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Identification of fatty acid
signature to predict prognosis
and guide clinical therapy in
patients with ovarian cancer

Tiefeng Cao1†, Jiaqi Dong2†, Jiaming Huang1, Zihao Tang1

and Huimin Shen1*

1Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University,
Guangzhou, China, 2Department of Oncology, First Affiliated Hospital of Sun Yat-Sen University,
Guangzhou, China
High-grade serous ovarian cancer (HGSOC) is a heterogeneous cancer

characterized by high relapse rate. Approximately 80% of women are

diagnosed with late-stage disease, and 15–25% of patients experience

primary treatment resistance. Ovarian cancer brings tremendous suffering

and is the most malignant type in all gynecologic malignancies. Metabolic

reprogramming in tumor microenvironment (TME), especially fatty acid

metabolism, has been identified to play a crucial role in cancer prognosis.

Yet, the underlying mechanism of fatty acid metabolism on ovarian cancer

progression is severely understudied. Recently, studies have demonstrated the

role of fatty acid metabolism reprogramming in immune cells, but their roles on

cancer cell metastasis and cancer immunotherapy response are poorly

characterized. Here, we reported that the fatty acid–related genes are

aberrantly varied between ovarian cancer and normal samples. Using

samples in publicly databases and bio-informatic analyses with fatty acid–

related genes, we disentangled that cancer cases can be classified into high-

and low-risk groups related with prognosis. Furthermore, the nomogram

model was constructed to predict the overall survival. Additionally, we

reported that different immune cells infiltration was presented between

groups, and immunotherapy response differed in two groups. Results

showed that our signature may have good prediction value on

immunotherapy efficacy, especially for anti–PD-1 and anti–CTLA-4. Our

study systematically marked the critical association between cancer

immunity in TME and fatty acid metabolism, and bridged immune phenotype

and metabolism programming in tumors, thereby constructed the metabolic-

related prognostic model and help to understand the underlying mechanism of

immunotherapy response.
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Introduction

Tumor microenvironment (TME) plays an increasingly

critical role in the pathogenesis, progression, and metastasis of

multiple cancers and has great influences on patient therapy

sensitivity and therapy strategies choice (1, 2). Multiple aspects

and parameters of the TME may be associated with cancer

prognosis and immunotherapies response (3, 4). In particular,

fatty acid metabolism plays a critical influence on tumor

environment and tumor immunity. In addition to providing a

large amount of energy, recent studies showed that fatty acid

oxidation contributes to cancer cell growth, stemness, and

chemotherapy resistance. Biologically active lipid molecules

during fatty acid metabolism may participate in a variety of

signaling pathways in cancer cell proliferation, differentiation,

metastasis, and inflammation. For example, fatty acids can

enhance STAT3 palmitoylation and directly activate STAT3 in

synergy with cytokine stimulation, thus promoting the tumor

spheres formation and tumorigenesis (5). In addition, increased

leptin and PD-1 can drive fatty acid oxidation through STAT3,

inhibiting CD8+ T effector cell glycolysis and promoting breast

tumorigenesis (6). Thus, it is critical to understand the role of

fatty acid metabolism and the impact on therapy response

or strategies.

Ovarian cancer is the most lethal one in gynecological

cancer, and the standard mode of therapy is surgery followed

by chemotherapy. Ovarian cancer is characterized by high

relapse and treatment resistance rate (7), but it is considered

to be the “immunogenic tumors.” In the recent years, immune

therapies such as immune checkpoint blockades (ICBs) have

been developed rapidly and investigated as potential

maintenance treatments in ovarian cancer, including anti–

PD-1 (programmed cell death protein 1), anti–PD-L1

(programmed cell death ligand 1), and anti–CTLA-4

(cytotoxic T lymphocyte-associated antigen-4) (8, 9). ICBs can

attenuate the immunosuppressive signals in the TME and

stimulate the antigen-presenting cells and bolster effector T

cells to play key roles in the immunotherapy of ovarian

cancer. But the objective response rates of single-agent

checkpoint inhibitors in ovarian cancer are approximately only

6–15% (10, 11), and up to 85% of cases have resistance to ICBs.

Therefore, it is urgently needed to identify the cases that could

benefit from the ICBs therapy.

Recent studies on the TME, especially the fatty acid

metabolism, have revealed that targeting fatty acids can

promote anoikis and attenuate dissemination in ovarian

cancer (12). Fatty acids generation and oxidation play a crucial

role in ovarian cancer cell survival by influencing tumor

immunity and immune cell infiltrates. Indeed, it remains

unexplored about the critical role of fatty acid metabolism on

immunotherapy response. In this study, gene expression and

clinical information of 376 patients were analyzed from TCGA

to comprehensively assess the pattern of fatty acid metabolism in
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TME. Then, a fatty acid gene-based prognostic model was

constructed to divide ovarian cancer samples into high- and

low-risk groups with different prognostic outcome. Additionally,

we investigated the relationship between fatty acid metabolism-

related model and immune cell infiltrates or immunotherapy

response, showing that different immune cells infiltrated in

individual TME and illustrating that this fatty acid prognostic

model could distinguish ovarian cancer patients that have

immunotherapy response.
Methods

Data collection and pre-processing

Genome data from RNA-seq (FPKM) and clinical

information of 379 serous ovarian cancer samples were

downloaded from TCGA (https://www.cancer.gov/about-nci/

organization/ccg/research/structural-genomics/tcg), and three

repeated samples were removed. Information for 88 normal

ovarian samples was obtained from GTEx in xena (http://

xenabrowser.net/). IMvigor210 cohort, a cohort of patients

with bladder urothelial carcinoma (BLCA) treated with anti–

PD-L1, was downloaded from the GEO database (https://www.

ncbi.nlm.nih.gov/geo/), and it was used to analyze the

relationship between risk score and immunotherapy response.

GSE26712 and GSE63885 were downloaded from the GEO

database as the extrinsic validation datasets. All included

ovarian cancer women from TCGA and GEO datasets are

pathologically diagnosed. All samples have integrity RNA-seq

data, clinical information, and complete overall survival (OS)

data. Gene expression level was applied with log2(X+1) and

defined as the average value for multiple probes. All statistics

were under R condition, and the “Combat” function in sva

package was used to normalize gene expression distribution in

different datasets. Clinical information of all datasets was shown

in Table 1.
Development and verification of a
prognostic risk score model

A total of 309 fatty acid–related genes were obtained from

Molecular Signatures Database (MSigDB: http://www.gsea-

msigdb.org/gsea/downloads.jsp). “Limma” under R condition

was used to identify deferentially expressed genes (DEGs)

between tumor and normal ovarian samples with adjusted P <

0.05 and |logFC|≥0.5. Then, the samples in TCGA dataset were

randomly divided into training set (n = 228) and testing set (n =

151) according to the proportion of 6:4. After deleting the

overlap patients and patients without survival information,

there are 224 patients in training set and 144 patients in

testing set. Training set was used to develop the prognostic
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risk score model. Prognostic-related DEGs of OS were selected

by univariate Cox regression analysis (prognostic DEGs).

LASSO (least absolute shrinkage and selection operator) Cox

regression analysis was used to identify the independent

prognostic factors with P < 0.05. Finally, backward stepwise

selection with the Akaike information criterion (AIC) was used

to reduce candidate genes (candidate DEGs) and constructed a

multi-variable Cox regression model. The risk score (RS) can be

calculated as follows: RS =o
k

i=1
biExpi, (Expi represents the

expression level of each candidate genes and bi represents the
corresponding regression coefficient). All cases in training set

were divided into high- and low-risk groups with the median

value of RS. Kaplan–Meier (K-M) survival curve and receiver

operating characteristic (ROC) curve were used to identify the

prognostic prediction value of the model. The association of the

clinical information with RS was investigated in low- and high-

risk groups. In addition, multivariable Cox regression analysis

was used to identify that the risk score is an independent

prognostic factor. The testing group and GSE26712 and

GSE63885 were used for validation.
Principal components analysis
comparison

Firstly, “limma” package under R condition was used to

perform principal components analysis (PCA) with the DEGs in

training set and candidate DEGs in the fatty acid–related
Frontiers in Oncology 03
prognostic model. Then, “ggplot2” package was used to show

the two-dimensional distinguishing capability of DEGs and

candidate DEGs. The “ropls” package was used to calculate the

R2 and Q2 values of PCA.
Gene set variation analysis

Fatty acid metabolism-related gene sets (c2.cp.kegg.v7.

1.symbols) from MSigDB (https://www.gsea-msigdb.org/gsea/

msigdb) were downloaded as the reference genes. Gene set

variation analysis (GSVA) was performed with “GSVA”

package between low- and high-risk groups. p < 0.05 was

regarded as statistically significant.
Immune cell infiltrates and immune
analysis

The RNA-seq data of ovarian cancer cases in TCGA

database were uploaded to Timer2.0 (https://cistrome.

shinyapps.io/timer/) to obtain the immune cells infiltration.

Meanwhile, we applied “immunedeconv” package to conduct

MCP-COUNTER algorithm (13) to get the abundance of both

immune and stromal cells of each sample. The immune cells

infiltration between low- and high-risk groups was compared.

Then, ssGSEA (single sample gene set enrichment analysis) was

performed using “GSVA” package to calculate enrichment
TABLE 1 Patient characteristics of TCGA cohort, GSE26712, and GSE63885.

TCGA-OV-Training set TCGA-OV-Testing set TCGA-OV GSE26712 GSE63885

No. with OS 224 144 368 185 75

Age (median, range) (60,30-87) (58,34-85) (59,30-87) NA NA

Grade (%) high-grade

Grade 1 0 1 (0.7%) 1 (0.2%) 9 (12%)

Grade 2 27 (12.1%) 14 (9.7%) 42 (11.4%) 0 (0%)

Grade 3 193 (86.2%) 124 (86.1%) 316 (85.8%) 48 (64%)

Grade 4 0 1 (0.7%) 9 (2.6%) 18 (24%)

Unknown 4 (1.7%) 4 (2.8%)

Stage Late-stage

I 0 0 0 0

II 14 (6.3%) 6 (4.2%) 20 (5.4%) 2 (2.7%)

III 176 (78.6%) 113 (78.5%) 289 (78.6%) 63 (84%)

IV 33 (14.7%) 23 (15.9%) 56 (15.2%) 10 (13.3%)

Unknown 1 (0.4%) 2 (1.4%) 3 (0.8%)

Surgery outcome NA

Optimal 141 (62.9%) 94 (65.2%) 235 (63.8%) 90 (48.6%)

Suboptimal 62 (27.6%) 22 (22.9%) 95 (25.8%) 95 (51.4%)

Unknown 21 (9.3%) 17 (11.9%) 38 (10.3%)

OS days (median) 1202 1188 1197 1427 1284
fr
TCGA, The Cancer Genome Atlas; No. number; OS, overall survival; NA, not available.
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scores that represent immune gene-related function in samples.

We compared the enrichment scores between low- and high-

risk groups.
Association with treatment and
immunotherapy response

“pRRophetic” package was used to calculate the halfmaximal

inhibitory concentration (IC50), which can predict drug

treatment response including the chemotherapy and targeting

therapy. To analyze the association with immunotherapy

response in high- and low-risk groups, first, we compared the

expression of 12 common immune checkpoints (CTLA4,

PDCD1, LAG3, TGFB1, IL10, TNFRSF14, IL13, CD244,

CD48, ICAM1, NOS3, and MICB) (14) between the two

groups. Then, the TIDE (Tumor Immune Dysfunction and

Exclusion) value was assessed to show the immune escape of

cancer cells and their response to immune checkpoint inhibitors

(ICIs). RNA-seq data of ovarian cancer cases in TCGA database

were uploaded to TIDE website (http://tide.dfci.harvard.edu/) to

calculate TIDE value. Finally, IMvigor210 cohort was divided

into low- and high-risk groups by the median of risk score, and

immunity therapy effect was compared between groups.
Development of prognostic-prediction
nomogram

Nomogram was built with “rms” package to predict OS with

RS and clinical factors including age, grade, stage, and debulking

status. Calibration curve was shown to analyze the prediction

accuracy. Multivariable Cox regression analysis was performed,

and AUC of ROC curve was explored to identify the prognostic

prediction value of nomogram.
Enrichment analysis of the DEGs
between the low- and high-risk groups

Differentially expressed genes between low- and high-risk

groups were selected by “limma” package with p < 0.05. Gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis were performed with “cluster-

Profiler” package under R condition. The result was shown

in barplot.
RNA extraction and real-time
quantitative polymerase chain reaction

Ovarian cancer cells including OVCAR3, SKOV3, and

A2780 cells were cultured in DMEM (Gibco, C11995500BT,
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USA) supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin/streptomycin. Normal ovarian cell IOSE80 was

maintained in RPMI 1640 (Gibco, C11875500BT, USA)

supplemented with 10% FBS and 1% penicillin/streptomycin.

Total RNAs were extracted from three cultured ovarian cancer

cells and one normal ovarian cell type using the EZ-press RNA

Purification Kit (EZBioscience, USA). cDNA synthesized the 4×

reverse transcription master mix (EZBioscience, USA) in a 20-ml
reaction system containing 1 mg of total RNA. Real-time

quantitative polymerase chain reaction (RT-qPCR) was

performed using the 2× SYBR Green qPCR Master Mix

(EZBioscience, USA) in a 10-ml reaction system containing 1

ml of cDNA on a QuantStudio 5 RT-PCR System (Thermo

Fisher Scientific, USA). RT-qPCR was performed by initial

denaturation (5 min, 95°C), and 40 amplification cycles (10 s

at 95°C and 30 s at 60°C). Melting curve analysis was used to

verify the primer specificity. The threshold cycle (Ct) values of

each cell type were used for the post-PCR data analysis. Relative

gene(s) expression was identified and normalized against b-
tubulin as the housekeeping gene. Real-time PCR primers are

listed in Table S1.
Statistical analysis

WilcoxTestwas used to compare the continuous numerical data

such as the expression level of mRNA, immune cells infiltration

scores, risk scores between different groups. Chi-square test was used

to compare discrete clinical parameters. P-values < 0.05 were

considered statistically significant if not specified.
Result

Development of fatty acid metabolism-
related prognostic signature

The TME is characterized by alteration of fatty acidmetabolism.

To illustrate theprognostic roleoffattyacidmetabolism,we tested the

expression of fatty acid metabolism-related genes between 379

ovarian cancer samples from TCGA dataset and 88 normal

samples from GTEx dataset (details shown in Table 1). We

identified 176 differentially expressed genes (DEGs), including 85

downregulated and 91 upregulated genes (Figures 1A, D and Table

S2). Then, we performed univariate Cox analysis in TCGA training

set and identifieda total of 22prognostic-DEGs related toOS selected

with p < 0.1 among 176 DEGs (Figure S1A). Furthermore, 16

independent prognostic-related factors were addressed with

LASSO Cox regression analysis (Figures 1B, C). Backward stepwise

selection with the AIC was then applied, and a multi-variable Cox

regression model was constructed with 10 independent candidate

genes, including HACD4, PON3, ACSF2, ACOT13, GABARAPL1,

ACSM3, D2HGDH, PTGIS, PPARA, and HSP90AA1 (Figure 1E).
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The corresponding coefficients were shown in Table S3, and the risk

score of each sample was calculated: risk-score = (-0.40) × exp

(HACD4) + (-0.18) × exp(PON3) + 0.22 × exp(ACSF2) + (-0.63)

× exp(ACOT13) + 0.24 × exp(GABARAPL1) + (-0.29) × exp

(ACSM3) + 0.33 × exp(D2HGDH) + 0.10 × exp(PTGIS) + 0.51 ×

exp(PPARA) + (-0.22) × exp(HSP90AA1). Thus. all cancer samples

in training set were divided into two groups (low- and high-risk

groups) by the median value of risk score. Although there were no

statistically significant differences between low- and high-risk groups

associated with age, stage, grade, and debulking status (Figure S1B),

high-risk grouphad a poor prognosiswhen comparingwith low-risk

group as shownwithK-M survival curve (p < 0.01) (Figure 2A). This

prognostic signature showed good prediction value with AUC > 0.7

in ROC curve (Figure 2B). Furthermore, the testing set from TCGA

was used to validate themodel, illustrating the good prediction value

of this fatty acid metabolism-related prognostic signature in ovarian

cancer (Figures 2C, D), as also shown with the whole TCGA cohort

(Figures 2E, F) and independent GEO datasets (Figure S1I).We also

analyzed the predictive power of top 5 genes that contributedmost to

themodel (with themaximumabsolute value of coefficient) through
Frontiers in Oncology 05
AUC of ROC curves (Figure S1J). The 10 candidate genes in the

prognosticmodel (R2=520,Q2=0.606) showedbetterdistinguishing

capability than all DEGs (R2 = 0.333, Q2 = 0.406) as shown in PCA

results (Figures 2G, H). Uni- and multi-variable Cox regression

analysis conducted on training set, testing set and the whole TCGA

cohort addressed that the risk score is an independent prognostic

factor (Figures S1C–H) after adjusting for clinical characters.

Remarkably, we constructed a metabolic map summarizing the

fatty acid metabolism (Figure S2A), and most of the independent

candidate genes were marked in the position where they are

functioning in the fatty acid metabolism process.
Development of a nomogram to
predict OS

To predict the OS for ovarian cancer accurately, a prognostic

nomogram was constructed based on the parameters including

grade, stage, age, sub-optimal debulking status, and risk score

(Figure 3A). This nomogram model showed a good prediction
B C

D E

A

FIGURE 1

Differentially expressed genes (DEGs) identification and Lasso Cox regression. (A) Volcano plot for DEGs between normal tissue and tumor. Red
pot represents DEGs with adjusted P < 0.05 and |logFC|≥0.5. (B, C) LASSO Cox regression to select independent prognostic-related genes.
(D) Heat map of DEGs with adjusted P < 0.05 and |logFC|≥0.5. The color red represents high-expression genes and color green represents low-
expression genes. (E) HR of 10 final candidate genes involved in survival model. LASSO, least absolute shrinkage and selection operator; DEG,
differentially expression genes; FC, fold change; HR, hazard ratio.
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B

C D

E F

G H

A

FIGURE 2

Verification of the prognostic risk score model. (A) The Kaplan–Meier survival curve of TCGA training group. (B) The ROC curve of TCGA
training group. (C) The Kaplan–Meier survival curve of TCGA testing group. (D) The ROC curve of TCGA testing group. (E) The Kaplan–Meier
survival curve of TCGA cohort. (F) The ROC curve of TCGA cohort. (G) PCA result with all DEGs with 95% CI ellipses. (H) PCA result with the
final candidate genes of the model with 95% CI ellipses. TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic; DEG,
differentially expressed genes; PCA, principal components analysis.
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value, as shown in the calibration curve for 1-, 3- and 5-year OS

(Figure 3B). The AUC in ROC curve of the nomogram is 0.752

for 1-year, 0.672 for 3-year, and 0.680 for 5-year OS, which was

larger than that of single clinical character or risk score (0.676

for 1 year, 0.636 for 3 years, and 0.697 for 5 years, separately)

(Figures 3C–E), indicating that the nomogram model has a

better prediction value than clinical characters or risk score

alone. In addition, uni- (Figure S2B) and multi-variable Cox

regression analysis (Figure S2C) suggested that nomogram is an

independent prognost ic factor adjust ing for other

clinical characters.
Immune infiltration between low- and
high-risk groups

As shown in Figures 2A, C, E, cases in high-risk group had poor

prognosis but had no relationship with clinical factors such as grade,

stage, and debulking status (Figure S1B). We wonder if fatty acid

metabolism affects the cancer prognosis via influencing tumor

micro-environment in ovarian cancer. Published studies showed

that anti-tumor antigen vaccination targeting immune cells

constitutes an efficient therapy strategy for malignant cancer. To

prove the critical role of immune cell infiltration in micro-

environment, we analyzed the infiltration of six immune cells

including B cells, CD4 T cells, CD8 T cells, neutrophils,

macrophages, and dendritic cells that were obtained from the

Timer 2.0 database. Results showed that CD8 T cells (Cor =

0.178, p = 8.615e-4, Figure 4A), CD4 T cells (Cor = 0.125, p =

0.017, Figure 4B), dendritic cells (Cor = 0.206, p = 6.753e-5,

Figure 4C), macrophages (Cor = 0.215, p = 3.28e-5, Figure 4D),

and neutrophils (Cor = 0.199, p = 1.245e-4, Figure 4E) were

positively correlated with risk score, whereas B cells were not

correlated (Figure 4F). The result of immune cells enrichment

between two groups (Figure 4G) was similar to those of correlation

analysis (Figures 4A–E). The enrichment of CD4 T cells,

neutrophils, macrophages, and dendritic cells in high-risk group

was likely due to a much higher immune-active status. In addition,

to validate the abundance of immune cells in two groups, we

compared 10 kinds of cells including immune and stromal cells

from MCP-COUNTER. Results showed that T cells, monocytic

lineage, neutrophils, endothelial cells, and fibroblasts were enriched

in high-risk group (Figure 4H), consistent with results above

(Figure 4G). Remarkably, T cells (Cor = 0.146, p = 0.005),

Monocytic lineage (Cor = 0.233, p = 6.283e-06), neutrophils (Cor

= 0.264, p = 2.673e-07), endothelial cells (Cor = 0.198, p = 1.347e-

04), and fibroblasts (Cor = 0.342, p = 1.474e-11) were positively

correlated with risk score (Figure S3), consistent with results from

Timer 2.0. Furthermore, as immune function has been implicated

to play a pivotal role in T-cell dysfunction and T-cell signaling (15),
Frontiers in Oncology 07
we assessed the role of immune function between two groups.

Results showed that APC co-stimulation, T cell co-stimulation, and

Type II IFN Response were more enriched in high-risk group

(Figure S4). Collectively, these results suggested that different

immune cells regulated immune function in two groups with

different fatty acid metabolism status, which appears to be an

important component of tumor micro-environment.
Immunotherapy analysis between low-
and high-risk groups in TCGA cohort

It is well established that different immune cells infiltration

promotes immune function alteration, leading to significant change

of immunotherapy response. To provide evidence supporting the

role of fatty acid metabolism on immunotherapy response, first, we

performed analysis on immune checkpoints expression between

two groups. As indicated, ICIs against PD-1, PD-L1, CTLA-4, and

Lag3 have becoming the promising strategy for the treatments of a

variety of malignancies. Cancer cells can activate immune

checkpoint pathways and induce immunosuppressive functions,

thus targeting immune checkpoint pathways provides a promising

therapeutic breakthrough in cancer. Indeed, the expression of

immune checkpoints may be related to the therapy response. We

analyzed the expression of 12 common immune checkpoints

between two groups. As seen in Figure 5A, PDCD1, TGFB1I1,

IL10, TNFRSF14, and ICAM1 were significantly higher expressed

in high-risk group, whereas MICB was significantly lower

expressed, indicating the heterogeneity of immune status and

different therapy response correlating with different immune

checkpoints expression (Figure 5A). Next, we tested whether

TMB (tumor mutation burden) changed between two groups.

TMB is known to be positively correlated with immunotherapy

sensitivity and efficacy in cancer. Thus, higher TMB in low-risk

group indicated that cases in this group had good immunotherapy

efficacy (Figure 5B). Additionally, we performed analysis with TIDE

value to access the immunotherapy efficacy, especially the well-

known PD-1 and CTLA-4 inhibitors. TIDE value is implicated to be

positively related with the ability of immune escape of cancer cells.

Results showed that high-risk group had higher TIDE value

(Figure 5C), indicating that immune cells in high-risk group may

have the potential of immune escape and be resistant to

immunotherapy. Furthermore, to directly explore the potential

association between ICIs’ sensitivity and risk score in the

signature, patients who received anti–PD-L1 immune therapy in

the IMvigor210 cohort were divided into high- and low-risk groups

by the median of risk score in the model. K-M survival curve was

performed, and the result showed that high-risk group had poor

prognosis (p = 0.035, Figure 5D), consistent with our analysis above

that risk score in our fatty-acid signature is related with the
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sensitivity of ICIs’ sensitivity. Meanwhile, results with box plot

corroborated our K-M curve findings that the objective response

group, which included partial response (PR) and complete response

(CR) to ICIs, had lower risk score than stable disease/progression

disease group (p = 0.0084) (Figure 5E). Taken together, our results

strongly supported the role of risk score of the fatty acid–related

signature in identification of cases with immunotherapy response.
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Drug sensitivity analysis between low-
and high-risk groups

It is well known that the standard treatment of patients with

epithelial ovarian cancer comprises debulking surgery followed by

chemotherapy and maintained by targeted therapy. To begin to

elucidate the prediction value of fatty acid–related genes for
B C

D E

A

FIGURE 3

The predictive value of nomogram in OS. (A) The constructed prognostic nomogram that predicts 1-, 3-, and 5-year OS of ovarian cancer
patients in TCGA cohort. (B) The calibration plots of the nomogram. The x- and y-axis present predicted and actual survival respectively. (C–E)
ROC curve of 1-, 3-, and 5-year OS with the nomogram, the clinical characters, and risk score. OS, overall survival; TCGA, The Cancer Genome
Atlas; ROC, receiver operating characteristic. *P < 0.05 and ***P < 0.001.
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chemotherapy or targeted therapy response, we calculated the half

maximal inhibitory concentration (IC50) with “pRRophetic”

package under R condition. Results indicated that risk score in

fatty acid gene-related model was correlated with treatment

response of multiple chemotherapy or targeted therapy reagents

(Table S4). Remarkably, bleomycin, which showed good efficacy in

ovarian cancer (16), had different IC50 between two groups (P <

0.001) (Figure 6A) and was negatively correlated with risk score

(Figure 6B). In addition, targeted therapies, such as FH535 (PPAR

inhibitor) (Figures 4C, D) and Linifanib (VEGFR inhibitor)

(Figures 4E, F), had different therapy efficacy and were correlated

with risk score. Collectively, these results indicated that risk score in

theprognosismodel is relatedwith therapy efficacy, thus affecting the

therapy choice. Furthermore, biological pathways including MAPK

signaling pathway, VEGF signaling pathway, and mTOR signaling
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pathway were enriched in high-risk group (Figure S5). The

enrichment of biological pathways was consistent with the drug

sensitivity results (Table S4 and Figure 6), showing that TAK-715

(MAPK inhibitor) and XL-184 (VEGF inhibitor) had good efficacy

on cancer treatment.
Enrichment analysis of the DEGs
between the low- and high-risk groups

To elucidate the mechanism of fatty acid gene-mediated

regulation, enrichment analysis with the DEGs between the low-

and high-risk groups was performed. We identified 465 DEGs

between low- and high-risk groups with adjusted P < 0.05 and |

logFC| ≥ 0.5, including 109 downregulated and 354 upregulated
B C

D E F

G H

A

FIGURE 4

Infiltration of immune cells between low- and high-risk groups in TCGA cohort. (A–F) Correlation analysis of risk score and six immune cells
infiltration from TIMER, including CD8 T cells (A), CD4 T cells (B), dendritic cells (C), macrophages (D), neutrophil (E), and B cells (F). (G)
Differences of six immune cells infiltration (TIMER) among low- and high-risk groups. (H) Differences of immune cells and stromal cells
infiltration (MCP-COUNTER) among low- and high-risk groups. TCGA, The Cancer Genome Atlas; TIMER, Tumor Immune Estimation Resource;
MCP-COUNTER, Microenvironment Cell Populations-counter. *P < 0.05, **P < 0.01 and ***P < 0.001.
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genes (Figure S6). The GO analysis and KEGG analysis were

conducted. Results showed that numerous DEGs were involved in

extracellular matrix organization, ECM−receptor interaction, PI3K

−Akt signaling pathway and TNF signaling pathway (Figure S7).

Candidate genes expression are
aberrantly altered in ovarian cancer cells

Tovalidate the characteristic and functionoffatty acid inovarian

cancer cells, we tested whether the expression of ten candidate genes
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is altered in cancer cells.We cultured andmaintained ovarian cancer

cells (OVCAR3, SKOV3 and A2780 cells) and normal ovarian cells

(IOSE80), andRNAswere extracted fromthe cells above. Expression

of candidate genes was determined by reverse transcription and RT-

qPCR analysis. Strikingly, a statistically significant increase in

SKOV3 and A2780 cells versusmatched IOSE80 cells was observed

in the three bio-informatively proved upregulated genes including

HACD4, ACOT13, and HSP90AA1 (Figure 7). Meanwhile, most of

bio-informatively proved downregulated genes were statistically

significant decreased in OVCAR3 and A2780 cells versus matched
B

C D

E

A

FIGURE 5

Immunity therapy analysis between low- and high-risk groups in TCGA cohort. (A) Differences of 12 immune checkpoints among low- and
high-risk groups. (B) TMB value between low- and high-risk groups. (C) TIDE value between low- and high-risk groups. (D) The Kaplan–Meier
survival curve of low- and high-risk group in IMvigor210 cohort. (E) Differences of risk score among CR+PR and SD+PD groups. TCGA, The
Cancer Genome Atlas; TMB, tumor mutational burden; TIDE, Tumor Immune Dysfunction and Exclusion; CR, complete response; PR, partial
response; SD, stable disease; PD, progression disease. *P < 0.05, **P < 0.01 and ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.979565
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cao et al. 10.3389/fonc.2022.979565
IOSE80 cells, suggesting the critical role of these candidate genes in

ovarian cancer (Figure S8).

Discussion

Fatty acid metabolism alterations in cancer cells have been

increasingly being recognized. Emerging evidence suggests that
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fatty acid metabolism which includes fatty acid synthesis,

degradation, and uptake process, provides energy storage,

membrane proliferation and signaling transduction for cancer

and immune cells and underlies the pathogenesis and

development of ovarian cancer (17). Fatty acid synthesis and

uptake pathways may be the potential targets for cancer therapy

strategies. In the recent years, studies have been conducted to
B

C D

E F

A

FIGURE 6

Drug sensitivity analysis between low- and high-risk groups. Differences of IC50 for Bleomycin (A), FH535 (C), and Linifanib (E).Correlation
analysis of risk score and IC50 of Bleomycin (B), FH535 (D), and Linifanib (F). IC50: half-maximal inhibitory concentration; FH535 (PPAR
inhibitor); Linifanib (VEGFR inhibitor).
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explore the role of fatty acid metabolism in ovarian cancer. For

example, fatty acid binding protein 4 (FABP4), a lipid chaperone

protein, has been regarded as a critical regulator to adapt and

colonize TME and is implicated and applied in ovarian cancer

for the providence of fatty acids (FAs) from surrounding

adipocytes to tumor cells (18). Targeting FABP4 can restrict

ovarian cancer metastasis as a specific metabolic target (19). The

tumor-progression process in cancer may involve the interplay

between multiple cells, factors, and the TME. However,

published studies were focused on the specific factor or gene.

Thus, the integrated analysis of fatty acid metabolism is needed.

Remarkably, we systematically analyzed the fatty acid

metabolism-related genes in ovarian cancer and found that

they were differently expressed. Therefore, the prognostic-

related model with risk score was defined according to the

candidate fatty acid metabolism-related DEGs including

HACD4, PON3, ACSF2, ACOT13, GABARAPL1, ACSM3,

D2HGDH, PTGIS, PPARA, and HSP90AA1. This prognostic-

related model and the constructed nomogram can predict

ovarian cancer prognosis and therapy response including

chemotherapy, targeted therapy, and immunotherapy.

Furthermore, we validated the expression of 10 candidate

genes in ovarian cancer cells compared with normal ovarian

cells. Together, these findings strongly point to a critical role of

fatty acid metabolism in ovarian cancer prognosis and

therapy response.

The way to limit FA availability included decreasing FA

synthesis, inducing FA degradation by oxidation, increasing FA

to storage, and blocking FA release from storage. The genes and

enzymes in FA availability process consist of ATP citrate lyase,

acetyl-CoA carboxylase, acyl-CoA synthetase, fatty acid

synthase, and transcription factors for FA synthesis (20). The
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candidate DEGs included in our model were included in this

process. Among them, ACSF2 and ACSM3 are Acyl-CoA

Synthetase Family Member and involved in fatty acid

biosynthesis process. PON3 is applied for arachidonic acid

metabolism. D2HGDH can be applied for inter-conversion of

2-oxoglutarate and 2-hydroxyglutarate and included in pyruvate

metabolism and citric acid (TCA) cycle, rendering the fatty acid

synthesis. ACOT13, HACD4, and PPARA are considered to be

involved in the process of FA degradation, inducing FA

oxidation as major transcriptional regulators (21, 22).

GABARAPL1 enables ubiquitin protein ligase binding,

promoting lipolysis of FA to serve as precursors for important

signaling lipids (23). Thus, the fatty acid metabolism gene-

related model was constructed and may be the representative

one reflecting the fatty acid metabolism reprogramming in

ovarian cancer. This model divided ovarian cancer cases into

high- and low-risk groups that had different prognostic status.

Furthermore, the testing set in TCGA dataset validated the

model intrinsically, whereas the GEO datasets validated this

extrinsically. In addition, this prognostic model is the

independent prognostic factor, reflecting that fatty acid

metabolism has crucial value in ovarian cancer progression

and pathogenesis. The more accurate nomogram may be used

in clinical for predicting the prognosis of specific ovarian cancer

case, thus rendering the new choice for therapy strategies.

Ovarian cancer has the features of high chemotherapy

resistant and relapse rate. Recently, more studies explored that

fatty acid metabolism in TME and lipid composition of cellular

membranes was linked to chemotherapeutic agents’ response

and resistance, but clinical data linking fatty acid metabolism to

therapy resistance in tumors remained elusive. Based on the

available data in previous study on single specific gene, fatty acid
B CA

FIGURE 7

Candidate genes expression in ovarian cancer cells. Gene expression of HACD4 (A), ACOT13 (B), and HSP90AA1 (C) in ovarian cancer cells
(OVCAR3, SKOV3, and A2780 cells) versus normal ovarian cells (IOSE80 cells) determined by RT-qPCR analysis. RT-qPCR, reverse transcription
and quantitative real-time polymerase chain reaction. *P < 0.05.
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metabolism reprogramming has drawn significant attention as

essential mediators of chemoresistant cancer cases. Our recent

studies showed that model constructed based on fatty acid

metabolism-related genes linked to response of chemotherapy

agents. In addition, our study demonstrated that the fatty acid

metabolic characteristics of ovarian cancer presented

considerable hurdles to immune cells infiltration mainly

including macrophages, T cells, neutrophils, and monocytic

lineage. Macrophages, the infiltrates in high-risk group, are

proved to play pivotal roles in inflammatory processes. As an

independent molecule in the anti-inflammatory fatty acid

biosynthesis, SREBP1 contributes to the resolution of TLR4-

induced gene activation by macrophage fatty acid metabolism

reprogramming (24). By contrast, glutamine blocking in tumors

linked to oxidative metabolism and exposed an undefined

metabolic plasticity between effector T cells and cancer cells

(25). Immune cells differed between two groups, thereby

regula t ing immune response and contr ibut ing to

immunotherapy strategies. Thus, fatty acid metabolism

antagonism may be exploited as the “metabolic checkpoint”

for tumor therapy. Here, we further explored the correlation of

fatty acid metabolism and immune checkpoint inhibitors

response. Results showed that high-risk group had lower TMB,

higher TIDE, and different expression of checkpoint genes,

reflecting that cancer cells in high-risk group had the

characteristics of immune evasion and lower immunotherapy

response, consistent with the result from exploration of ICIs

response. The exploration of fatty acid metabolism patterns in

ovarian cancer and the role of fatty acid metabolism in cancer

cell immunity could help to understand the mechanism of fatty

acid metabolism in OC progression, thus guiding to an effective

therapeutic strategy. Moreover, due to the heterogeneity within

individual patient of immunotherapy response, attempts should

be made to select the cases with good efficacy. Thus, our study

highlighted the role of metabolic alteration in ovarian cancer

pathogenesis and presented a fatty acid gene-related model with

good prediction value for immunotherapy efficacy.

To explore the biological process under fatty acid metabolic

reprogramming, GO and KEGG pathway analyses of the DEGs

between these two groups showed that extracelluar matrix

(ECM)–receptor interaction, focal adhesion, and engulfment

phagocytosis is significantly enriched. Publications indicate

that ECM homeostasis is maintained by the complex

integration of cytokine and environmental mediators including

fatty acid oxidation. FAO pathway activation generates an

inhibition of ECM transcription and induced ECM

internalization and degradation (26). Our findings are highly

consistent with publications about the metabolic perturbation of

ECM homeostasis. Additionally, KEGG and GSVA analyses

demonstrated that the main pathways affected by fatty acid

metabolism are PI3K/AKT/mTOR and AMPK pathways.
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Oncogenic activation of PI3K-AKT-mTOR signaling

suppresses oxidative stress of cancer cells through lipogenesis,

showing therapeutic promise in cancer (27). Interestingly,

dysregulated PI3K-Akt-mTOR signaling in cancer has been

increasingly utilized for developing targeted therapies (28).

Inhibitors targeting this signaling demonstrated the role

for targeting T-cell immune signaling and attenuating immune

cell effector function (29). Thus, it is helpful to explore

the mechanism underlying the fatty acid metabolism

reprogramming in tumor environment in clinical therapy.

Although we found the close association between fatty acid

metabolism and cancer cell immunity, further specific

mechanisms under fatty acid reprogramming were not

explored. Meanwhile, our study is based on the integrative

analysis of publicly datasets with large sample sizes, a

specificmodel with interventions on fatty acid metabolism

may be constructed to study the influence of metabolic

reprogramming on disease and cancer cell immunity.
Conclusion and perspectives

Fatty acid metabolism has been increasing appreciated for

the profoundly influences for tumor progression and metastasis

via oxidation and fatty acids synthesis. Specifically, fatty acid

metabolism reprogramming is implicated in cancer cell

immunity and immune cells infiltration in TME. Importantly,

changes in fatty acid metabolism patterns are indicated in

treatment resistance especially immunotherapy, thus targeting

fatty acid metabolism may overcome therapy resistance and may

be particularly a future approach for co-targeting strategies. Our

integrative analysis focused on the fatty acid metabolism pattern

in ovarian cancer and demonstrated the crucial interaction

between cancer cells immunity and metabolism in TME,

enhancing our understanding of fatty acid metabolism

reprogramming in treatment response and resistance. Future

investigations may explore to overcome the deficiencies with

therapy resistance and off-target effects of current clinical

inhibitors. Moreover, patient-based prediction model is

necessary to be employed to identify the specific resistant or

hyper-reactive cases. Finally, attempts linking the genetic

profiling to specific molecular characteristics and subtypes

may decrease the complex heterogeneity and render

personalized prognostication and management.
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PCR data-Relative gene expression https://www.jianguoyun.
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SUPPLEMENTARY FIGURE 1

Prognostic-related DEGs in TCGA training group and uni-variable and

multi-variable Cox regression survival analysis. (A)Unadjusted HRs (boxes)
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and 95% CI (horizontal lines) limited to prognostic related DEGs from
TCGA training group by using uni-variable COX analysis. (B) Heat map of

the association between 10 candidate-gene expression and clinical
characters among low- and high-risk groups. Uni-variable Cox

regression analysis in TCGA training group (C), TCGA testing group (E),
TCGA cohort (G). Multi-variable Cox regression analysis in TCGA training

group (D), TCGA testing group (F), TCGA cohort (H). (I) The Kaplan–Meier
survival curve of OS in the GEO validation set. (J) The ROC curve of TCGA

training group with top 5/10 genes. TCGA: The Cancer Genome Atlas;

DEG: differentially expressed genes; ROC: receiver operating
characteristic; GEO: Gene Expression Omnibus.

SUPPLEMENTARY FIGURE 2

The fatty acid metabolic map model and uni-variable and multi-variable

Cox regression survival analysis of the nomogram. (A) The fatty acid
metabolic map model and the candidate genes were marked in the

position where they are functioning in the fatty acid metabolism
process (pink box). Uni-variable Cox regression (B) and multi-variable

Cox regression (C) analysis of nomogram with clinical characters in TCGA

cohorts. TCGA: The Cancer Genome Atlas; TG: Triacylglycerols; TCA:
Tricarboxylic acid cycle.

SUPPLEMENTARY FIGURE 3

Correlation analysis of risk score and infiltration of seven immune and

stromal cells from MCP-COUNTER. Correlation analysis between B
lineage (A), endothelial cells (B), fibroblasts (C), monocytic lineage (D),
myeloid dendritic cells (E), neutrophils (F), and T cells (G). MCP-
COUNTER: Microenvironment Cell Populations-counter.

SUPPLEMENTARY FIGURE 4

Differences of immune-related functions among low- and high-risk

groups in TCGA cohorts. TCGA: The Cancer Genome Atlas.

SUPPLEMENTARY FIGURE 5

Comparison of GSVA score between low-risk and high-risk groups. GSVA:

gene set variation analysis.

SUPPLEMENTARY FIGURE 6

Differentially expressed genes (DEGs) among low- and high-risk groups in
TCGA cohorts. (A) Volcano plot for DEGs. Red pot represents DEGs with

adjusted P < 0.05 and |logFC|≥0.5. (B) Heat map of the DEGs among low-
and high-risk groups. The color red represents high-expression genes

and color green represents low-expression genes. TCGA: The Cancer
Genome Atlas; DEGs: differential expression genes; FC: fold change.

SUPPLEMENTARY FIGURE 7

Enrichment analysis of the DEGs between the low- and high-risk groups.

(A) Bar plot of GO analysis. (B) Bar plot of KEGG analysis. DEG:

differentially expressed genes; GO: gene ontology; KEGG: Kyoto
encyclopedia of genes and genomes.

SUPPLEMENTARY FIGURE 8

Candidate genes expression in ovarian cancer cells. Gene expression of
PON3 (A), ACSF2 (B), ACSM3 (C), D2HGDH (D), GABARAPL1 (E), PTGIS (F),
and PPARA (G) in ovarian cancer cells (OVCAR3, SKOV3, and A2780 cells)
versus normal ovarian cells (IOSE80 cells) determined by RT-qPCR

analysis. RT-qPCR: reverse transcription and quantitative real-time
polymerase chain reaction.
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