertension [47, 48]. Finally, phenylephrine is
typically administered during surgery in response to hypotension,
thus validating the importance of NIBPS, NIBPM, and ECGRATE.
Similarly, age being more important to forecast phenylephrine use
may be tied to its predictive relationship to hypotension as well as
anesthesiologists’ heightened vigilance to hypotension in the
higher-risk older population [49].

DISCUSSION
This study explored machine learning techniques for forecasting
adverse surgical outcomes. Based on our findings, one possible
use case for PHASE embeddings is to improve the accuracy of
machine learning derived early warning software systems [50] by
alerting attending anesthesiologists. Given the rates of adverse
events in the operating room [3–5], computational forecasting
that provides advanced warning may be of widespread utility to
medical practitioners. This is especially the case given that the
outcomes we considered (hypoxemia, hypocapnia, hypotension,
and hypertension) are all tied to a number of harmful
physiological effects.
This work also shows physiological signal embeddings are

effective in several settings. We demonstrate that standard
embedding using LSTMs improves the performance of down-
stream models (GBT and MLP), which implies that pipelines
utilizing deep networks to embed physiological signals are
effective for electronic healthcare record data. Next, we show

that PHASE embedding models work almost equally well in a
transferred embedding setting as in a standard embedding
setting, and, in fact, work better than randomly initialized models
if fine-tuned. This implies that sharing pre-trained networks can
improve downstream models in terms of computational needs
and predictive performance. Furthermore, we found that embed-
ding models trained on ICU data performed surprisingly well,
which aligns with our findings that next models performed better
than hypo models during transference. Both of these findings
point to the hypothesis that the majority of improvement from
PHASE is due to self-supervision with future signals, rather than
necessarily having similar distributions of adverse events (which
likely differ between hospital settings).
PHASE uses independently trained LSTMs for each signal

variable. Surprisingly, we demonstrate that our per-signal
approach outperforms a jointly trained embedding model LSTM
(see Supplementary Discussion section “Benchmarking against a
jointly trained embedding model”). Furthermore, having each
LSTM associated with a single physiological signal actually proves
to be an advantage. Hospitals often collect different sets of
physiological signal variables; to address this heterogeneity, target
hospitals with different but overlapping variables to a source
hospital can use the embedding models for the variables which
they both have (see Supplementary Discussion section “Applying
PHASE for heterogeneous features”). In addition to measuring
different physiological signals, different hospitals may encounter
substantially different patients. To better investigate our results,
we report the average precision stratified by the top ten
diagnoses for each target OR dataset and by the ASA physical
statuses in Supplementary Discussion section “Evaluating by ASA
physical status and diagnosis”. Finally, embedding models are
frequently used to improve predictions in smaller target datasets

Fig. 4 Visualization of important physiological variables. Local feature attribution summary plots for the top five most important variables
from GBT models trained with next embeddings in the target dataset OR0. In order to obtain attributions for each variable we explain each
GBT using Interventional Tree Explainer. This gives us attributions for next embeddings for the fifteen physiological signal variables (200
dimensional embeddings for each) and six static variables. We sum over embedding attributions to obtain the importance of a particular
physiological signal variable. Summing over the attributions guarantees that we maintain the axiom of efficiency (Methods section “Local
Feature Attributions”). On the x-axis we report this aggregated attribution value that indicates the variable’s cumulative impact on the model
output. The colors of the points are either the feature’s value for static variables or the sum over all next embeddings for a given physiological
signal variable. More detailed attributions in Supplementary Discussion section “Full summary plots”.
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as in [51]. We include an evaluation of PHASE in this setting in
Supplementary Discussion section “Evaluating next models in a
smaller target dataset”.
One limitation of PHASE is that although sharing models reveals

less information than sharing data, it is possible to use model
inversion attacks on the PHASE embedding models [52] to find
physiological signals similar to the training data. Although we
attempted to use differentially private versions of stochastic
gradient descent [53] to train our embedding models, the
randomness inserted in the training process made it difficult to
train effective models. We leave investigation and development of
effective privacy preserving techniques to train such models to
future work. Another limitation of our data is that the embedding
models only apply to physiological signals sampled once per
minute. We leave exploration of adapting models to accommo-
date multiple sampling frequencies and irregularly sampled
signals to future work as well because they would likely require
resampling (decimation/interpolation) or ML models that accom-
modate irregular patterns of missingness. Additionally, it should
be said that there is complementary work discussing deep
learning for electrocardiograms [54, 55] and electroencephalo-
grams [56]. We focus primarily on minute by minute physiological
signals collected within an operating room setting. As such,
although we do have an ECGRATE variable, we do not directly use
the electrocardiogram signals. An additional limitation of our
experiments is that there are many possible thresholds that can be
used to define hypoxemia, hypocapnia, hypotension, and
hypertension. While our goal in this manuscript is not to identify
the best possible thresholds for each of these outcomes, this is a
research direction that would be important prior to any attempt at
deploying machine learning systems that forecast these out-
comes. To take a step in making sure PHASE is robust to
thresholds, we evaluate PHASE against alternative definitions of
hypoxemia, hypocapnia, and hypotension in Supplementary
Discussion section “Evaluating alternative outcome definitions”.
A final potential future direction is to generate per-user
embeddings as in Spathis et al. In our experiments, simply
aggregating embeddings across the time dimension is likely to
lose information important to predicting our time-dependent
outcomes. Alternative approaches might include per-user fine-
tuning and incorporating user IDs or demographics into the
training process of upstream embedding models.
Our work takes an important step forward in applying machine

learning to the domain of physiological signals. Previous
approaches utilize self-supervised techniques similar to next and
auto in video sequences [57], NLP [58], and cross-signal prediction
of HR from accelerometer signals [59]. Other broad categories of
approaches involve data augmentations of accelerometer data
aimed towards improving generalization [60, 61] and contrastive
learning that focuses on similarity of negative and positive pairs of
samples [62–65]. We include a comparison to several of these
approaches in the Supplementary Discussion section “Evaluating
additional self-supervised approaches”.
Drawing on parallels from computer vision (CV) and natural

language processing (NLP), both exemplars of transfer learning,
physiological signals are well suited to neural network embed-
dings (i.e., transformations of original inputs into a space better
suited to make predictions). In particular, CV and NLP share two
notable traits with physiological signals. The first is consistency.
The CV domain has consistent features: edges, colors, and other
visual attributes [66, 67]; the NLP domain uses a particular
language with semantic relationships consistent across bodies of
text [68]. For sequential signals, we saw that physiological patterns
are consistent, because PHASE generalized across hospitals in a
transferred embedding setting. The second attribute is complexity.
Each of these domains is sufficiently complex to make learning
embeddings non-trivial. These factors suggest that individual
research scientists must make redundant efforts to learn

embeddings that may ultimately be very similar. To avoid this
problem, NLP and CV have made significant progress on
standardizing and evaluating pre-trained models that are often
used to generate embeddings [58, 69–72]. Many such pre-trained
models are part and parcel of popular deep learning packages
(e.g., Keras pre-trained models and PyTorch pre-trained models).
In the health domain, similar standardization of physiological
signals is natural as well. More significantly, the use of
physiological signals is constrained by patient privacy; this makes
it difficult to share data between hospitals. However, sharing
models between hospitals does not directly expose patient
information. Sharing models in this way could allow machine
learning for physiological signals to see similarly large advances as
in computer vision and natural language.

METHODS
Ethics
The data for the OR study data is from institutional electronic medical
record and data warehouse systems after receiving approval from the
Institutional Review Board (University of Washington Human Subjects
Division, Approval no. 46889). Protected health information was excluded
from the dataset that was used for the machine-learning methods. We
affirm that we have complied with all relevant ethical regulations.
The electronic data for the intensive care unit study data was retrieved

from the PhysioNet Clinical Databases after data use agreement approval.

Datasets
The operating room (OR) datasets were collected via the Anesthesia
Information Management System (AIMS), which includes static information
as well as real-time measurements of physiological signals sampled minute
by minute. OR0 was drawn from an academic medical center and OR1 from
a trauma center. Two marked differences between the patient distributions
of OR0 and OR1 are the gender ratio (57% females in the academic medical
center versus 38% in the trauma center) and the proportion of ASA codes
that are classified as emergencies (7.65% emergencies versus 15.31%).
ICUM is a sub-sampled version drawn from PhysioNet’s publicly available
MIMIC dataset, which contains data obtained from an intensive care unit
(ICU) in Boston, Massachusetts [20]. Although ICUM data contains several
physiological signals sampled at a high frequency, we solely used a
minute-by-minute SAO2 signal for simplicity because many other
physiological signals had a substantial amount of missingness (Supple-
mentary Note 4). Furthermore, ICUM contained neonatal data that we
filtered out. For all three datasets, any remaining missing values in the
signal features were imputed by the mean, and each feature was
standardized to have unit mean and variance for training neural networks.
We include details about the data acquisition software in Supplementary
Note 2. Additional details about the distributions of patients in all three
datasets are shown in Table 1 and Supplementary Note 3.

Set-up
For our datasets, we considered a distribution of hospital stays P. Since we
wanted to forecast an adverse event in time, we defined samples by first
drawing a hospital stay P � P and then drawing a time point t ~ (1,⋯ , len
(P)). For the rest of this set-up, we assume we are operating with samples i
defined by t, P.

Variables
Many variables are associated with each hospital stay. We distinguished
between static variables (that are constant throughout the course of a
patient’s stay and are solely determined by P) and dynamic variables (that
change over time and are determined by P and t). We partition each
sample is (i is implicitly determined by P and t) variables into two distinct
sets:

Xi ¼ Xi
s1 ; � � � ; Xi

s6|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Static variables

; Xi
d1 ; � � � ; Xi

d15|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Dynamic variables

0
BB@

1
CCA (1)
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The six static variables ðXi
s1 ; � � � ; Xi

s6 Þ that do not change over the course
of a surgery are: Height, Weight, ASA Code, ASA Code Emergency, Gender,
and Age.
Furthermore, we utilized fifteen physiological signals for our dynamic

variables (visualized in Supplementary Note 1) (Xi
d1 ; � � � ; Xi

d15 ):

● SAO2—Blood oxygen saturation
● ETCO2—End-tidal carbon dioxide
● NIBP[S/M/D]—Non-invasive blood pressure (systolic, mean, diastolic)
● FIO2—Fraction of inspired oxygen
● ETSEV/ETSEVO—End-tidal sevoflurane
● ECGRATE—Heart rate from ECG
● PEAK—Peak ventilator pressure
● PEEP—Positive end-expiratory pressure
● PIP—Peak inspiratory pressure
● RESPRATE—Respiration rate
● TEMP1—Body temperature
● PHENYL—Whether phenylephrine was administered. We only use this

as an output variable and not as an input.
● EPINE—Whether epinephrine was administered. We only use this as an

output variable and not as an input.

To index the dynamic variables, we used the following notation to
denote minutes a to b (where b > a) of a particular signal:

Xi
dj ½a : b� 2 Rb�a (2)

Outcomes
We focused on binary outcomes (i.e., downstream prediction tasks):

yi 2 f0; 1g (3)

Our adverse events define the outcome as a function (g( ⋅ ), e. g. , g( ⋅ )=
min( ⋅ ) < C) of the next five minutes of a physiological signal (Xi

dj ):

yi ¼ gðXi
dj ½t þ 1 : t þ 5�Þ (4)

Specifically, we focused on health forecasting tasks; forecasting tasks
facilitate preventive healthcare by helping healthcare providers mitigate
risk preemptively [73]. In particular, we considered the following five tasks
(which all focus on the next 5 min of surgery):

● Hypoxemia: was blood oxygen less than 93?

minðXi
SAO2½t þ 1 : t þ 5�Þ< 93 (5)

● Hypocapnia: was end tidal carbon dioxide less than 35?

minðXi
ETCO2½t þ 1 : t þ 5�Þ< 35 (6)

● Hypotension: was mean blood pressure less than 60?

minðXi
NIBPM½t þ 1 : t þ 5�Þ< 60 (7)

● Hypertension: was mean blood pressure higher than 110?

maxðXi
NIBPM½t þ 1 : t þ 5�Þ> 110 (8)

● Phenylephrine: was phenylephrine administered?

maxðXi
PHENYL½t þ 1 : t þ 5�Þ ¼ 1 (9)

● Epinephrine: was epinephrine administered?

maxðXi
EPINE ½t þ 1 : t þ 5�Þ ¼ 1 (10)

More details about our labeling schemes are in Supplementary
Note 5.

Embeddings (i.e. features)
We define variables (e.g., height, blood oxygen, etc.) separately from
embeddings (e.g., height, minute 20 of blood oxygen, etc.) which the
downstream prediction models are trained on. Notationally, we denote
embeddings as lower case:

xi ¼ ðxis1 ; � � � ; xis6 ; x
i
d1 ; � � � ; xid15 Þ:

We embed the dynamic variables, with a function Udk ;E of the past
60min of the physiological signal variable:

xidk ¼ Udk ;EðXi
dk
½t � 59 : t�Þ;8k 2 1; � � � ; 15; E 2 fraw; ema; rand; auto; next;min; hypog:

We use the static variables as is: xisk ¼ Xi
sk
;8k 2 1; � � � ; 6. For GBT

downstream models we do not transform the static variables; however, for
the LSTM downstream models we do normalize them. Unlike dynamic
variables, extracting features from the static variables does not significantly
improve performance of downstream models.

Downstream prediction model
The downstream prediction models D are used to evaluate different types
of embeddings. They are trained on the embedded samples xi drawn
from a target hospital Ht. D minimizes binary cross entropy loss to
forecast adverse outcomes yi defined as a function of the future 5 min
of a physiological signal (for example hypoxemia would be

min Xi
dSAO2 ½t þ 1 : t þ 5�

� �
< 93, where Xi

dSAO2 ½t þ 1 : t þ 5� denotes the

future 5min of the blood oxygen variable for sample i).

Dynamic embedding
For dynamic variables, we made two important decisions. The first was
how much of the signal to use. To make fair comparisons, we gave all
models access only to the 60min (see Supplementary Discussion section
“Evaluating window size”) of the signal prior to the outcome (which starts
at t+ 1):

Xi
dj ½t � 59 : t� (11)

The second important decision was how to embed a signal (Xi
dj ). Two

natural embeddings are: (1) to use the sixty minutes as is (raw):

xidj ¼ Xi
dj ½t � 59 : t� 2 R60 (12)

where Udj ;raw is the identity function and (2) to use exponential moving
averages and variances as the embedding function Udj ;ema (ema) [21]:

xidj ¼ EMAðXi
dj ½t � 59 : t�; α ¼ 0:1Þ; EMAðXi

dj ½t � 59 : t�; α ¼ 1Þ
�

; (13)

EMAðXi
dj ½t � 59 : t�; α ¼ 5Þ; EMVðXi

dj ½t � 59 : t�; α ¼ 5Þ
�
2 R4 (14)

where the exponential moving average is defined as:

EMAτ ¼ α ´ Xi
dj ½τ� þ ð1� αÞ ´ EMAτ�1;8τ > t � 59 (15)

EMAt�59 ¼ Xi
dj ½t � 59� (16)

EMAðXi
dj ½t � 59 : t�; αÞ ¼ EMAt (17)

and the exponential moving variance is defined as:

δτ ¼ Xi
dj ½τ� � EMAτ�1 (18)

EMAτ ¼ EMAτ�1 þ α ´ δτ (19)

EMVτ ¼ ð1� αÞ ´ ðEMVτ�1 þ α ´ δ2τ Þ (20)

EMVðXi
dj ½t � 59 : t�; α ¼ 5Þ ¼ EMVt (21)

LSTM embedding
To better extract features from (embed) each physiological signal variable
(Xi

dj ), we utilized per-signal neural networks (LSTMs) trained in a source
hospital Hs. We utilized an embedding dimension of 200 nodes
(Supplementary Discussion section “Evaluating different embedding sizes”)
and the embedding from the final time step (Supplementary Discussion
section “Evaluating embedding time slices”). The LSTMs LHs

dj ;E
are trained for

each physiological signal (we show that per-signal embedding models
worked better than a single LSTM trained on all signals jointly in
Supplementary Discussion section “Benchmarking against a jointly trained
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embedding model”) to minimize a loss function (dependent on the
embedding type E) with the past 60min of signal dk as the input:

LEðLHs
dk ;E

ðXi
dk
½t � 59 : t�Þ; yiEÞ

Table 2 describes the different tasks we used to train LSTMs upstream
embedding models including the three self-supervised labels (next, min,
hypo) we proposed in PHASE. More specifically, Udj ;E ¼ h � LHs

dj ;E
, where the

composition h∘L signifies removing the output layer of L to obtain a
function that maps the past 60min of dk to the activations of the final
hidden layer in L. For the rand embedding the models Ldk ;rand are LSTM
models with random weights. There is no source hospital, because the
models are not trained. Then, auto, next, and min embeddings set LE to
mean squared error. However, the outcomes differ for each: yiauto ¼
Xi
dk ½t � 59 : t�; yinext ¼ Xi

dk ½t þ 1 : t þ 5�; yimind ¼ minðXi
dk ½t þ 1 : t þ 5�Þ

(note that these outcomes are self-supervised). Finally, hypo embeddings
set LE to binary cross entropy loss and the outcome is set to be the same
as the downstream task yi. Since several of our downstream outcomes
were tied to too-low (“hypo”) signals, the approaches in Table 2 were
ordered by distance to the downstream task.
We used the following notation to denote an LSTM trained to

convergence using Xi
dj drawn from the source hospital dataset Hs using

inputs and outputs specified by the task in Table 2:

LHs
dj ;task (22)

As an example, LOR0
dj ;next

indicates that the LSTM was trained for signal Xi
dj

with inputs Xi
dj ½t � 59 : t� and outputs Xi

dj ½t þ 1 : t þ 5� on data drawn from
OR0.
To describe the features associated with the neural network embedding

approaches, we removed the output layer of the network and embedded
each signal using the final hidden layer of the network. We denote this as:

xidj � h � LHs
dj ;next

ðXi
dj ½t � 59 : t�Þ 2 R200 (23)

where h removes the output layer of network L and 200 is the number of
hidden nodes in L.
As an example, if our target dataset was OR0, then our physiological

signal features for next would be:

xidj � h � LOR0
dj ;next

Xi
dj ½t � 59 : t�

� �
2 R200 (24)

Transferred embedding
To evaluate transfer learning, we denoted a target hospital dataset Ht (the
domain in which we trained the downstream prediction model on
embedded variables) and a source hospital dataset Hs (the domain in
which we trained our upstream embedding models). In the transference
experiments (denoted used superscripts next to the embedding type E:
task0 and taskM) we train our upstream embedding models in a source
hospital that is different to the target hospital (Hs ≠ Ht).
By default, without the superscript, the source domain matched the

target domain (Hs= Ht). With an apostrophe, the source domain was the
remaining operating room dataset (Hs=OR0 if Ht=OR1 or Hs=OR1 if Ht=
OR0). As an example, if our target dataset was OR0, then our physiological
signal features for next0 would be:

xidj � h � LOR1
dj ;next

Xi
dj ½t � 59 : t�

� �
2 R200 (25)

Finally, for taskM, the source domain for the LSTM embedding model for
SAO2 was ICUM (Hs= ICUM), and the remaining models were trained in a

source domain that matched the target domain (Hs= Ht). As an example, if
our target dataset was OR0, then our physiological signal features for next0
would be:

xidj � h � LICUMdj ;next
ðXi

dj ½t � 59 : t�Þ 2 R200 for SAO2 (26)

xidj � h � LOR0
dj ;next

ðXi
dj ½t � 59 : t�Þ 2 R200 for all other signals (27)

Fine-tuned embedding
The fine-tuning approach (denoted as nextft) considers fine-tuning models
between operating room datasets. If we assume a fixed target dataset Ht=
OR0. Then, as before, we denote an LSTM trained to convergence on data
from OR1 to be:

LOR1
dj ;next

(28)

For fine-tuning, we used the LSTM trained on samples drawn from OR1
(which crucially was not the same as the target dataset) to initialize an
LSTM which we then trained until convergence on samples drawn from
OR0. Notationally, we describe this as:

LOR1!OR0
dj ;next

(29)

The features for dynamic variables under the fine-tuning approach for
Ht=OR0 were:

xidj � h � LOR1!OR0
dj ;next

ðXi
dj ½t � 59 : t�Þ 2 R200 (30)

Jointly Trained Upstream Model
The jointly trained upstream model (denoted as nextm) involved training
an LSTM for several signals simultaneously. To do so, we optimized an
LSTM for forecasting the next 5 minutes of all our physiological signals,
which we denote as:

LHs
d1 ;��� ;d15 ;next (31)

Then, the features for dynamic variables under the jointly trained multi-
signal model were:

xid1 ; � � � ; xid15 ¼ h � LHs
d1 ;��� ;d15 ;nextðXi

d1 ½t � 59 : t�; � � � ; Xi
d15 ½t � 59 : t�Þ (32)

Local Feature Attributions
To obtain explanations, we utilized Interventional Tree Explainer, which
provides exact Shapley values with an interventional conditional expecta-
tion set function (feature attributions with game-theoretic properties) for
complex tree-based models [23, 74]. The Shapley values serve as local
feature attributions ϕ(f, xi) that indicate how much each feature in xi

contributed to a single downstream prediction D(xi). Positive attribution
means that the feature generally increases the output of the model (risk of
adverse events) and negative attribution means that the feature generally
decreases the output. Shapley values have been used to explain models in
a wide variety of applications including biology [75], medicine [76], finance
[77], and more.
We sum over local feature attributions to maintain efficiency, one of the

desirable axioms Shapley values satisfy [74]. Efficiency loosely states that
the attributions for a particular sample sum up to the difference between
the model’s prediction and the average model output over the baselines.
Efficiency is desirable because it implies that local feature attributions are
roughly on the same scale as the model’s output (log-odds, probability-
space, etc.). If we average over the attributions for a particular signal, the
attributions will no longer satisfy efficiency and attributions for signals will
be on a different scale to the attributions for the non-averaged static
attributions (height, weight, etc.). In order to guarantee efficiency, we
instead sum over the attributions for dynamic (physiological signal
features) in order to keep them comparable to the attributions for the
static features.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Table 2. Inputs and outputs for our per-signal upstream LSTMs.

E Domain Range (Upstream Task) LE

rand Xi
dj ½t � 59 : t� 2 R60 ; ;

auto Xi
dj ½t � 59 : t� 2 R60 Xi

dj ½t � 59 : t� 2 R60 MSE

next Xi
dj ½t � 59 : t� 2 R60 Xi

dj ½t þ 1 : t þ 5� 2 R5 MSE

min Xi
dj ½t � 59 : t� 2 R60 minðXi

dj ½t þ 1 : t þ 5�Þ 2 R1 MSE

hypo Xi
dj ½t � 59 : t� 2 R60 yi∈ {0, 1} BCE

We denote embedding names in italics.
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Trained models and performance results from this study are available from the
corresponding author upon reasonable request. The ICU dataset is publicly available
upon a reasonable request: https://mimic.physionet.org/[20]. The OR datasets from
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the current study are not publicly available, due to institutional restrictions on data
sharing and privacy concerns. The de-identified data may be made available to
qualified researchers upon reasonable request subject to permission and approval
from the corresponding organizations and institutional review boards.
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