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Abstract

T cell activation, a key early event in the adaptive immune response, is subject to elaborate 

transcriptional control. Here, we examined how the activities of eight major transcription factor 

(TF) families are integrated to shape the epigenome of naïve and activated CD4 and CD8 T 

cells. By leveraging extensive polymorphisms in evolutionarily divergent mice, we identified 

the “heavy lifters” positively influencing chromatin accessibility. Members of Ets, Runx, and 

TCF/Lef TF families occupied the vast majority of accessible chromatin regions, acting as 

“housekeepers”, “universal amplifiers”, and “placeholders”, respectively, at sites that maintained 

or gained accessibility upon T cell activation. Additionally, a small subset of strongly induced 

immune response genes displayed a non-canonical TF recruitment pattern. Our study provides a 
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key resource and foundation for the understanding of transcriptional and epigenetic regulation in T 

cells and offers a new perspective on the hierarchical interactions between critical TFs.

INTRODUCTION

T lymphocytes are principal cellular effectors and regulators of vertebrate immunity, critical 

for protection against infectious agents. Activated T cells undergo rapid proliferation and 

acquire specialized effector functions that allow migration to sites of infection, recruitment 

and stimulation of other immune cells, or direct killing of infected cells. Following 

pathogen clearance, the activated T cell pool contracts, leaving behind a clonally expanded 

population of long-lived memory T cells that retain specialized features acquired during 

their activation1.

Activated T cells can differentiate into distinct types of effector cells with divergent 

functional characteristics tailored for protection against different types of microbial and 

abiotic challenges1,2. Additionally, chronic antigen stimulation can result in a particular 

activation state known as dysfunction or exhaustion3, while local environments can invoke 

further distinctive features in tissue-resident T cells4,5. Thus, T cells can acquire a wide 

range of functional states that likely represent variations on a core program executed through 

elaborate transcriptional regulation.

The gene expression state of a cell is primarily determined by transcription factors (TFs) 

that bind to specific DNA sequence motifs and tune the transcriptional output of the 

associated genes by promoting or opposing the recruitment and activity of RNA polymerase. 

Human and mouse genomes encode ~1400 TFs, that can be subdivided into families based 

on structural similarity in their DNA binding domains6,7. TF families may contain many 

members capable of binding similar DNA sequence motifs8,9. TFs extensively interact with 

each other to combinatorially regulate transcription10. Their activity frequently relies on the 

recruitment of cofactors that lack sequence specific DNA-binding capacity, but can modify 

chromatin to influence its accessibility to other nuclear factors11,12.

The epigenetic and transcriptional changes underlying T cell activation are driven by the 

concerted activity of many TFs. Although dozens of non-redundant, functionally important 

TFs have been identified, the regulatory logic underlying their coordinated activity is 

poorly understood2,13,14. It is still to a large degree unclear which TFs act as activators 

vs. repressors, and which TFs have more general vs more specialized functions in defining 

T cell activation states. Moreover, while many pairs of TFs have been shown to bind to 

overlapping sets of targets, the significance of these interactions is largely unknown.

To gain new insights into the transcriptional regulation of T cell activation states, we 

have leveraged naturally occurring polymorphisms in TF binding motifs in mice15,16. The 

wild-derived inbred strain Cast/EiJ (Cast) has roughly 20 million genetic variants relative 

to the C57BL/6 (B6) strain, many of which overlap with cis-regulatory elements16. By 

linking these polymorphisms to allelic imbalances in transcription, chromatin accessibility, 

TF and cofactor binding in (B6/Cast) F1 mice we have dissected the mechanisms underlying 

transcriptional and epigenetic regulation in T cells undergoing activation in response to 
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an acute viral infection. We found that positive regulation of chromatin accessibility and 

gene expression in naïve T cells is overwhelmingly dependent on just a few TF families, 

including Ets, Runx, and TCF/Lef. Representative members of these families occupy most 

accessible chromatin regions and interactions between them define distinct epigenetic 

responses to T cell activation. Ets1 binding defined regulatory elements overlapping with 

promoters of housekeeping genes, whose accessibility was largely unchanged upon T cell 

activation despite the recruitment of a variety of activation-dependent TFs and cofactors. 

Conversely, Runx1 dynamically bound to nearly all accessible chromatin regions in a 

manner that was strongly dependent on its own motif as well as motifs for other TFs 

induced or repressed upon activation. Runx motifs positively affected the accessibility of 

these elements suggesting that Runx TFs promiscuously amplify the activity of multiple 

TFs. Finally, TCF1 binding defined elements whose accessibility was typically lost upon 

T cell activation unless displaced by other activation-induced TFs. In addition to these 

canonical behaviors that defined most of the chromatin accessibility changes upon T cell 

activation, we found a small set of regulatory elements associated with immune response 

genes that showed a non-canonical pattern of Ets1 and TCF1 recruitment. This observation 

suggests that expression of immune response genes, which are strongly induced upon T 

cell activation, may be regulated in an atypical manner through recruitment of TFs whose 

function is normally dedicated to other cellular processes. Together, our study provides new 

insights into the relationships between TFs that regulate T cell activation.

RESULTS

TF motifs that regulate chromatin accessibility in T cells

While naïve and activated T cells express many functionally important TFs, it is unclear 

which of these factors act as determinants of chromatin accessibility. To address this 

question, we performed ATAC-seq on naïve CD4 and CD8 cells isolated from uninfected 

B6/Cast F1 mice and activated virus-specific T cells isolated on day 7 post-infection with 

LCMV Armstrong and analyzed the effects of TF binding motif polymorphisms on allele-

specific chromatin accessibility (Fig. 1a, Extended data Fig. 1a, b, Supplementary Table 1). 

We identified a limited number of motifs that strongly affected chromatin accessibility (Fig. 

1b, Extended data Fig. 1c). Ets, Runx, and specific bZIP and IRF family motifs showed 

a strong positive association with chromatin accessibility across cell types and activation 

states, with Ets motifs showing the strongest association. In contrast, other motifs showed 

cell state-specific effects: Sox and bHLH motif variants preferentially affected chromatin 

accessibility in naïve cells, whereas T-box and specific bZIP or bZIP-IRF4 composite (Batf) 

motifs had a greater effect in activated cells (Fig. 1b, Extended data Fig. 1c).

A comparison between CD4 and CD8 T cells revealed that TF-binding motifs affecting 

chromatin accessibility naïve cells were very similar (Extended data Fig. 1d). In contrast, 

several motifs selectively affected chromatin accessibility in activated CD4 vs CD8 T 

cells (Extended data Fig. 1e). Variation in T-box motifs preferentially affected activated 

CD8 vs CD4 T cells, consistent with increased expression of the T-box family TFs 

T-bet and Eomes in the former (Extended data Fig. 1e,f). Conversely, TCF7/Lef1 motifs 

preferentially affected activated CD4 vs CD8 T cells, consistent with stronger activation-
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induced downregulation of Tcf7 in the latter (Extended data Fig. 1e,f). These results 

suggest that a relatively limited number of TF families is responsible for driving chromatin 

accessibility in T cells, with some showing graded cell type and cell state-specific activity.

While chromatin accessibility changes induced upon T cell activation were positively 

correlated with nearby gene expression, we also identified many individual peaks for 

which this association was not evident, raising the possibility that gene expression changes 

may be driven by TFs distinct from those affecting chromatin accessibility (Extended 

data Fig. 2a). However, we found that changes in aggregated ATAC-seq counts from 

multiple peaks linked to the same gene were almost always associated with gene expression 

changes, with the exception of a small subset of cell cycle related genes whose transient 

modulation was uncoupled from chromatin accessibility changes (Extended data Fig. 2b,c). 

Thus, most gene expression changes are strongly associated with cumulative accessibility 

changes across regulatory elements within a locus. Consistently, we found that TF binding 

motif polymorphisms affecting chromatin accessibility typically also affected nearby gene 

expression to varying degrees (Fig. 1c). Together, these observations suggest that, under our 

study conditions, most gene expression and chromatin accessibility changes are driven by 

the same core set of sequence-specific TFs.

While some motifs implicated in activation-induced chromatin remodeling were also 

identified through conventional motif enrichment analysis, others were only identified by 

allele-specific analysis, including the naïve T cell-specific activity of certain bHLH motifs 

(Fig. 1d). Moreover, conventional motif enrichment analysis was unable to distinguish 

between activating and repressive activity. For example, while both Batf and Pou2f2 motifs 

were enriched among peaks gaining accessibility upon T cell activation, allele-specific 

analysis suggested that the former acted as a strong activator selectively in activated cells, 

while the latter acted as a weak repressor in naïve cells (Fig. 1e). Thus, the effects of genetic 

variation provided new insights into chromatin regulation.

Ets1, Runx1, and TCF1 occupy most of the accessible genome

We next sought to characterize the interplay between TFs whose binding motifs were 

implicated in regulating chromatin accessibility. We first characterized binding of TFs whose 

motifs were most strongly linked to chromatin accessibility in naïve T cells. Analysis of 

Ets1, Runx1, and TCF1 binding by CUT&RUN revealed many TF-occupied sites covering 

~93.6% of the accessible genome in naïve T cells (Fig. 2a–b, Extended data Fig. 3a–b). 

Ets1, Runx1, and TCF1-bound sites extensively overlapped, with ~51.4% of sites bound by 

all three factors. Strikingly, these “triple occupied” sites accounted for nearly all (86.8%) 

Ets1-bound elements, which were strongly enriched for promoters and 1st exons of genes 

(Fig. 2c). Smaller subsets of sites were bound by both Runx1 and TCF1 (22.9%), or 

Runx1 alone (8.1%) (Fig. 2b). Thus, most accessible chromatin regions in naïve T cells are 

occupied by some combination of Ets1, Runx1, and TCF1.

The observation that Ets1-bound sites were typically co-occupied by all three TFs raised 

the possibility that these elements were bound non-specifically. To determine if TF binding 

to these regions was motif-dependent, we assessed the effects of motif polymorphisms on 

allele-specific TF occupancy at Ets1-bound sites. We found that binding of all three TFs was 

Zhong et al. Page 4

Nat Immunol. Author manuscript; available in PMC 2022 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modulated by polymorphisms in their respective TF-binding motifs (Fig. 2d). Thus, Runx1, 

TCF1 and Ets1 binding were dependent on intact Runx, Sox, and Ets motifs, respectively. 

Additionally, binding of Runx1 and TCF1 were also strongly affected by variation in 

Ets motifs (Fig. 2d, Extended data Fig. 3c). Thus, TF binding to shared targets was 

motif-dependent and most likely specific. Moreover, Ets motifs, which act as the strongest 

determinants of chromatin accessibility, enhanced the binding of other transcription factors 

at shared targets.

Importantly, chromatin accessibility of Ets1-bound sites was to a large degree identical 

across naïve and activated CD4 and CD8 T cells (Fig. 2e). Conversely, sites bound 

by Runx1 or TCF1 in the absence of Ets1 underwent widespread activation-induced 

chromatin remodeling and showed frequent differential accessibility (Fig. 2e). Accordingly, 

genes near Ets1-bound chromatin regions were constitutively expressed at high levels and 

enriched for genes involved in metabolic processes, while genes associated with Runx1- 

or TCF1-bound regions not co-occupied by Ets1 were differentially expressed between cell 

types and enriched for genes involved in a variety of processes, including localization, 

cellular communication, and leukocyte activation (Fig. 2f, Extended data Fig. 3d–e). Thus, 

Ets1 binding defines a set of constitutively accessible genetic elements associated with 

housekeeping genes, which are typically co-occupied by Runx1 and TCF1 and account for 

more than half of the accessible genome in naïve T cells.

Ets1 binding defines constitutively accessible chromatin

We next sought to understand how the functions of activation-induced TFs were integrated 

with the pre-existing chromatin landscape. Because Ets1-bound elements did not undergo 

major accessibility changes in activated vs naïve T cells, it was possible that TFs whose 

expression or activity were modulated upon T cell activation were not recruited to these 

sites. To address this question, we determined the binding patterns for select representatives 

of bZIP, bHLH, IRF, Tbox, and Rel TF families in activated CD4 and CD8 T cells 7 days 

post infection with LCMV Armstrong. CUT&RUN of c-Jun, Bhlhe40, IRF4, T-bet, and 

NFATc1 revealed that each of these factors bound to ~20–50% of accessible regions in 

activated T cells (Fig. 3a–b). Interestingly, while most of the binding sites of these factors 

overlapped with Ets1 and underwent only minor changes in accessibility during T cell 

activation (Fig. 3c, d), only those that did not overlap with Ets1 binding underwent dramatic 

activation-induced chromatin remodeling (Fig. 3d). Thus, although activation-induced TFs 

are recruited to sites with and without Ets1 binding, their activity seems to be restricted 

selectively to the latter set of elements.

We considered the possibility that specific combinations of TFs present at sites not bound 

by Ets1 were responsible for driving accessibility changes. However, we found that binding 

sites of activation-induced TFs overlapped more extensively at Ets1-bound vs -unbound 

sites (Fig. 3e). At sites bound by at least one activation-induced TF, co-occupancy by all 

five factors was much more common than expected by chance and similarly enriched at 

both Ets1-bound and -unbound elements (Fig. 3f). Moreover, while certain combinations 

of activation-induced TFs occurred more frequently than others at Ets1-unbound sites, all 

combinations were associated with activation-induced increases in chromatin accessibility 
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(Fig. 3g). In general, binding of a greater number of activation-induced TFs to Ets1-unbound 

elements was associated with greater changes in accessibility (Fig. 3h). Thus, differential 

changes in chromatin accessibility at Ets1-bound and -unbound sites induced upon T cell 

activation are unlikely to be accounted for by differential recruitment of activation-induced 

TFs.

While we considered the possibility that activation-induced TFs were recruited to 

constitutively accessible Ets1-bound sites in a manner independent of their respective 

binding motifs, analysis of allele-specific TF occupancy was inconsistent with this idea 

(Fig. 3i). To the contrary, we found that at Ets1-bound cis-regulatory elements, binding of 

each activation-induced TF was dependent on the presence of its respective TF-binding 

motif. Additionally, binding of these TFs at Ets1-unbound elements was modulated 

by polymorphisms in bZIP/IRF composite (Batf) motifs. Thus, recruitment of activation-

induced TFs to both pre-accessible Ets1-bound, and de novo accessible Ets1-unbound 

elements was motif-dependent. Together, these observations suggest a simple model in 

which the functions of activation-induced TFs are overlaid onto the pre-existing chromatin 

landscape of naïve T cells (Fig. 3j).

Immune response genes recruit Ets1 upon T cell activation

While Ets1 binding was largely similar between activated and naïve T cells, our analysis 

revealed a small subset of sites (375 or 2.5% of Ets1 bound sites) that gained Ets1 binding 

de novo upon T cell activation (Fig. 4a, Extended data Fig. 4a). In contrast to other Ets1 

targets, these elements were typically much less accessible in naïve T cells and were nearest 

to immune response related genes whose expression was strongly induced upon T cell 

activation (Fig. 4b, c). While the majority of constitutively bound Ets1 targets overlapped 

with promoters and 1st exons of genes, these upregulated Ets1 (Ets1up) sites typically 

overlapped with intronic and distal regulatory elements that were almost always co-occupied 

by multiple activation-induced TFs (Fig. 2c, 4d, e). In contrast to most Ets1-bound sites, 

Ets1up sites strongly gained accessibility upon T cell activation and underwent even more 

dramatic changes in accessibility than Ets1-unbound sites that recruited a similar number of 

activation-induced TFs (Fig. 4f). The observation that despite high Ets1 expression, Ets1up 

sites were not bound in naïve T cells raised the possibility that these sites lacked canonical 

Ets1 motifs. Indeed, Ets1up sites were relatively depleted of intact Ets motifs and typically 

matched the canonical Ets motifs to a lesser degree (Fig. 4g), but were enriched for stronger 

bZIP (Batf) and T-box motifs compared to other Ets1-bound sites.

Another factor that could contribute to the lack of Ets1 binding to Ets1up sites in naïve 

T cells is that these “non-canonical” sites require prior chromatin remodeling to render 

them accessible for Ets1 binding. A corollary to this model is that Ets1 alone would not 

be sufficient for the recruitment of the remodeling factors. To address this possibility, we 

analyzed the binding patterns of key subunits of four ATP-dependent chromatin remodelers: 

Snf2h, Chd4, Ruvbl1, and Brg1 in activated T cells17. While Snf2h, Chd4, and Ruvbl1 

were almost universally present at all TF-bound regions, binding of Brg1, the ATPase 

subunit of SWI/SNF, was restricted to a smaller subset of sites (Fig. 4h, Extended data 

Fig. 4b). We found that at Ets1-bound, -unbound, and Ets1up sites alike, the binding of 
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increasing numbers of activation-induced TFs was associated with recruitment of Brg1 

(Fig. 4i). Analysis of the effects of TF-binding motif polymorphisms on allele-specific 

Brg1 recruitment revealed that in addition to Ets motifs, Tbox, bZIP, IRF, and bZIP/IRF 

composite motifs acted as major positive regulators of Brg1 recruitment (Extended data 

Fig. 4c). Thus, while intact Ets motifs might contribute to its binding or retention, Brg1 is 

typically not recruited to sites that are bound by Ets1 in the absence of activation-induced 

transcription factors.

Together, our results suggest that Ets motifs have a dominant effect on chromatin 

accessibility throughout the genome. While binding of Ets1 is typically restricted to 

constitutively accessible elements associated with promoters of housekeeping genes, a small 

subset of Ets1-bound enhancers associated with immune response related genes recruits Ets1 

de novo upon T cell activation and undergoes dramatic chromatin remodeling. These Ets1up 

sites contain fewer and weaker Ets motifs and the binding of Ets1 to these sites may require 

assistance from other activation-induced TFs and the chromatin remodeler Brg1 (Fig. 4j).

Runx1 amplifies genome-wide chromatin accessibility changes

Our analysis suggested that similar to Ets motifs, Runx motifs also contributed to chromatin 

accessibility in a largely constitutive manner (Fig. 1b). However, in contrast to Ets1, we 

found that Runx1 binding was detectable at nearly all accessible sites across the genome, 

including those gaining or losing accessibility upon T cell activation (Fig. 5a–c). Activation 

induced widespread changes in Runx1 binding that correlated with chromatin accessibility 

changes (Fig. 5d). Thus, in contrast to Ets1, which binds mostly to constitutively accessible 

sites, Runx1 is redistributed upon T cell activation. This observation suggests that Runx1 is 

recruited to a very large fraction of its binding sites in a non-autonomous manner.

To determine the mechanisms underlying Runx1 redistribution, we analyzed the effects of 

TF binding site polymorphisms on allele-specific Runx1 binding at sites strongly gaining 

or losing (>4-fold) chromatin accessibility in activated vs. naïve T cells. We found that 

polymorphisms in Runx motifs, which were the most abundant motifs at these sites, strongly 

affected Runx1 binding in both naïve and activated T cells (Fig. 5e, f). Lef1 (Sox) motifs, 

which were highly enriched at sites losing accessibility upon T cell activation, selectively 

affected Runx1 binding in naïve T cells. Conversely, bZIP and Tbox motifs, enriched at sites 

that gained accessibility, selectively affected Runx1 occupancy in activated T cells. These 

results suggest that distinct TFs contribute to Runx1 localization in naïve and activated T 

cells. Importantly, we found that polymorphisms in Runx motifs affected the accessibility 

of these activation-dependent Runx1-targets, suggesting that Runx1 is not just passively 

recruited to all accessible sites, but actively contributes to increasing chromatin accessibility 

(Fig. 5g). Based on these observations, we propose that Runx TFs may act as promiscuous 

“amplifiers” that can synergize with other activation state-dependent TFs (Fig. 5h).

Context dependent role of TCF1 during T cell activation

In contrast to Runx1 binding to sites either gaining or losing accessibility upon T cell 

activation, we found TCF1 bound preferentially to sites that lost accessibility (Fig. 5c). 

TCF1 bound sites that did not overlap with Ets1 became less accessible upon T cell 
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activation, consistent with the downregulation of TCF1 and the related TF Lef1 (Fig. 6a, 

Extended data Fig. 1f, 5a). Thus, loss of chromatin accessibility upon T cell activation may, 

to a substantial degree, be explained by downregulation of TCF1 and Lef1, whose motifs 

show a positive association with chromatin accessibility in naïve T cells (Fig. 1b).

Importantly, activation-induced downregulation of TCF1 was much more pronounced in 

CD8 than in CD4 T cells, consistent with a stronger reduction in chromatin accessibility 

in the former (Extended data Fig. 1f, Fig. 6a). Accordingly, we observed a loss of TCF1 

binding intensity by CUT&RUN in activated vs naïve CD8 T cells affecting nearly all 

TCF1 targets (Fig. 6b). Interestingly, while activation-induced changes in TCF1 binding 

were associated with corresponding changes in accessibility, we found that many sites that 

lost TCF1 binding by as much as 4-fold in activated vs naïve CD8 T cells still maintained 

or even increased their accessibility (Fig. 6b, Extended data Fig. 5b). This observation 

suggested that loss of TCF1 might be compensated for by the recruitment of other activating 

TFs. Consistent with this notion, the TCF1 occupied sites that did not recruit activation-

induced TFs strongly lost chromatin accessibility upon T cell activation, while those 

recruiting more activation-induced TFs maintained or gained accessibility (Fig. 6c). Thus, 

in naïve CD8 T cells TCF1 may frequently act as a placeholder for activation-induced TFs. 

Furthermore, we observed that sites at which TCF1 was displaced by multiple activation-

induced TFs were similarly accessible in activated CD4 vs CD8 T cells despite the selective 

maintenance of TCF1 levels in the former, suggesting that TCF1 became dispensable for 

the maintenance of chromatin accessibility at these sites after T cell activation (Fig. 6c). 

Conversely, sites at which TCF1 was not displaced by one or more activation-induced TFs 

became differentially accessible in activated CD4 and CD8 T cells, in accordance with 

varying amounts of TCF1 in these cells (Fig. 6c).

Our analysis also revealed a small subset of sites (794 sites or ~3% of all TCF1 targets) that 

acquired TCF1 binding only upon T cell activation (Fig. 6b, Extended data Fig. 5c). These 

sites were largely identical in CD4 and CD8 T cells, although they were less strongly bound 

in the latter. Thus, despite a global reduction in TCF1 binding intensity in activated CD8 T 

cells, a small subset of sites still recruited TCF1 de novo upon T cell activation. The vast 

majority of these TCF1up peaks were not bound by Ets1 but overlapped substantially with 

sites combinatorially bound by activation-induced TFs (Fig. 6d, e). TCF1up sites strongly 

gained accessibility upon T cell activation, particularly when bound by multiple activation-

induced TFs (Fig. 6f). Depending on the number of activation-induced TFs that was bound, 

TCF1up sites responded differentially to activation in CD4 vs CD8 T cells. Specifically, 

when fewer activation-induced TFs were recruited, chromatin remodeling occurred in a CD4 

T cell-specific manner. This observation further supports the notion than activation-induced 

TFs may compensate for the loss of TCF1 at a subset of targets following T cell activation.

The observation that despite high TCF1 expression, TCF1up sites were not bound in naïve 

T cells suggested that TCF1 alone was not sufficient to render these sites accessible. 

Thus, despite the previously described role of TCF1 as a pioneer factor capable of 

binding to inaccessible repressed chromatin regions, its activity was not sufficient to induce 

accessibility at a subset of its potential binding sites. Analysis of TCF1up sites revealed that 

the majority of these regions contained intact and high quality TCF1/Lef1 motifs, but were 
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relatively depleted of Ets, Zinc Finger, and bHLH motifs, the latter of which had a positive 

effect on chromatin accessibility selectively in naïve T cells (Extended data Fig. 5d,e, 1b). 

Conversely, bZIP motifs were strongly enriched at TCF1up sites and accordingly we found 

that most of these sites were bound by c-Jun (Extended data Fig. 5f). Finally, we observed 

that sites bound by TCF1 in the absence of activation-induced TFs were rarely occupied by 

Brg1, whose recruitment was associated with the binding of activation-induced TFs (Fig. 

6g). Together, these observations suggest that at a subset of targets, TCF1 cannot bind to 

its cognate motif in an autonomous manner but requires assistance from activation-induced 

TFs. Interestingly, we found that similar to Ets1up sites, TCF1up sites were associated 

with immune response-related genes, as well as genes involved in signal transduction, cell 

adhesion and cellular communication (Fig. 6h). Thus, regulatory elements associated with 

some of the most strongly induced and well-characterized immune response genes showed 

rather atypical patterns of Ets1 and TCF1 recruitment that were not representative of the 

prevalent function of these TFs. While TCF1 typically acted as a naïve T cell-specific 

activator, our results suggest that it plays additional previously unappreciated roles as a 

placeholder for activation-induced TFs and as an activation-dependent cofactor (Fig. 6i).

Graded activity of chromatin-modifying TFs in T cell subsets

To assess the generalizability of our observations across distinct T cell subsets, we 

performed single cell (sc) ATAC-seq analysis on total splenic CD4 and CD8 T cells 

from LCMV-infected (B6/Cast) F1 animals on day 7 post-infection. This analysis revealed 

several distinct T cell subsets, including naïve and memory CD4 and CD8 T cells, 

regulatory T (Treg) cells, Th1 cells, Tfh cells, and a spectrum of effector CD8 T cells 

(Fig. 7a–b, Extended data Fig. 6a). To identify regulators of chromatin accessibility 

across these subsets, we analyzed the effects of TF binding motif polymorphisms on allele-

specific pseudo-bulk scATAC-seq counts from these populations. Motifs affecting chromatin 

accessibility across T cell subpopulations were largely similar to those identified in bulk cell 

analyses (Extended data Fig. 6b). Consistently, genetic variation in Ets, Runx, IRF, and bZIP 

motifs strongly affected chromatin accessibility in all subsets. A comparison between the 

two main subpopulations of CD4 T cells arising in response to viral infection, Th1 cells and 

Tfh cells, revealed a stronger effect of Tbox motif variation on chromatin accessibility in 

the former, and a stronger effect of Sox motif variants in the latter (Fig. 7c). Accordingly, 

we found that chromatin regions bound by T-bet were more accessible in Th1 cells, while 

regions bound by TCF1 were more accessible in Tfh cells. Importantly, this effect was 

observed only at regions not bound by Ets1 (Fig. 7d). Consistent with our bulk cell analysis, 

Ets1-bound sites showed very high chromatin accessibility across all T cell subsets, while 

regions bound by activation-induced TFs in the absence of Ets1 were dynamically regulated 

(Fig. 7e). Similarly, Ets1up sites and TCF1up sites showed dynamic regulation with much 

higher accessibility across all activated T cell subsets compared to naïve T cells from the 

same mice (Extended data Fig. 6c). Together, our observations suggest that the major drivers 

of chromatin accessibility are similar across T cell subsets responding to acute LCMV 

infection, with graded activity of Sox and T-box family TFs at sites not bound by Ets1 

accounting for many of the differences between Th1 and Tfh cells.
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DISCUSSION

T cell activation induces transcriptional and epigenetic changes that underlie the acquisition 

of specialized effector functions. Here we leveraged natural genetic variation between 

laboratory and wild-derived inbred mice to identify the TFs whose DNA-binding motifs 

shape chromatin accessibility and gene expression in naïve and activated T cells during 

acute LCMV infection. Most TF-binding motifs showed a positive effect on chromatin 

accessibility, with only few dedicated repressive motifs identified, including nuclear receptor 

and specific zinc-finger motifs. TF families whose motifs had either no, or only a limited 

effect included E2F, Forkhead, Gata, STAT and Smad. Some TFs belonging to these families 

likely carry out relatively specialized functions affecting only minor subsets of the loci to 

which they bind or acting transiently shortly after acute stimulation.

Considering the many TFs expressed in T cells, our studies unexpectedly identified just a 

few “heavy lifters” whose binding motifs most strongly affected chromatin accessibility. 

Three representative TFs belonging to these families, Ets1, Runx1, and TCF1 together 

occupied ~94% of all accessible chromatin regions in naïve T cells. Ets1 binding defined 

peaks enriched at promoters of housekeeping genes whose accessibility remained largely 

unchanged upon T cell activation. Interestingly, most of the binding sites for activation-

induced TFs overlapped with Ets1-bound peaks, suggesting that these factors only affect 

chromatin accessibility at a small fraction of the regions that they occupy.

In addition to constitutively bound sites, a subset of elements acquired Ets1 binding de 
novo upon T cell activation and were preferentially associated with immune response 

genes. Although the exact mechanisms underlying the de novo recruitment of Ets1 remain 

unknown, we postulate that in addition to the presence of weaker Ets motifs, barriers 

to Ets1 binding may include tightly packed chromatin associated with repressive histone 

modifications and DNA methylation. In accordance with this model, it was reported that 

methylation of an intronic regulatory element in the Foxp3 locus could prevent the binding 

and activity of Ets1 at its consensus motifs18. Additionally, both activation-dependent and 

-independent partners, including Runx1 and bZIP/AP1 family TFs, could stabilize Ets1 

binding at distinct sets of regulatory elements19–22. Finally, phosphorylation of Ets1 at 

multiple residues can destabilize DNA binding or promote cofactor recruitment suggesting 

additional mechanisms that could drive activation-state specific binding site selection23–26

T cells express multiple Ets family TFs that play non-redundant roles in their development 

or activation27–33. While all family members share a highly conserved Ets domain and 

recognize a consensus motif, their binding sites in vivo may either be shared or member-

specific34–36. A comparison of binding sites for three Ets family TFs in a human T cell 

line revealed that redundant binding of multiple factors was common and enriched at 

transcription start sites of housekeeping genes, while non-redundant binding was rare and 

enriched at cell type-specific enhancers37,38. Based on these observations, we speculate that 

the majority of constitutively bound Ets1 targets identified in our study are co-occupied by 

multiple Ets family TFs, while Ets1up sites may be bound specifically by Ets1. Importantly, 

genetic variation in Ets motifs also affected chromatin accessibility and TF binding at sites 

not occupied by Ets1, suggesting that other family members may bind to these elements. 
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Together, our results suggest that Ets family TFs play a uniquely dominant role in shaping 

the transcriptome and epigenome of T cells.

In contrast to Ets1, many Runx1 binding sites were activation state-dependent. Runx motifs 

were present at most differentially accessible ATAC-seq peaks and affected allele-specific 

chromatin accessibility. Thus, Runx family TFs may act as universal amplifiers of gene 

regulatory activity. Consistent with this model, Runx TFs have been reported to interact 

with a large variety of TFs, including Ets1, TCF1, Lef1, Gata3, Bcl11b, Tbet, Rorγt, 

Foxp1, and Foxp320,39–43. Interactions with some of these TFs can enhance or stabilize 

Runx1 binding and transactivation potential19,39. In addition to Runx1, T cells also express 

Runx2, and Runx3, which may bind dynamically to cell state-specific regulatory elements 

to carry out partially redundant functions during T cell development and activation44. A non-

redundant role for Runx3 in CD8 lineage specification has been extensively characterized 

and could potentially be mediated by its association with a unique set of cofactors40,45,46. 

While our study suggests that intact Runx motifs have a net-positive effect on chromatin 

accessibility in mature T cells, Runx TFs have also been shown to engage in gene repression 

and associate with co-repressors, including TLE, and G9a40,47,48. Therefore, the division 

of labor between individual Runx family TFs and their roles as activators vs. repressors 

remains to be fully elucidated.

We found that TCF1-bound sites typically lost chromatin accessibility upon T cell 

activation. These changes occurred selectively at sites not co-occupied by Ets1 or activation-

induced TFs and were more pronounced in CD8 vs CD4 T cells consistent with lower 

levels of TCF1 in the former. Together with the positive effect of intact TCF/Lef motifs 

on chromatin accessibility, these observations are consistent with the notion that TCF1 

acts primarily as an activator49. Interestingly, we identified a substantial fraction of sites 

at which TCF1 was displaced by activation-induced TFs. Despite the loss of TCF1, these 

elements maintained their accessibility upon T cell activation. It is tempting to speculate that 

this placeholder activity of TCF1 may underlie its function in maintaining differentiation 

potential or “stem-ness”. Finally, we also identified a subset of TCF1 targets that was 

selectively bound only in activated T cells and frequently co-occupied by activation-induced 

TFs. It remains unclear what prevents TCF1 from binding to its activation-dependent sites in 

naïve T cells. While TCF1 is capable of binding and remodeling closed chromatin regions 

marked by repressive histone modifications, this capacity alone was apparently not sufficient 

to drive accessibility at these sites49.

Our findings offer a new perspective on the interplay between the activities of critical TFs 

that define T cell identity and improve our understanding of transcriptional and epigenetic 

regulation in resting and activated CD4 and CD8 T cells.

METHODS

Mice

Animals were housed at the Memorial Sloan Kettering Cancer Center (MSKCC) animal 

facility under specific pathogen free (SPF) conditions on a 12-hour light/dark cycle under 

ambient conditions with free access to food and water. All studies were performed under 
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protocol 08-10-023 and approved by the MSKCC Institutional Animal Care and Use 

Committee. Mice used in this study had no previous history of experimentation or exposure 

to drugs. Male Cast/Eij mice were purchased from Jackson Laboratory and bred to female 

B6 mice to generate F1 offspring. Adult mice (> 6 weeks old) were used for experiments.

LCMV infection

LCMV Armstrong was grown in BHK cells and viral titers were determined using a plaque 

assay in Vero cells. Mice were infected with 2 × 105 plaque forming units (p.f.u.) by 

intraperitoneal (i.p.) injection.

Antibodies

The following antibodies were used for CUT&RUN: Runx1 (Thermo Fisher: PA5–19638), 

TCF1 (Cell Signaling Technology: 2203S), Ets1 (Cell Signaling Technology: 14069), T-bet 

(Santa Cruz Biotechnology: sc-21003 X), IRF4 (Santa Cruz Biotechnology: sc-6059), c-Jun 

(Abcam: ab31419), NFATc1 (Biolegend: 649607), Bhlhe40 (Novus Biologicals: NB100–

1800SS), Brg1 (Abcam: ab110641), Chd4 (Abcam: ab72418), Ruvbl1 (Proteintech group: 

10210–2-AP), Snf2h (Abcam: ab3749).

The following clones of fluorescently conjugated antibodies were obtained from BD 

Biosciences, Biolegend, Thermo Fisher, or Tonbo Bioscience and used for flow cytometry at 

a 1:400 dilution: CD45 (30-F11), TCRβ (H57–597), CD4 (RM4–5), CD8a (53–6.7), CD44 

(IM7), CD62L (MEL-14).

Cell Staining and Flow Cytometry

Single cell suspensions of spleens were prepared in ice-cold cell isolation buffer (PBS with 

2mM EDTA and 1% FCS) and subjected to red blood cell lysis using ACK buffer (150mM 

NH4Cl, 10mM KHCO3, 0.1mM Na2EDTA, pH7.3). T cells were enriched using Dynabeads 

FlowComp mouse CD4 and CD8 kits, according to manufacturer’s protocol. Cell surface 

antigens were stained at 4 degrees for 15 min using a mixture of fluorophore-conjugated 

antibodies. PE labeled H-2Db LCMV NP396–404 tetramers were generated by mixing 

biotinylated monomers (NIH tetramer core facility) with PE-labeled streptavidin. Class 

I tetramer staining was carried out for 30 min in ice-cold cell isolation buffer using a 

1:200 dilution of tetramer. Staining with PE-labeled I-Ab LCMV GP66–77 tetramers (NIH 

tetramer core facility) was carried out for 30 minutes at 37 degrees in complete RPMI using 

a 1:200 dilution of tetramer. Cells were washed and passed through a 100 μm nylon mesh 

prior to sorting on a BD Aria II flow cytometer. Post-sort purity was routinely analyzed and 

typically higher than 95%. Naïve T cell populations were sorted as CD44−CD62L+ CD4 

and CD8 T cells from uninfected mice. Activated cells for CUT&RUN were sorted as bulk 

CD44+ CD4 and CD8 T cells on day 7–8 post-infection. Activated and memory cells for 

RNA-seq and ATAC-seq were isolated as tetramer+ CD4 and CD8 T cells on day 7 or day 60 

post-infection, respectively. Flow cytometry data was acquired using FACS Diva (BD) and 

analyzed using Flowjo.
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RNA-Seq Library Preparation and Sequencing

Cell populations were double sorted straight into 1ml Trizol reagent (Thermo Fisher: 

15596018). After addition of 200 μL chloroform, RNA was precipitated from the aqueous 

phase by addition of isopropanol and linear acrylamide. RNA was washed with 75% ethanol 

and resuspended in RNase-free water. After RiboGreen quantification and quality control 

by Agilent BioAnalyzer, 3.4ng total RNA underwent amplification using the SMART-Seq 

v4 Ultra Low Input RNA Kit (Clontech catalog #63488), with 12 cycles of amplification. 

Subsequently, 300ng of amplified cDNA was used to prepare libraries with the KAPA Hyper 

Prep Kit (Kapa Biosystems KK8504) using 8 cycles of PCR. Samples were barcoded and 

run on a HiSeq 4000 in a PE100 run, using the HiSeq 3000/4000 SBS Kit (Illumina). An 

average of 32M paired reads were generated per sample and the percent of mRNA bases per 

sample ranged from 51% to 73%.

ATAC-Seq Library Preparation and Sequencing

ATAC-seq libraries were prepared as described50. 5×104 cells were washed in ice cold PBS 

and lysed using ATAC-seq lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM 

MgCl2, 0.1% IGEPAL CA-630). Following lysis, cells were incubated in 1x transposition 

buffer (Nextera TD buffer) containing 2.5 μL Nextera Tn5 transposase for 30 min at 37 

degrees. Transposed DNA fragments were isolated using QIAGEN MinElute Reaction 

Cleanup kit and amplified using barcoded primers with Illumina adaptor sequences. The 

number of cycles used for library amplification was determined using a quantitative PCR 

side-reaction. Amplified libraries were purified and size selected using Ampure XP beads 

using consecutive purifications with bead-to-sample ratios of 0.5 and 1.8. After PicoGreen 

quantification and quality control by Agilent BioAnalyzer, libraries were pooled equimolar 

and run on a HiSeq 2500 in Rapid Mode in a PE100 run, using the HiSeq Rapid SBS Kit 

(Illumina). The loading concentration was 9.8pM and a 5% spike-in of PhiX was added to 

the run to increase diversity and for quality control purposes. The run yielded an average of 

24M reads per sample.

CUT&RUN Library Preparation and Sequencing

CUT&RUN libraries were prepared as described by Skene et al51, with modifications15. All 

CUT&RUN experiments were performed on freshly sorted cell populations. For NFATc1 

CUT&RUN sorted cells were re-stimulated in vitro for 1 hour at 37°C in the presence of 

50 ng/mL phorbol-12-myristate-13-acetate (PMA, Sigma-Aldrich, P8139) and 500 ng/mL 

ionomycin (Sigma-Aldrich, I0634) with 1 μg/mL brefeldin A (Sigma-Aldrich, B6542). 

Cells were collected in a V-bottom 96 well plate by centrifugation and washed in antibody 

buffer (buffer 1 (1x permeabilization buffer from eBioscience Foxp3/Transcription Factor 

Staining Buffer Set diluted in nuclease free water, 1X EDTA-free protease inhibitors, 0.5mM 

spermidine) containing 2mM EDTA). Cells were incubated with antibodies (1:200 dilution) 

for 1h on ice. After 2 washes in buffer 1, cells were incubated with pA/G-MNase at 1:4000 

dilution in buffer 1 for 1h at 4 degrees. Cells were washed twice in buffer 2 (0.05% (w/v) 

saponin, 1X EDTA-free protease inhibitors, 0.5mM spermidine in PBS) and resuspended in 

calcium buffer (buffer 2 containing 2mM CaCl2) to activate MNase. Following a 30-minute 

incubation on ice, 2x stop solution (20mM EDTA, 4mM EGTA in buffer 2) was added 
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and cells were incubated for 10 min in a 37 degree incubator to release cleaved chromatin 

fragments. Supernatants were collected by centrifugation and DNA was extracted using a 

QIAGEN MinElute kit.

CUT&RUN libraries were prepared using the Kapa Hyper Prep Kit (Kapa Biosystems 

KK8504) and Kapa UDI Adaptor Kit (Kapa Biosystems KK8727) according to 

manufacturers protocol with the modifications described below. A-tailing temperature was 

reduced to 50 degrees to avoid melting of short DNA fragments and reaction time was 

increased to 1h to compensate for reduced enzyme activity as described by52. Following the 

adaptor ligation step, 3 consecutive rounds of Ampure purification were performed using a 

1.4x bead to sample ratio to remove excess unligated adapters while retaining short adaptor-

ligated fragments. Libraries were amplified for an average of 15 cycles using a 10 s 60°C 

annealing/extension step to enrich for shorter library fragments. Following amplification, 

libraries were purified using 3 consecutive rounds of Ampure purification with a 1.2x bead 

to sample ratio to remove amplified primer dimers while retaining short library fragments. A 

0.5x Ampure purification step was included to remove large fragments prior to sequencing. 

After PicoGreen quantification and quality control by Agilent BioAnalyzer, libraries were 

pooled equimolar and run on a HiSeq 4000 in a PE50 run, using the HiSeq 3000/4000 SBS 

Kit (Illumina). The loading concentration was 2nM and a 5% spike-in of PhiX was added to 

the run to increase diversity and for quality control purposes.

Computational analysis of sequencing data

Alignment of F1 allele-specific reads—The F1 allele-specific reads were obtained 

from high throughput sequencing experiments, including ATAC-seq, RNA-seq and 

CUT&RUN. Raw sequencing reads were run through the previously described diploid 

genome alignment pipeline16. Briefly, to ensure unbiased mapping of sequencing reads from 

F1 mice, a pseudo-Cast genome was constructed by modifying the B6 reference genome 

(GRCm38) with genetic polymorphisms detected in the wild-derived inbred CAST/EiJ 

strain53. Next, the sequencing reads were aligned to the B6 and pseudo-Cast genome in 

parallel and the genomic coordinates of pseudo-Cast genome aligned reads were converted 

back to B6 coordinates. The allelic origin of each variant-containing read was determined 

based on the CIGAR string and alignment scores. For reads mapped to exactly the same 

location, the alignment with higher score was retained. For the non-variant-containing reads, 

the diploid genome alignment yielded identical scores on both genomes, therefore one of 

the alignments was selected randomly. With this strategy, the final alignment file contains 

allele-specific reads that are assigned to either B6 or Cast alleles, as well as invariant reads 

which do not carry allelic origin information.

RNA-seq data analysis

The pseudo-Cast genome was transformed from GRCm38 by incorporating high quality 

strain-specific variants (score ≥ 228). The RNA-seq data of naïve and activated T cells 

were aligned using STAR54, implemented in the diploid genome analysis pipeline with 

the following parameter settings: $STAR --runMode alignReads --readFilesCommand zcat --

outSAMtype BAM --outFilterMultimapNmax 1 --outFilterMatchNmin 30 --alignIntronMin 

20 --alignIntronMax 20000 --alignEndsType Local. Allelic ratio of gene expression was 
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obtained by counting the allele-specific read pileup allocated to genes. The gene annotation 

GTF file was downloaded from ENSEMBL database at ftp.ensembl.org/ensembl/pub/

release-83/gtf/. Plots were generated using Graphpad Prism or R.

ATAC-seq data analysis

Similar to RNA-seq, the ATAC-seq data of naïve and activated T cells were aligned using 

STAR54 with the splicing alignment feature switched off. The chromatin accessible peaks 

were called using MACS255: $macs2 call peak -t $inputFile -f BED -n $outputDir -g mm 

-p 1e-2 --nomodel --shift 75 --extsize 200 --keep-dup all --call-summits. IDR procedure 

was used to evaluate the peak reproducibility among replicates56. After removing the 

irreproducible peaks (IDR value < 0.05), the chromatin accessibility atlas was constructed 

by aggregating all the reproducible peaks from naïve and activated cell types. For each 

accessible peak, the nearest gene was assigned, and the peak was further categorized as 

promoter, intronic, exonic and intergenic cis-elements, respectively. Plots were generated 

using Graphpad Prism or R.

CUT&RUN data analysis

The paired-end CUT&RUN data of different transcription factors were mapped to the 

diploid genome using STAR54 with the splicing alignment feature switched off: $STAR 

--runMode alignReads --readFilesCommand zcat --outSAMtype BAM SortedByCoordinate 

--outFilterMultimapNmax 1 --outFilterMatchNmin 40 --outFilterMatchNminOverLread 0.4 

--seedSearchStartLmax 15 --alignIntronMax 1 --alignEndsType Local. The aligned read 

pairs were retained if the fragment length was between 50 to 500 bp. Reads aligned 

to multiple loci were removed from further analysis. Peaks were called using MACS2 

with its --nomodel setting55. IDR procedure was used to evaluate the peak reproducibility 

as described above56. A peak atlas was generated for individual TFs by retaining the 

reproducible peaks (IDR value < 0.2). CUT&RUN peaks that do not overlap ATAC-seq 

peaks were removed from the atlas. Plots were generated using Graphpad Prism or R.

Identification of active TF binding motifs

Experimentally determined Mus musculus motifs identified by ChIP-seq, PBM, SELEX, 

or HocoMoco were retrieved from CIS-BP database57. The motif position weight matrix 

was scanned using FIMO58 against the target peak sequences of both alleles for ATAC-seq 

and CUT&RUN data with default parameters. For motifs containing genetic variants, the 

degree of motif match on the B6 and Cast alleles was determined based on the significance 

of FIMO p value. For a given TF binding motif, the match strength was subsequently 

associated with the allelic imbalance of peaks containing the particular motif genome-wide. 

Peaks containing less than ten allele-specific reads were excluded from this analysis. A 

two-sided t-test was used to determine if stronger motif match on B6 or Cast alleles were 

associated with allelic imbalance of TF binding intensity or chromatin accessibility.

TF binding motif enrichment analysis

The same motifs used for identifying active TF binding motifs were identified within the 

peak sets of interest and background peaks using FIMO58 as described above. We defined a 
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peak containing a motif if the motif resides within 300 bp distance from the peak summit. 

The non-parametric Fisher’s exact test was used to identify the motifs enriched in the target 

peak group.

Single cell (sc) ATAC-seq analysis

For the scATAC experiment, total CD4 and CD8 T cells were sorted from pooled 

splenocytes of 3 LCMV Armstrong infected (B6/Cast) F1 mice on day 7 post-infection. 

Sorted CD4 and CD8 T cells were mixed at equal ratios and used as input material for 

scATAC-seq analysis. Libraries were prepared according to the 10x single-cell ATAC–seq 

protocol from 10x Genomics Chromium (Single Cell ATAC Reagent Kits User Guide 

(CG000168, Rev A)). Briefly, cells were centrifuged (300g, 5 min, 4 °C) and permeabilized 

with 100 μl chilled lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 

0.1% Tween-20, 0.1% IGEPAL-CA630, 0.01% digitonin and 1% BSA). The sample 

was incubated on ice for 3–5 min and resuspended with 1 ml chilled wash buffer (10 

mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20 and 1% BSA). 

After centrifugation (500g, 5 min, 4 °C), the pellet was resuspended in 100 μl chilled 

Nuclei buffer (2000153, 10x Genomics). Nuclei were counted using a haemocytometer, 

and finally the nucleus concentration was adjusted to 3,000 nuclei per μl. We used 

15,360 nuclei as input for tagmentation. Nuclei were diluted to 5 μl with 1× nuclei 

buffer (10x Genomics) and mixed with ATAC buffer (10x Genomics) and ATAC enzyme 

(10x Genomics) for tagmentation (60 min, 37 °C). Single-cell ATAC–seq libraries were 

generated using the Chromium Chip E Single Cell ATAC kit (10x Genomics, 1000086) 

and indexes (Chromium i7 Multiplex Kit N, Set A, 10x Genomics, 1000084) following 

the manufacturer’s instructions. Final libraries were quantified using a Qubit fluorimeter 

(Life Technologies) and the nucleosomal pattern was verified using a BioAnalyzer (Agilent). 

Libraries were sequenced on a NovaqSeq6000 (Illumina) with the following read lengths: 50 

+ 8 + 16 + 50 (Read1 + Index1 + Index2 + Read2).

scATAC-seq data was aligned to the hybrid mouse genome using 

the following strategy. Files CAST_EiJ.mgp.v5.snps.dbSNP142.vcf and 

CAST_EiJ.mgp.v5.indels.dbSNP142.normed.vcf with SNP and indel genetic variants 

between B6 and Cast genomes were obtained from the Mouse Genome Project53. 

MMARGE v1.059 was used to create a Cast pseudogenome by introducing all variants 

to the B6 genome. Gene annotations were obtained from GENCODE vM2560 and mapped 

from B6 to Cast genomic coordinates using MMARGE. scATAC-seq read alignment and 

preprocessing were done using cellranger-atac v1.2.0. For this, cellranger-atac mkref was 

used to create custom B6 and Cast references, and cellranger-atac count was used for 

alignment. Cast alignments were then mapped to B6 coordinates using MMARGE. Custom 

script was used to identify each read in both B6 and Cast alignments and declare the 

read B6- or Cast-specific if the alignment score was higher for that allele, and declare the 

read ambiguous if the two scores were equal. In this procedure, reads were treated as single-

end. cellranger-atac was also used with the default mm10 reference refdata-cellranger-atac-

mm10–1.2.0 for allele-agnostic scATAC-seq alignment.

Zhong et al. Page 16

Nat Immunol. Author manuscript; available in PMC 2022 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ArchR v1.0.161 was used for the allele-agnostic scATAC-seq analysis. The data was 

preprocessed by removing cells with counts smaller than 7500 and larger than 1e5, and 

filtering out doublets with a doublet enrichment score larger than 2.0. Then the count matrix 

was generated using a tile size of 500bp, without binarizing the counts. After preliminary 

analysis, 17 cells were classified as likely B cells, based on high accessibility at genes 

Cd79a, Cd79b and low accessibility at Cd3g, and removed from the analysis. The resulting 

count matrix for 6043 cells was used for subsequent analysis. LSI dimensionality reduction 

was performed with 4 iterations, max cluster size of 25 and resolution of 1.5, and the 

number of variable features equal to 52004 (matching the number of peaks obtained from 

bulk ATAC-seq analysis) and otherwise default parameters. Clustering was performed with 

resolution 2.0 and otherwise default parameters. UMAP was generated with parameters 

nNeighbors = 30, minDist = 0.5, and spread = 3. Clusters were annotated with cell states 

based on ArchR gene scores for a selection of marker genes. Scores for each peak group 

defined using bulk ATAC-seq and CUT&RUN analysis were generated using the scATAC-

seq peak matrix generated with ArchR (allowing up to a read count of 30 per peak per cell). 

For each cell, peak counts were summed over all peaks in the peak group and then divided 

by the total number of counts over all peaks in the cell to generate a peak group score.

Allele-specific scATAC-seq counts were calculated for peaks obtained from bulk ATAC-seq 

analysis. For each peak in each cell, reads with the same start and end positions that 

aligned to that peak were collapsed to avoid PCR duplicates. For cell states annotated in the 

above analysis, allele-specific pseudo-bulk count matrices were generated by summing the 

allele-specific counts for each peak across all cells within each cell state.

Statistics & Reproducibility

No statistical method was used to predetermine sample size. No data were excluded from 

the analyses. The experiments were not randomized. The investigators were not blinded to 

allocation during experiments and outcome assessment.
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Extended Data

Extended Data Fig. 1. RNA-seq and ATAC-seq of naïve and activated CD4 and CD8 T cells
a: Example of gating strategy for cell isolation from the spleen. Live lymphocytes were 

identified based on FSC-A/SSC-A. Doublets were gated out and CD4 and CD8 T cells 

were identified as TCRβ+CD4+ and TCRβ+CD8+, respectively. Naïve CD4 and CD8 T cells 

used as input for RNA-seq, ATAC-seq, and CUT&RUN experiments were isolated from 

uninfected mice as CD44+CD62L− cells. Bulk activated CD4 and CD8 T cells used as 

input for CUT&RUN experiments were isolated as CD44+ cells from LCMV Armstrong 

infected mice on day 7–8 post-infection (p.i.). LCMV-specific activated and memory CD4 

and CD8 T cells used as input for ATAC-seq and RNA-seq experiments were isolated based 

on tetramer staining on day 7 or day 60 p.i.
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b: RNA-seq and ATAC-seq reads at the Cd4, Cd8a, Sell and Cd44 loci in naïve and activated 

CD4 and CD8 T cells.

c-e: Effect of TF binding motif variants on chromatin accessibility measured as ΔMean in 

naïve and activated CD4 T cells (A), naïve CD4 and CD8 T cells (B), activated CD4 and 

CD8 T cells (C). Data points are colored by TF family and scaled according to the −log10 

p-value of a two-sided t-test comparing the mean allelic ratios between peaks with stronger 

matches on the B6 vs Cast allele. The most significant p-value obtained across the two cell 

types (naïve and activated CD8) was used for scaling. Motifs with <50 variant-containing 

motif occurrences were excluded from the plot.

f: Mean RNA-seq counts for Tbx21, Eomes, Tcf7 and Lef1 in naïve and activated CD4 and 

CD8 T cells.

Extended Data Fig. 2. Association between gene expression and chromatin accessibility changes
a: Correlation between changes in chromatin accessibility and gene expression in activated 

vs naïve CD8 T cells. Showing individual ATAC-seq peaks linked to the nearest gene (left) 

or the sum of counts across all ATAC-seq peaks linked to the same gene (right).

b: Fold change in gene expression in activated vs naïve CD8 T cells (x-axis) plotted against 

the fold change in gene expression in memory vs naïve CD8 T cells (y-axis). A subset of 

genes whose expression is transiently induced upon T cell activation is highlighted in red 

(left). Aggregated chromatin accessibility and gene expression changes for this gene set 

(right).

c: Gene ontology (GO) term enrichment analysis on genes highlighted in panel B
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Extended Data Fig. 3. RNA-seq and ATAC-seq changes at Runx1, TCF1, and Ets1-bound genes
a-b: Gene tracks of RNA-seq, ATAC-seq and CUT&RUN coverage at the Bcl2 and 

Arhgap30 loci in naïve and activated CD8 T cells.

c: Track examples showing the effect of selected Ets1 motif variants on allelic bias in 

chromatin accessibility and TF binding in activated CD8 T cells from (B6/Cast) F1 mice. 

Vertical bars mark the position of genetic variants, with colors indicating the fraction of 

variant-containing reads coming from either the B6 (black) or Cast (red) allele. A genetic 

variant in the Camk2b locus results in a stronger Ets1 motif match on the B6 allele and a 

weaker match on the Cast allele and is associated with B6-specific chromatin accessibility 

and TF binding. The opposite pattern is observed at the Dnah8 locus.

d: Gene expression changes at genes (>100 reads in at least one cell type) nearest to 

Ets1-bound and -unbound ATAC-seq peaks.
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e: Mean expression of genes nearest to Ets1-bound and -unbound ATAC-seq peaks.

Extended Data Fig. 4. TF and cofactor binding at Ets1-bound and –unbound chromatin regions
a: Gene tracks of RNA-seq, ATAC-seq and CUT&RUN coverage at the Gzmb and Tbx21 
loci in naïve and activated CD8 T cells.

b: Fraction of peaks bound by Brg1 at Ets1-unbound ATAC-seq peaks occupied by distinct 

combinations of activation-induced TFs. Data points are scaled according to the number of 

peaks in each set.

c: Effect of TF binding motif variants on Brg1 occupancy at Ets1-bound (Ets1+) and 

Ets1-unbound (Ets1−) sites measured as ΔMean in activated CD8 T cells. Data points are 

colored by TF family and scaled according to the −log10 p-value of a t-test comparing the 

allelic ratios between peaks with stronger motif matches on the B6 vs Cast allele. The most 

significant p-value obtained across the two cell types (naïve and activated CD8) was used for 

scaling.
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Extended Data Fig. 5. TF binding at TCF1-bound peak sets in naïve and activated CD4 and CD8 
T cells
a-c: Gene tracks of RNA-seq, ATAC-seq and CUT&RUN read coverage at the Il7r, Pde3b 
and Klrg1 loci in naïve and activated CD4 and CD8 T cells.

d: Fraction of TCF1-bound sites and TCF1up sites containing specific TF-binding motifs.

e: Median motif match p-value at sites bound at TCF1-bound sites and TCF1up sites.

f: Percentage of TCF1+ Ets1− peaks and TCF1up peaks bound by each activation-induced 

TF.
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Extended Data Fig. 6. Single cell ATAC-seq analysis of T cell subsets during acute LCMV 
infection
a: Pseudo-bulk scATAC-seq tracks showing chromatin accessibility at CD4 and CD8 loci 

across splenic cell populations in LCMV infected (B6/Cast) F1 mice.

b: Effect of genetic variation in TF binding motifs on allele-specific ATAC-seq counts 

from bulk cell or single cell experiments. Data points are colored by TF family and scaled 

according to the −log10 p-value of a two-sided t-test comparing the allelic ratios between 

peaks with stronger matches on B6 vs Cast Allele.

c: Violin plots and box plots showing accessibility of indicated peak groups across T cell 

subsets. The center line in the box plots represents the median, the box limits represent the 

25th and 75th percentiles, and the whiskers are the minimum/maximum values within 1.5 

times the interquartile range. n = the number of cells in each cell annotation (420 Naïve 
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CD4, 344 Naïve CD8, 234 Mem CD4, 231 Mem CD8, 198 Treg, 1321 Tfh, 652 Th1, 2583 

Effector CD8)
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Fig. 1: Effect of TF-binding motif polymorphisms on allele-specific chromatin accessibility in 
naïve and activated T cells
a: Experimental schematic. F1 (B6/Cast) mice were infected with 2×105 p.f.u. LCMV 

Armstrong i.p. injection or left uninfected. LCMV-specific CD4 and CD8 T cells were 

isolated on day 7 post-infection based on staining with I-Ab LCMV GP66–77 and H-2Db 

LCMV NP396–404 tetramers, respectively. Naïve CD44−CD62L+ TCRβ+ CD4 and CD8 

T cells were isolated from uninfected mice. Sorted cell populations were subject to allele-

specific ATAC-seq and RNA-seq analysis. Sequencing reads were aligned to a pseudo-

diploid B6/Cast genome. Reads were counted as B6 or Cast-specific depending on the better 

genome alignment. After summing up all variant containing reads across the gene or peak 

region, the allelic ratio of RNA-seq or ATAC-seq signal was calculated as B6-specific reads/

Cast-specific reads. Peaks containing variant-containing transcription factor binding motifs 

(TF motif) were divided into those containing stronger matches on the B6 allele and those 

containing stronger matches on the Cast allele. The mean allelic ratios of these two peak 

sets were compared using a t-test. The difference in mean allelic ratio between the two 

peak sets is denoted as ΔMean. This is further illustrated in panel e. Figure created with 

BioRender.com.
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b: Effect of TF binding motif variants on chromatin accessibility measured as ΔMean in 

naïve and activated CD8 T cells. Data points are colored by TF family and scaled according 

to the −log10 p-value of a t-test comparing the mean allelic ratios of peak sets with stronger 

matches on the B6 vs Cast allele. The most significant p-value obtained across the two cell 

types (naïve and activated CD8) was used for scaling. Variant-containing motifs with <50 

occurrences throughout the genome were excluded from the plot.

c: Effect of TF binding motif variants on chromatin accessibility and gene expression 

in naïve CD8 T cells. To determine the effect of motif variants on allelic bias in gene 

expression, peaks were linked to the nearest gene.

d: TF binding motif enrichment in peaks gaining or losing chromatin accessibility (fold 

change >2) compared to peaks whose accessibility was unchanged in activated vs naïve 

CD8 T cells. (Fisher’s exact test, one-sided p-values corrected by Benjamini-Hochberg 

Procedure).

e: Distribution of allelic ratios in ATAC-seq counts for peaks containing variants in select TF 

binding motifs. ΔMean describes the difference in mean allelic ratio between the blue peaks 

and the red peaks. (two-sided p-values were obtained from t-test for the null hypothesis that 

the independent allelic ratios of blue and red cis-elements have identical expected value μ).
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Fig. 2: Runx1, TCF1 and Ets1 occupy the majority of accessible chromatin regions
a: Runx1, TCF1, and Ets1 binding in naïve CD8 T cells measured by CUT&RUN. The 

number of ATAC-seq peaks bound by each TF is shown, together with the fraction of all 

accessible peaks (>100 ATAC-seq reads in naïve T cells) that is bound by each factor.

b: The fraction of all accessible peaks (>100 ATAC-seq reads in naïve T cells) that is bound 

by each combination of Runx1, TCF1, and Ets1.

c: Composition of Ets1-bound and –unbound regulatory elements (left). Fraction of ATAC-

seq peaks overlapping with promoters, exons, introns, and distal elements bound by Ets1 

(right).

d: Effect of genetic variation in TF-binding motifs on allelic bias in Runx1, Ets1, and TCF1 

binding in naïve T cells. Data points are colored by TF family and scaled according to the 
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−log10 p-value of a two-sided t-test comparing the allelic ratios between peaks with stronger 

matches on the B6 vs Cast allele.

e: Chromatin accessibility at ATAC-seq peaks bound by TCF1 or Runx1 with (Ets1-bound) 

or without Ets1 (Ets1-unbound) (left). Number of differentially accessible peaks (>100 reads 

in at least one cell type) across various comparisons (right).

f: GO term enrichment analysis of non-overlapping genes nearest to Ets1-bound vs. 

unbound peak sets. Data points are scaled according to the FDR.
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Fig. 3: Pre-accessible Ets1-bound chromatin regions are not responsive to activation-induced TFs
a: Gene tracks of RNA-seq, ATAC-seq and CUT&RUN read coverage at the Eif4g2 and 

Ccr2 loci in naïve and activated CD8 T cells.

b: c-Jun, Bhlhe40, IRF4, Tbet, and NFATc1 binding in activated CD8 T cells determined by 

CUT&RUN. The number of ATAC-seq peaks bound by each TF is shown together with the 

fraction of all accessible peaks (>100 ATAC-seq reads in activated T cells) that is bound by 

each factor.

c: Fraction of TF-bound ATAC-seq peaks co-bound by Ets1.

d: Fraction of sites bound by the indicated combination of TFs with >4 fold higher (up) or 

lower (down) chromatin accessibility in activated vs naïve CD8 T cells.

e: Fraction of Ets1-bound and -unbound ATAC-seq peaks that is bound by 0 to 5 activation-

induced TFs.
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f: Enrichment of TF co-localization at Ets1-bound and -unbound sites occupied by at least 

one activation-induced TF in activated CD8 T cells. p-values were calculated from one-sided 

Fisher’s exact test followed by Benjamini-Hochberg Procedure.

g: Fold change in chromatin accessibility in activated vs naïve CD8 T cells at Ets1-unbound 

ATAC-seq peaks occupied by distinct combinations of activation-induced TFs. Data points 

are scaled according to the number of peaks in each set.

h: Fold change in chromatin accessibility in activated vs naïve CD8 T cells at Ets1-bound 

and -unbound ATAC-seq peaks occupied by 1–5 activation-induced TFs.

i: Effect of TF-binding motif variation on allelic bias in TF occupancy at Ets1-bound vs 

–unbound ATAC-seq peaks. Each CUT&RUN experiment is shown on the Y-axis. X-axis 

shows the most statistically significant motif for each family.

j: Model of TF binding and chromatin accessibility changes at Ets1-bound and -unbound 

regulatory elements.
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Fig. 4: A small subset of immune response-related elements recruits Ets1 de novo upon T cell 
activation
a: Ets1 CUT&RUN counts at ATAC-seq peak regions in naïve and activated CD8 T cells. 

Data points are scaled according to the absolute log2 fold change in expression of the 

nearest gene in activated vs naïve CD8 T cells. A subset of peaks with >8-fold more Ets1 

binding in activated vs naïve CD8 T cells (Ets1up sites) is highlighted in red.

b: Chromatin accessibility in naïve CD8 T cells plotted against the log2 fold change in Ets1 

binding in activated vs naïve CD8 T cells. Ets1up sites are highlighted in red.

c: Gene ontology term enrichment analysis for genes nearest to ATAC-seq peaks gaining 

Ets1 binding upon T cell activation (red dots in panel a-b).

d: Cis-regulatory element composition of Ets1up sites.

e: Fraction of Ets1up sites bound by 0 to 5 activation-induced TFs.

f: Changes in chromatin accessibility in activated vs naïve CD8 T cells at Ets1up sites 

bound by 1–5 activation-induced TFs. Ets1-bound (Ets1+) and -unbound (Ets1−) elements 

co-occupied by 5 activation-induced TFs are shown as a reference.

g: TF binding-motif enrichment and difference in median (ΔMedian) motif match p-value at 

Ets1up vs Ets1-bound ATAC-seq peaks.
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h: Snf2h, Chd4, Ruvbl1, and Brg1 binding measured by CUT&RUN in activated CD8 T 

cells. The number of ATAC-seq peaks bound by each TF is shown, together with the fraction 

of all accessible peaks (>100 ATAC-seq reads in activated T cells) that is bound by each 

factor.

i: Fraction of Ets1-bound (Ets1+), Ets1-unbound (Ets1−) and Ets1up peaks co-bound by 0 to 

5 activation-induced TFs that are bound by Brg1 in activated CD8 T cells (left). Mean Brg1 

counts at the corresponding peak sets (right).

j: Model of TF activity at Ets1up elements.
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Fig. 5: Activation-dependent TF partners influence Runx1 localization
a: Runx1 binding was determined in naïve and activated CD4 and CD8 T cells using 

CUT&RUN. The number of ATAC-seq peaks bound by Runx1 is shown, together with the 

fraction of all accessible peaks (>100 ATAC-seq reads) that is bound by Runx1.

b: Chromatin accessibility in naïve and activated CD8 T cells across all ATAC-seq atlas 

peaks. Peaks with >4-fold differential accessibility are highlighted in red. Number of 

peaks with higher and lower chromatin accessibility in naïve and activated CD8 T cells 

is indicated.

c: Fraction of differentially accessible chromatin regions (highlighted in panel b) bound by 

each transcription factor.

d: Pearson correlation between changes in chromatin accessibility and changes in TF 

binding intensity for Runx1, TCF1, and Ets1 in activated vs naïve CD8 T cells. Analysis 

was done for all peaks or only the peaks bound by the respective TF. Scatter plot showing 

the fold change in Runx1 binding and fold change in chromatin accessibility in activated vs 

naïve CD8 T cells.
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e: Effect of TF binding motif variation on Runx1 binding in naïve and activated CD8 T cells. 

Only peaks that were differentially accessible in naïve and activated CD8 T cells (panel b) 

were included in the analysis. Data points are colored by TF family and scaled according to 

the −log10 p-value of a two-sided t-test comparing allelic ratios between peaks with stronger 

motif matches on the B6 vs Cast allele. The most significant p-value obtained across the two 

cell types (naïve and activated CD8) was used for scaling.

f: TF-binding motif occurrence at peaks gaining (up sites) or losing accessibility (down 

sites) upon T cell activation. Motif significance of global allelic imbalance was calculated 

using two-sided t-test using the same approach as in Fig. 1e.

g: Effect of TF binding motif variation on chromatin accessibility in naïve and activated 

CD8 T cells. A two-sided t-test was used to calculate motif p-values as described in Fig. 1e. 

Only peaks that were differentially accessible in naïve and activated CD8 T cells (panel b) 

were included in the analysis.

h: Model of Runx1 activity at sites gaining or losing chromatin accessibility upon T cell 

activation.
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Fig. 6: Context-dependent functions of TCF1 in naïve and activated CD4 and CD8 T cells
a: Chromatin accessibility changes between naïve and activated CD4 and CD8 T cells at 

ATAC-seq peaks bound by TCF1 with or without Ets1. All peaks denotes peaks with >100 

reads in one or more cell types.

b: TCF1 CUT&RUN signal at ATAC-seq peak regions in naïve and activated CD4 and CD8 

T cells. Data points are scaled according to the fold change in chromatin accessibility and 

colored blue or red according to the directionality of the accessibility change. A subset of 

peaks that has strong preferential binding of TCF1 in activated T cells was identified in CD4 

T cells and highlighted in green.
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c: Chromatin accessibility changes between naïve and activated CD4 and CD8 T cells at 

Ets1+TCF1− ATAC-seq peaks bound by 0–5 activation-induced TFs. Analysis was restricted 

to peaks with lower TCF1 binding in activated vs naïve CD8 T cells.

d: Overlap between TCF1up peaks (green peaks in panel b) and Ets1-bound ATAC-seq peaks 

(top) or Ets1up peaks (bottom).

e: Fraction of TCF1+Ets1− peaks and TCF1up peaks bound by 0–5 activation-induced TFs.

f: Chromatin accessibility changes in naïve and activated CD4 and CD8 T cells at TCF1up 

peaks bound by 0–5 activation-induced TFs.

g: Fraction of TCF1+Ets1− peaks and TCF1up peaks co-bound by 0–5 activation-induced 

TFs that are bound by Brg1 in activated CD8 T cells (left). Mean Brg1 count at the 

corresponding peak sets (right).

h: Gene ontology term enrichment analysis for genes nearest to TCF1up peaks (green dots in 

panel b).

i: Model of TF activity at TCF1-bound regulatory elements.
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Fig. 7: Drivers of chromatin accessibility across T cell subpopulations
a: Chromatin accessibility at selected loci across T cell subpopulations in LCMV infected 

(B6/Cast) F1 mice measured by single cell (sc) ATAC-seq on total splenic CD4 and CD8 T 

cells (n=6043 cells).

b: Subset annotation.

c: Effect of genetic variation in TF binding motifs on allele-specific pseudo-bulk scATAC-

seq counts in Th1 and Tfh cells. Data points are colored by TF family and scaled according 

to the −log10 p-value of a two-sided t-test comparing the allelic ratios between peaks with 

stronger matches on B6 vs Cast allele.
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d: Pseudo-bulk scATAC-seq data showing accessibility in Th1 vs. Tfh cells at Ets1-bound or 

-unbound sites co-occupied by T-bet or by TCF1. Grey dots (top) and black lines (bottom) 

show all accessible peaks.

e: Violin plots and box plots showing accessibility of indicated peak groups across T 

cell subsets (n = 6043 cells). The center line in the box plots represents the median, 

the box limits represent the 25th and 75th percentiles, and the whiskers are the minimum/

maximum values within 1.5 times the interquartile range. n = the number of cells in each 

cell annotation (420 Naïve CD4, 344 Naïve CD8, 234 Mem CD4, 231 Mem CD8, 198 Treg, 

1321 Tfh, 652 Th1, 2583 Effector CD8).
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