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Transcription regulation in metazoa is controlled by the binding events of transcription factors (TFs) or
regulatory proteins on specific modular DNA regulatory sequences called cis-regulatory modules
(CRMs). Understanding the distributions of CRMs on a genomic scale is essential for constructing the
metazoan transcriptional regulatory networks that help diagnose genetic disorders. While traditional
reporter-assay CRM identification approaches can provide an in-depth understanding of functions of
some CRM, these methods are usually cost-inefficient and low-throughput. It is generally believed that
by integrating diverse genomic data, reliable CRM predictions can be made. Hence, researchers often first
resort to computational algorithms for genome-wide CRM screening before specific experiments.
However, current existing in silico methods for searching potential CRMs were restricted by low sensitiv-
ity, poor prediction accuracy, or high computation time from TFBS composition combinatorial complex-
ity. To overcome these obstacles, we designed a novel CRM identification pipeline called regCNN by
considering the base-by-base local patterns in TF binding motifs and epigenetic profiles. On the test
set, regCNN shows an accuracy/auROC of 84.5%/92.5% in CRM identification. And by further considering
local patterns in epigenetic profiles and TF binding motifs, it can accomplish 4.7% (92.5%–87.8%) improve-
ment in the auROC value over the average value-based pure multi-layer perceptron model. We also
demonstrated that regCNN outperforms all currently available tools by at least 11.3% in auROC values.
Finally, regCNN is verified to be robust against its resizing window hyperparameter in dealing with
the variable lengths of CRMs. The model of regCNN can be downloaded athttp://cobisHSS0.im.nuk.edu.
tw/regCNN/.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Transcription regulation in metazoan genomes is controlled by
the binding events of transcription factors or regulatory proteins
on specific DNA segments in a modular manner [1,2]. These mod-
ular DNA regulatory sequences are called cis-regulatory modules
(CRMs). CRMs regulate the correct spatial–temporal differential
gene expression in developmental stages and determine the
specific cell types of the developing cells in cell differentiation
[3]. Malfunction of certain CRMs can lead to genetic diseases or
cancers [4,5]. Hence discovering and understanding
genome-wide distributions of CRMs in metazoa species are essen-
tial in constructing the transcriptional regulatory network that
helps identify medical diagnoses to genetic disorders [6,7].

While traditional reporter-assay approaches can provide an in-
depth understanding of CRMs, these methods require careful and
innovative experiment designs, leading to the low-throughput
and cost-inefficient nature [8]. It is generally believed that by inte-
grating diverse genomic data types, reliable CRM predictions can
be generated [1,9,10]. And great efforts have been made by various
research groups for obtaining genomic datasets in different
aspects. Hence, to perform genome-scale CRM scanning, research-
ers often first resort to computational algorithms before specific
experiments. Based on the understanding of CRM functions from
comparative and molecular biology, different in silico CRM identifi-
cation methods were developed. Depending on the modeling tech-
niques, these algorithms can be divided into three different
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categories. The first type of CRM prediction algorithms is con-
structed from the concepts of functional sequence conservation
[11–13]. Algorithms categorized in this type identify conserved
non-coding sequences as CRM candidates from the alignment
between related species. The second type of CRM scanning meth-
ods is designed based on mining transcription factor binding site
(TFBS) combinations that may lead to CRM functions [13–18]. Such
tools use probability modeling to consider all possible combina-
tions of TFBS positioning in a given DNA segment for putative
CRMs. The third type of CRM prediction algorithms jointly consid-
ers different genome-wide chromatin-binding protein and histone
sequencing data to annotate potential functional regulatory
sequences [19–22]. CRMs are now known to recruit regulatory
DNA/chromatin binding proteins through their epigenetic profiles.
And various efforts have been made to probe the comprehensive
genome-wide epigenetic profiles using the chromatin immunopre-
cipitation (ChIP) sequencing techniques [23,24]. The epigenetic
profiles of CRM sequences, such as H3K4me and nucleosome
depletion signals, can be recognized by different functional tran-
scription factors and regulatory proteins, thus determining CRM
regulatory functions [25]. Based on identifying different combina-
tions of average signal values of epigenetic marks over the given
chromosomal range, many chromatin type landscapes were cre-
ated [26,27].

However, all previous methods suffer from certain drawbacks.
First, methods developed from sequence conservation assume that
functional genomic elements are usually conserved and undergo
purifying selection in evolution. However, researchers have discov-
ered that many non-coding sequences containing functional regu-
latory elements are not conserved among species [28,29]. Some
CRMs even belong to specific species and therefore lack phylogeny
information [30]. Hence, methods based on the conservation
assumption can only discover a fractional number of CRMs, causing
low prediction sensitivity. Second, strategies constructed based on
TF binding event combinations or k-mer information often require
trying out the TFBS motif positioning combinations that usually
grow exponentially [16]. The combinatorial complexity causes
these algorithms to convey prohibitive high computation time,
hindering researchers from carrying out genomic CRM studies. Fur-
ther, with no prior knowledge, it is hard to accurately discover
CRMs that consist of more than two different TF binding targets
for these TFBS motif enrichment models [31]. Third, models trained
only on average values of epigenetic signals on the given segments
overlook the detailed local summarizing information in TF binding
motifs, chromatin-binding protein target sites, and epigenetic
marks. Using limited selected simple co-occurrence of certain epi-
genetic marks to infer CRMs can result in many false positives in
genome-wide investigation [32,33,22]. In summary, current exist-
ing CRM identification algorithms are restricted by the issues of
low sensitivity, combinatorial complexity, or unsatisfactory predic-
tion accuracy.

In this research, we devised an integrative deep learning model
called regCNN to overcome the aforementioned problems. regCNN
encompasses the base-by-base distributions and local summariz-
ing patterns in sequence conservation, TF binding motifs, and epi-
genetic marks (nucleosome-free and nucleosome-variant regions,
chromatin-binding protein target sites, and histone modifications)
to improve CRM identification. These local summarizing regulatory
patterns were considered by regCNN through consecutive hierar-
chical convolution operations. We trained, cross-validated, and
tested regCNN on a literature-curated CRM ground truth dataset
gathered from the REDfly repository [34]. We adopted the model
organism Drosophila melanogaster in this research since there are
comprehensive curated experimentally verified CRMs in this spe-
cies. By considering the local TFBS preference and epigenetic pro-
filing summarizing feature patterns, regCNN can obtain higher
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CRM identification accuracy (Accuracy = 84.5%, auROC = 92.5%)
than the pure multi-layer perceptron model that uses only the
average values of these same epigenetic signals and TFBS prefer-
ence scores (Accuracy = 79.2%, auROC = 87.8%) on the set-aside test
set. Further, we demonstrated that regCNN outperforms all cur-
rently available Drosophila CRM prediction tools by at least 11.3%
auROC values on the test set. And integrating both the TFBS motif
datasets and epigenetic profiling datasets can contribute to better
CRM identification (auROC = 92.5%) than considering only either
TFBS datasets (auROC = 88.9%) or epigenetic datasets
(auROC = 88.5%). In addition, by applying different test set partition
schemes, it was verified that regCNN generalizes well to genomic
sequences. In the last, regCNN is confirmed to be robust against
its resizing window size hyperparameter adopted in the informa-
tion retrieval stage. The regCNN deep network model is freely
available at http://cobisHSS0.im.nuk.edu.tw/regCNN/.

2. Methods and Datasets

2.1. Data preprocessing

regCNN integrates five types of transcriptional regulation-
related datasets that consider thorough aspects of modular tran-
scriptional regulation. We adopted the model organism Drosophila
melanogaster in this research since there are comprehensive
human-curated verified CRMs in this species. The Drosophila mela-
nogaster genome (dmel_r6.03_FB2014_06) was downloaded from
Flybase [35], and the literature curated CRMs were retrieved from
REDfly [34]. Further, the following five different transcriptional
regulation-related datasets are preprocessed and used in regCNN:
conservation score data, TF binding motifs, nucleosome-free and
nucleosome-variant sites, chromatin-binding protein target sites,
and histone modification information. Preprocessing of the five
genres of datasets is depicted in the following subsections.

2.1.1. Conservation score data
Some regulatory sequences in genomes are conserved among

different related species [36]. In this research, we adopted the
base-by-base phastCons conservation scores [37] that utilized the
hidden Markov model (HMM) to summarize the conservation
alignment between D. melanogaster and other 26 insects (D. simu-
lans, D. sechellia, D. yakuba, D. erecta, D. biarmipes, D. suzukii, D.
ananassae, D. bipectinata, D. eugracilis, D. elegans, D. kikkawai, D.
takahashii, D. rhopaloa, D. ficusphila, D. pseudoobscura, D. persimilis,
D. miranda, D. willistoni, D. virilis, D. mojavensis, D. albomicans, D.
grimshawi, Musca domestica, Anopheles gambiae, Apis mellifera,
and Tribolium castaneum). The multiple alignment phastCons
scores among these species were downloaded from UCSC Genome
Browser [38].

2.1.2. TF binding motif data
Combinatorial binding events of different TFs on regulatory

sequences can trigger CRM functions [2]. The binding affinity and
motifs of different TFs can be represented in the form of position
weighted matrices (PWMs). We downloaded the PWMs of 158 D.
melanogaster TFs from the JASPAR database [39] (JASPAR 2020 ver-
sion). Details of the 158 TF binding motifs can be found through
the provided link in the ”Data Availability” subsection. The motif
odds ratio ORij measuring the occurrence of TF motif j at position
i is calculated by the following formula:

ORij ¼
Yn�1

k¼0

PTFj ðskÞ
PbgðskÞ ;

where sk is the base pair of the kth position after i;n is the length of
the motif of TFj; PTFj ðskÞis the binding probability of sk on the kth
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position of the TFj binding motif, and PbgðskÞis the background
nucleotide distribution for the nucleotide type of sk. The motif
PWMs were calibrated by adding a small � and re-normalizing to
1 to avoid zero probability. In this research, � was selected to be
10�6. After computing the odds ratios of the 158 TFs, we obtained
the 158-way TFBS motif data results for the given genomic region.

2.1.3. Nucleosome-free and nucleosome-variant sites
Regulatory sequences wrapped within nucleosomes may be

prohibited from carrying out their functions [40]. Hence identify-
ing the depletion or variants of nucleosomal structures can help
identify active CRMs. We adopted the nucleosomal depletion sig-
nals probed via DNaseI hypersensitive sites (five embryo samples
under five different developmental stages (stage 5, 9, 10, 11, and
14) and one replicate of Kc167 cell line) from the works of Thomas
et al. [41]. And we also gathered the nucleosome-variant H2Av
data in Drosophila embryos from the work of Mavrich et al. [42].
Detailed accession numbers for these sequence probing experi-
ments can be found in the ”Data Availability” subsection. The
sequencing .fastq files were downloaded from Sequence Read
Archive (SRA). We used the bowtie [43] short read alignment tool
with default parameters to map the reads back to the Drosophila
melanogaster genome (dmel_r6.03_FB2014_06). And the nucleoso-
mal score (NS) of a given condition at position i is computed by
taking the logarithm of the RPM (reads per million) [44] value at
position i:

NSi ¼ log
106 �

X
read2R1½read \ gi�
#R

;

where R is the collection of all mapped reads under the given exper-
imental condition, 1½:� is the indicator function,#R is the cardinality
of R; gi is the chromosomal coordinate of position i, and read \ gi

refers to the condition that the read covers gi.

2.1.4. Chromatin-binding protein target sites and histone modification
information

Core histone modifications are now known to recruit different
chromatin-binding proteins that interact with TFs or remodel the
chromatin structures [25]. The ”histone codes” resulting from the
combinations of histone modifications and chromatin-binding pro-
tein target sites can have critical effects on CRM functionalities
[1,25]. In total, 57 ChIP-seq experiments for probing the binding
sites of 31 chromatin-binding proteins and 36 ChIP-seq experi-
ments for investigating 15 histone modifications were downloaded
from the modENCODE project [23] and reprocessed. The detailed
list of the ChIP-seq data can be found in the ”Data Availability” sub-
section. Since the 57 chromatin-binding protein ChIP-seq experi-
ments and the 36 histone modification ChIP-seq experiments
were performed using similar protocols, we applied the same pro-
cedure to analyze these ChIP-seq datasets. More specifically, each
of the ChIP-seq data was mapped to the Drosophila melanogaster
genome (dmel_r6.03_FB2014_06) by bowtie [43] using default
parameters. And for each of the ChIP-seq experiments, the base-
by-base sequencing scores (SC) for this ChIP-seq experiment are
defined by the following formula based on the concept of RPM
[44]:

SCi ¼ log

X
read2C1½read \ gi�

#C
� ð

X
read2I1½read \ gi�

#I
Þ
�10

@
1
A;

where C is the collection of pooled mapped reads in ChIP replicates
under the given condition, I is the collection of pooled reads in input
wild-type replicates of the corresponding same experimental condi-
tion as C; 1½:� is the indicator function, gi is the chromosomal
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coordinate of position i, and read \ gi refers to the condition that
the read covers gi.

2.1.5. Dataset score normalization
Since the data magnitude scale can dominate the performance

of deep learning models in a biased way, we performed data nor-
malization as the last step of data pre-processing to reduce the
scale effect. The data normalization formula is defined as follows:

xk i ¼ xk i �minðxkÞ
maxðxkÞ �minðxkÞ ;

where xk is the collection of scores derived from the kth specific
experimental dataset, xk i is the ith data point in xk, and
minðxkÞ/maxðxkÞ is the minimum/maximum of xk. By applying
the transformation, every individual experimental dataset xk cate-
gorized in the above five genres was normalized into ½0;1�, making
them free of range biases.

2.2. The regCNN deep network

We designed the regCNN model in this research to identify
genome-wide CRMs with high accuracy. The aforementioned five
types of transcription regulation-related datasets were integrated
in regCNN to boost model performance. The overall regCNN CRM
identification process can be divided into three different stages
(See Fig. 1): Stage I (Information retrieval), Stage II (Local pattern
extraction and summarization), and Stage III (CRM identification).
Details of each stage are elucidated in the following subsections.
And the architecture hyperparameters are also marked in Fig. 1.

2.2.1. Stage I: information retrieval
Since CRMs are of variable-length, we designed an information

retrieval and dimension transformation procedure to allow the
model to accept variable-length sequences (See Fig. 1-Stage I).
First, experimental data in the aforementioned five categories of
datasets observed in the given region are extracted. In total, the
numbers of experiments in the aspects of conservation, TFBS
motifs, nucleosome-free and nucleosome-variant sites,
chromatin-binding protein target sites, and histone modifications
are 1, 158, 7, 57, and 36, respectively. Each of the extracted results
is regarded as an l x 1 array, where l is the length of the given
region. Every array is zero-padded to 512 x 1 if l is smaller than
512 bps or is down-sampled to 512 x 1 using the openCV INTER_-
LINEAR interpolation package [45] if l is longer than 512 bps.
Finally, these data arrays are stacked together to form a 512 x
259 multi-channeled tensor.

2.2.2. Stage II: local summarizing pattern extraction
After the information retrieval steps of Stage I, a base-by-base

512 x 259 data tensor F is formed. Convolutional neural networks
are now known to have excellent performance in extracting
detailed spatial and temporal patterns [46]. Hence, we incorpo-
rated hierarchical convolution operations in regCNN to mine out
local regulatory patterns that can help identify cellular CRMs
(See Fig. 1-Stage II). Hierarchical convolution operations are
designed by applying a consecutive series of convolutions and acti-
vation functions to the data tensor. The convolution operations can
be formulated as

Cn ¼ Kn~D;

where D is the data tensor applied to the convolution, ~ denotes
for the 1D convolution operator, Kn is the nth kernel filter with
the size of ð2kþ 1Þ and the same depth of D, and Cn is the nth
channel of the output convoluted vector C. The element-wise



Fig. 1. The overview the of regCNN model. regCNN can be divided into three stages. In Stage I, experimental results of datasets from the five transcription regulation-related
genres are retrieved. In Stage II, the local summarizing patterns in different types of data are extracted by hierarchical consecutive convolutions. In the last stage, CRMs are
discriminated from non-CRM sequences based on the aggregated local summarizing patterns. The details of the regCNN deep network architecture are also marked for each of
the network operations.
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results of the ~ operation in the above equation are defined by the
following formula:

CnðiÞ ¼
Xk

p¼�k

X259
q¼1

Knðpþ kþ 1; qÞ � Dðiþ p; qÞ;

where CnðiÞ is the ith element of the output vector Cn, and the cal-
culation is zero-padded to make the output Cn of the same length as
D. In our settings, the kernel moving stride is all set to 1 in the for-
mula. In the designed regCNN, parametric rectified linear units
(PReLU) are used as the activation functions. The final four (kernel
size, kernel number) pairs picked from cross-validation are (7,
512), (7, 512), (5, 512), and (5, 512), respectively. The hierarchical
convolution operations in regCNN help obtain the local base-by-
base summarizing patterns in epigenetic profiles, TF binding infor-
mation, and conservation scores.

2.2.3. Stage III: CRM identification
In Stage III of regCNN, the local summarizing patterns are used

to identify potential CRMs. The global average pooling operation
first mean-aggregates each pattern tensor. Then two layers of fully
connected operations are applied to map the aggregated patterns
into a CRM-separable high dimensional space. Finally, potential
CRMs are identified by a classification softmax layer (See Fig. 1-
Stage III). The operations can be written as
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p ¼ softmaxðaðaðSW1ÞW2ÞÞ;

where S is the mean-aggregated pattern tensor, p is the probability
that the given chromosomal region contains CRMs, W1 and W2 are
the trainable network parameter weight matrices, að:Þ is the nonlin-
ear activation function, and softmax is the operation that trans-
forms the computed scores into probability using exponential
normalization. In this research, we selected PReLU as the activation
function and 1,024 as the hidden layer size. Dropout layers were
added between the fully connected layers to equip regCNN with
good generalization performance for unknown sequences.
2.3. regCNN training hyper-parameter selection

Several hyper-parameters of regCNN were selected in the train-
ing process using the fivefold cross-validation technique. Based on
random search over a range of values for each hyperparameter, the
followings were the final chosen hyper-parameters: (1) learning
rate schedule: cosine warm-up to 1e-4 in four epochs, then expo-
nential decay with decay rate 0.95 before epoch 25 and 0.9 after
epoch 25; (2) Optimization method: Adam; (3) number of epochs:
60; (4) neuron initialization: Xavier initialization; (5) Batch train-
ing size: 256; (6) The non-linear activation function: PReLU. Drop-
out layers (dropout rate = 0.1) were added to regularize the
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training process and prevent over-fitting that may kill model
generalization.
3. Results

3.1. Overview of regCNN

regCNN integrates the conservation data, the TFBS motif data,
the nucleosome-free and nucleosome-variant sites, the
chromatin-binding protein ChIP data, and the histone modification
ChIP information to discriminate CRMs from non-functional
sequences in the Drosophila melanogaster genome (See Fig. 1). A
given chromosomal range is provided as the input information
for regCNN. Then the overall CRM identification process of regCNN
can be divided into three stages: (1) Stage I: Information retrieval.
regCNN first queries the calculated base-by-base score arrays for
the specified chromosomal region from each of the above-
mentioned datasets. For sequence ranges shorter than 512, the
scores are zero-padded to 512 bps. If the given range is longer than
512, each array of the calculated experimental results is individu-
ally down-sampled to 512 bps using interpolation. Then the 259
experimental scores from datasets in the five categories are
stacked together to form a 512 x 259 data tensor. (2) Stage II: Local
summarizing pattern extraction. A sequence of hierarchical convo-
lutions is applied to the data tensor to summarize the local combi-
natorial patterns of different regulatory features for the given
chromosomal region. The pattern tensors summarize the local reg-
ulatory information in different regulation aspects that may poten-
tially recruit and form special regulatory protein complexes. (3)
Stage III: CRM identification. Based on the feature patterns, regCNN
calculates the likelihood of the sequence to be a putative CRM. The
overall network architecture and the layer hyper-parameters of
regCNN are depicted in Fig. 1. More detailed descriptions of the
architectures of regCNN can be found in the ”The regCNN deep net-
work” subsection.
Fig. 2. The basic statistic distributions of the CRMs gathered in this research. (a) The
distribution of distances of CRMs to their closest genes. (b) The distribution of the
numbers of TF binding sites per CRM. (c) The distribution of CRM lengths.
3.2. Ground-truth CRM dataset

We gathered the experimentally verified CRM sequences from
the literature as the positive set and randomly picked non-
functional sequence segments as the negative set in this research.
The positive set and the negative set together form the CRM
ground-truth dataset. We further divided the ground truth dataset
into the training/validation set and the test set. Since comprehen-
sive literature CRM repositories are currently only available in Dro-
sophila, we hence selected Drosophila melanogaster as the demo
model organism in this research. The experimentally verified
CRM positive set was downloaded and processed from the REDfly
database [34] (v9.5.1, database updated at 09/01/2021, under
dmel_r6.03_FB2014_06). In total, 28,119 experimentally verified
CRMs from the literature were included in the positive CRM set.
The basic statistic distributions (distances of CRMs to their closest
genes, the numbers of TF binding sites per CRM, and the CRM
lengths) of these experimentally verified CRMs are summarized
in Fig. 2. The median CRM length is 501 bps, and the median of
non-zero CRM distances to their closest genes is 2,715 bps.
26,402 CRMs overlap with at least one gene and have zero distance
to their closest genes. Notice that Fig. 2-b plots the numbers of TF
binding sites per CRM (average TFBSs per CRM = 7) for only the
1,694 CRMs with known experimentally verified TFBSs (down-
loaded from REDfly v9.5.1) on them.

To obtain the negative set of non-CRM segments, we followed
the procedure proposed by Su et al. [9] to extract negative random
sequences. We sampled the non-CRM sequences from the introns,
exons, and intergenic regions based on the Drosophila genome
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deposits (FlyBase [35] dmel_r6.03_FB2014_06) using the following
criteria listed by Su et al.: (1) the sampled sequences should not
overlap with known CRMs in the positive set; (2) the overall length
distributions of the positive set and the negative set are similar; (3)
6 bps from 5’ and 3’ ends are avoided in introns/exons that are
shorter than 83 bps to eliminate splice donor/acceptor sites; (4)
150 bps from 5’ and 3’ ends are excluded in introns or exons that
are longer than 300 bps to reduce splice regulatory sequences;
(5) 1000 bps from 5’ and 3’ ends are not used in intergenic regions
to be free of promoter sites and post-transcriptional modification
sites. These five criteria minimize the possibility of mistakenly
selected functional sequences that may reside in the exons,



Fig. 3. The model performance of regCNN. (a) The 5-fold cross-validation learning
curves of regCNN. In this figure, dashed lines represent the upper and lower bounds
of the results on the 5-fold cross-validation sets. And the solid line refers to the
average value of the 5-fold results. (b) The ROC curves of the cross-validation
results and the test result of regCNN. (c) The PRCs of the cross-validation results and
the test result of regCNN.
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introns, or intergenic regions into the negative set. We obtained
25,849 non-CRM sequences to form the negative set. The ground-
truth CRM and non-CRM set can be downloaded using the link pro-
vided in the ”Data Availability” subsection. From the ground-truth
CRM dataset, we first took one-tenth of the dataset (2,847 CRMs
and 2,590 non-regulatory sequences) as the set-aside test set. To
avoid potential data contamination issues caused by sequence
overlapping, we further enforced a restriction that sequences in
the test set have no overlapping with any sequences in the train-
ing/validation set. Therefore, those sequences that overlap with
some sequence in the test set had been removed from the train-
ing/validation set. The rest of the CRM and non-CRM sequences
(25,272 CRMs and 23,259 non-regulatory sequences) were used
as the training/validation set for regCNN model cross-validation
training.

3.3. regCNN can distinguish CRMs from random sequences

regCNN was trained, validated, and tested using the ground
truth CRM dataset. On the training/validation set (25,272 CRMs
and 23,259 non-regulatory sequences), 5-fold cross-validation
was applied to fully utilize the data for both model optimization
and over-fitting control [47]. Using the 5-fold cross-validation
technique, the training/validation set was divided into five differ-
ent subsets. First, the model was trained on four subsets. Then
the remaining one fold was used as the validation set to select
model hyperparameters and architectures. This process was
repeated five times by treating every one fold of the training/vali-
dation set as the validation set at a time. A final average perfor-
mance was evaluated using the receiver operating characteristic
(ROC) curves [44]. The ROC curves plots (1-specificity) against sen-
sitivity when the threshold is adjusted:

Sensitivity ðrecallÞ ¼ TP
TP þ FN

;

Specificity ¼ TN
FP þ TN

;

where TP is the number of identified true CRM sequences, FP is the
number of wrongly identified false CRM segments, TN is the num-
ber of correctly identified non-CRM sequences, and FN is the num-
ber of known CRMs to be mistakenly regarded as non-regulatory
sequences. A CRM identification tool is said to have good discrimi-
nating power if it shows high sensitivity while the threshold is cho-
sen to maintain high specificity (low 1-specificity) in the ROC curve.
In this case, the model will have a high auROC (area under the ROC
curve) value in the ROC curve plot. The precision-recall curve (PRC)
is also generated, and the auPRC (area under the PRC) value is com-
puted for evaluating the trade-off between precision and recall. The
larger the auPRC value is, the better trade-off between precision and
recall can be achieved. We also evaluated the CRM identification
accuracy by using the precision and F1 measure [48]:

Precision ¼ TP
TP þ FP

;

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

;

Accuracy ¼ TP þ TN
TP þ FP þ FN þ TN

;

The training process was monitored by the learning curve approach
(See Fig. 3-a). In learning curve plots, accuracy values are recorded
according to training epochs. It can be used to verify that the model
is well optimized and is not over-fitted. As shown in Fig. 3-a, the
training and validation learning curves both approach a plateau,
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showing that the training process converges. Moreover, the two
curves also bear a minor gap between each other, verifying that
the designed network is not over-fitted. Therefore, the regCNN
model was well trained. The ROC curve and PRC results are
summarized in Fig. 3-b and 3-c. The fivefold validation ROC curves



Fig. 4. Comparison between regCNN and the pure multi-layer perceptron (MLP)
model. (a) The learning curves of the pure MLP model. (b) The ROC curves for
regCNN and pure MLP on the test set. (c) The PRCs for regCNN and pure MLP on the
test set.
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of regCNN are in the upper-left corner with an average validation
auROC value of 92.4%, and the average validation PRC of regCNN
is in the upper-right corner with an average validation auPRC value
of 93.1%. Therefore, the ROC curves and PRCs reveal the ability of
regCNN to discriminate CRMs from those randomly chosen negative
sequences. Other average performance metrics of regCNN on the 5-
fold validation sets are listed in Table 1. To evaluate the generaliza-
tion of regCNN in identifying CRMs when applying to new
sequences, we performed the generalization evaluation on the
set-aside test set. As shown in Fig. 3-b and 3-c, the ROC curve and
PRC of regCNN on the test set (test auROC = 92.5%, auPRC = 93.3%)
closely track the average 5-fold validation ROC curve and PRC, indi-
cating good general CRM-identification performance of regCNN for
new sequences since the distribution of the test set is quite similar
to the training/validation set. Other performance metrics calculated
on the test set also lead to the same conclusion as the auROC/auPRC
values (summarized in Table 1). All in all, regCNN is well-trained
and can successfully discriminate CRMs from random genomic
sequences with high sensitivity and specificity.

3.4. regCNN improves its performance by considering the base-by-base
local regulatory patterns

To assess the improvement from considering the base-by-base
local summarizing patterns of transcription regulation-related fea-
tures, we re-trained the previously reported pure multi-layer per-
ceptron (MLP) model proposed by Li et al. [22] on Drosophila and
compared the performance of it with regCNN. The pure MLP model
is a deep multi-layered neural network based on the average val-
ues of the signals within the given genomic range. The architecture
of the average-based pure MLP model can be obtained by removing
the hierarchical convolutions from regCNN, i.e., MLP has only two
dense layers (hidden layer size = 1024) on the average values.
Dropout layers were used to boost the performance of pure MLP
during the training phase (dropout = 0.2). We also ensured the
model training convergence of pure MLP using the learning curve
technique. As shown in Fig. 4-a, pure MLP converges in the training
epochs and is free of model-overfitting, implying that the compar-
ison with regCNN is fair. We evaluated the performance of pure
MLP and regCNN on the reserved test set using ROC curves and
PRCs (Fig. 4-b and 4-c). The comparison shows that regCNN obtains
a 4.7%/3.8% improvement in test auROC/auPRC values (regCNN
92.5%/93.3% vs. pure MLP 87.8%/89.5% in auROC/auPRC, respec-
tively) by the local pattern summarizing convolutional layers. In
addition, regCNN outperforms the pure MLP model by 5.3% in test
accuracy values (regCNN 84.5% vs. pure MLP 79.2%, see Table 2 for
other metrics) due to the local summarizing patterns. In summary,
by considering the local patterns of various transcription
regulation-related data, regCNN is confirmed to outperform the
average value-based pure MLP model.

3.5. regCNN outperforms existing Drosophila CRM prediction methods
on the test set

Various CRM prediction tools have been developed over the
decades. We compared the performance of regCNN with other
existing CRM prediction tools. The performance of different CRM
prediction tools can be fairly estimated using the reserved test
set. We compared the performance of regCNN on this test set with
Table 1
The summary of the cross-validation (CV) results and the test set result for regCNN.

regCNN auROC auPRC Accuracy Sensitivity Precision F1 Specificity

CV mean 92.4% 93.1% 84.2% 85.0% 84.6% 84.8% 83.2%
Test set 92.5% 93.3% 84.5% 84.3% 85.9% 85.1% 84.7%
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Table 2
The summary of the test results of regCNN and the pure MLP model.

Method auROC auPRC Accuracy Sensitivity Precision F1 Specificity

regCNN 92.5% 93.3% 84.5% 84.3% 85.9% 85.1% 84.7%
Pure MLP 87.8% 89.5% 79.2% 78.3% 81.2% 79.8% 80.1%
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10 currently available Drosophila CRM prediction tools (the pure
MLP model, gkm-SVM [49], cisModule [13], cisModScan [50],
MCAST [14], ClusterBuster [15], MultiModule [13], MorphMS
[11], cisPlusFinder [12], and ComSPS [51]). We excluded tools that
are no longer available to the public in this comparison. For algo-
rithms developed based on the concept of sequence alignment
(MultiModule, cisPlusFinder, and MorphMS), we gathered the mul-
tiple alignment results of Drosophila melanogaster and Drosophila
persimilis from the UCSC genome browser database [38]. Mor-
sphMS provides two log-likelihood ratio (LLR) scores against differ-
ent null models. Both LLR1 and LLR2 were included in this
comparison. For tools that require TF binding motif information
(cisModScan, Cluster-Buster, MCAST, MorphMS, and ComSPS), we
adopted the same 158 TF binding PWMs used in regCNN as the
inputs. We further compared regCNN with the local k-mer feature
scoring tool named gapped-kmer-SVM classifier (gkm-SVM [49]).
gkm-SVM utilizes the noise-resistant gapped k-mer features that
convey essential DNA properties of the given sequence to identify
functional elements in the genome. We downloaded LS-GKM [52],
which is the newly updated gkm-SVM version for large datasets,
and evaluated its performance on the reserved test set. In all tools,
the fly genome sequences were downloaded from Flybase
(dmel_r6.03_FB2014_06). Default parameters were applied in the
CRM prediction process for each tool. And for most of the tools,
the default sliding window sizes of 200 bps or 500 bps were both
tested since most tools were designed with default window sizes
of 200 bps and 500 bps [9].

The comparison results of regCNN with other tools are summa-
rized in Fig. 5. Different tools were evaluated on the reserved test
set, and the ROC curves and PRCs were generated. On this test
set, regCNN reveals an auROC value of 92.5%, an auPRC value of
93.3%, and an accuracy value of 84.5%. Compared with the pure
MLP model (auROC = 87.8%, aurPRC = 89.5%, accuracy = 79.2%), a
Fig. 5. (a)/(b) ROC curve/PRC comparison between regC
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4.7%/3.8%/5.3% improvement in the auROC/auPRC/accuracy value
can be observed for regCNN. And regCNN also outperforms gkm-
SVM (auROC = 81.2%, auPRC = 82.2%, accuracy = 63.8%) by
11.3%/11.1%/20.7% in auROC/auPRC/accuracy values. In addition,
more than 28.6% auROC value improvements (92.5%–63.9%, for
the best existing tool MorphMS using LLR1 with the window size
of 200) in CRM discrimination are achieved compared with the rest
of the prediction tools (see Fig. 5). Notice that tools based on mere
motif search (cisModScan, Cluster-Buster, cisModule, MCAST, and
ComSPS) only improve the performance slightly over random
guesses on this test set. This may result from the TF composition
combinatorial issue that hinders these tools from performing well
when considering the combinations of more than two TFs. And
tools (regCNN and pure MLP model) that utilize the epigenetic pro-
filing information and TF binding preference can achieve much
better results on genomic CRM identification. Based on the perfor-
mance comparison on the test set, we conclude that by integrating
more comprehensive genomic datasets using deep learning,
regCNN generalizes well to genomic sequences and outperforms
current existing tools.

4. Discussions

4.1. Using both TF binding preference and epigenetic profiling data can
boost CRM identification accuracy

Current CRM identification tools usually rely on the enrichment
of either the TF binding site data or epigenetic profiling signals.
regCNN integrates both the TFBS data and epigenetic profiling
datasets (nucleosome-free and nucleosome-variant sites,
chromatin-binding protein target sites, and histone modification
information) along with sequence conservation data to improve
the CRM screening performance. Epigenetic profiling has been
NN and other CRM prediction tools on the test set.
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shown to be closely related to the transcription mediator complex
formation in metazoa species [1,31,53]. Hence, we next show that
considering the local patterns of both TFBS and epigenetic profiling
can enhance the CRM discrimination power. For this purpose, we
trained an epigenetic profiling-depleted regCNN model using only
the TFBS data and conservation scores on the training/validation
set. And we also trained a TFBS-depleted regCNN model using only
the epigenetic profiling data and conservation scores. Similar net-
work architectures were retained in the epigenetic profiling-
depleted model and the TFBS-depleted model. The results are plot-
ted in Fig. 6. We used the learning curve technique to affirm the
network convergence and well-fitting of the epigenetic profiling-
depleted model (Fig. 6-a) and the TFBS-depleted model (Fig. 6-b).
We then tested the performance of the epigenetic profiling-
depleted model and the TFBS-depleted model on the test set. As
shown in Fig. 6-c and 6-d, regCNN (auROC/auPRC = 92.5%/93.3%)
obtains around 4% auROC improvement and 3% auPRC enhance-
ment over both the epigenetic profiling-depleted model (auROC/a
uPRC = 88.9%/90.2%) and the TFBS-depleted model (auROC/auPRC =
88.5%/89.9%). The accuracy value of regCNN (accuracy = 84.5%) is
also around 4% better than the epigenetic profiling-depleted model
(accuracy = 80.2%) and the TFBS-depleted model (accuracy = 80.3%,
see Table 3). Summarizing the performance metrics and the
auROC/auPRC results, we conclude that considering the summariz-
ing patterns in both the epigenetic profiling and TFBSs can boost
CRM identification since they can reveal more subtleties in the
transcription mediator complex formation.
Fig. 6. The comparison of regCNN, the epigenetic profile-depleted model and the TFBS
profiling-depleted model. (b) The 5-fold cross-validation learning curves of the TFBS-dep
the epigenetic profiling-depleted model on the test set.
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4.2. regCNN is robust against the resizing window sizes

regCNN deals with the variable-length input sequences by using
the resizing operation. In Stage I of regCNN, the retrieved experi-
mental data of the input chromosomal region are first zero-
padded to 512 bps if the region is shorter than 512 bps. On the
other hand, the data are down-sampled to 512 bps using the
openCV interpolation package [45] if the region is longer than
512 bps. We refer to this resizing length threshold as the resizing
windoww. In the default implementation of regCNN,wwas chosen
to be 512. We checked the robustness of regCNN over different
resizing window w’s in this subsection. In this test, w is chosen
to iterate through 28;29 (the default w), and 210. regCNN with dif-
ferent resizing window w were first trained and validated on the
training/validation set. And the ROC curves and PRCs were then
used to evaluate the performance of the regCNN models with dif-
ferent resizing window w’s on the set-aside test set. The results
are shown in Fig. 7. From the learning curves between the training
results and the validation results of models with different resizing
window w’s, these models were ensured to be convergent and
well-trained, making the comparison fair and complete (Fig. 7-a).
And on the test set, regCNN with w = 256 (accuracy = 83.4%,
auROC = 91.5%, auPRC = 92.6%) shows around 1% accuracy and
auROC/auPRC value decrease while the metrics are quite similar
in models with w = 512 and 1024 (accuracy = 84.5%/84.1%,
auROC = 92.5%/92.5%, and auPRC = 93.3%/93.5% for w =
512/1024, respectively. See Table 4, Fig. 7-b, and 7-c). Therefore,
-depleted model. (a) The 5-fold cross-validation learning curves of the epigenetic
leted model. (c)/(d) The ROC curves/PRCs of regCNN, the TFBS-depleted model, and



Table 3
The performance of regCNN versus the epigenetic profiling-depleted model and TFBS-depleted model on the test set.

Models auROC auPRC Accuracy Sensitivity Precision F1 Specificity

regCNN 92.5% 93.3% 84.5% 84.3% 85.9% 85.1% 84.7%
TFBS-depleted model 88.5% 89.9% 80.3% 81.6% 81.0% 81.3% 79.0%
Epigenetic profiling-depleted model 88.9% 90.2% 80.2% 79.2% 82.3% 80.8% 81.3%

Fig. 7. regCNN is robust against the resizing window w in the data retrieval stage. (a) The learning curve of regCNN with resizing window w = 256, 512, 1024. (b) The ROC
curves of the regCNN models with w = 256, 512, 1024 on the test set. (c) The PRCs of the regCNN models with w = 256, 512, 1024 on the test set.

Table 4
The performance of regCNN with different resizing window w’s on the test set.

w auROC auPRC Accuracy Sensitivity Precision F1 Specificity

256 91.5% 92.6% 83.4% 83.6% 84.6% 84.1% 83.3%
512 92.5% 93.3% 84.5% 84.3% 85.9% 85.1% 84.7%
1024 92.5% 93.5% 84.1% 83.3% 85.9% 84.6% 85.0%
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regCNN is robust against different resizing window sizes as long as
a sufficient length for base-by-base transcription regulation-
related feature information is preserved.

4.3. The impact of variable CRM lengths on CRM prediction

CRMs in metazoa are of variable length. Hence, how the input
CRM lengths impact the performance of a CRM identification
model is of concern. We divided the test set into three different
groups to evaluate the length-induced performance variation of
regCNN: short CRMs (lengths < 300 bps), medium-length CRMs
(lengths between 300 and 600 bps), and long CRMs (lengths >

600 bps). The performance metrics of regCNN calculated on the
short CRMs, medium-length CRMs, and long CRMs are summarized
in Table 5. regCNN showed 8.2%/11.0% lower auROC values in the
short CRM group when compared with median-length/long test
CRMs (auROC = 83.0%, 91.2%, 94.0% in the short CRMs,
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medium-length CRMs, and long CRMs, respectively). The ill CRM
prediction performance on short CRMs may partly be due to the
sparsity of short CRMs in the genome. Only 454 short CRMs were
curated in the REDfly database, making it hard for models to learn
the identification patterns in the short CRM group. It is also noted
that longer sequences tend to be better classified by regCNN since
longer CRMs usually provide richer local patterns that can help
identify functional CRMs. We further computed the length-
impact performance deterioration of the pure MLP model. Much
worse performance decrease was observed (15.5%/14.7% auROC
decrease compared with medium-length/long CRMs) in the short
CRMs for the pure MLP model (auROC = 72.7%, 88.2%, 87.4% in
the short CRMs, medium-length CRMs, and long CRMs, respec-
tively). Similar trends can be observed in PRCs (see Table 5). In
summary, regCNN shows lower length-induced performance dete-
rioration than the pure MLP model and can provide better CRM
identification in all CRM groups of different lengths.



Table 5
The performance summary of regCNN and pure MLP on CRMs with different sequence lengths from the test set. We grouped the CRMs in the test set into three categories to
evaluate the length impact on the performance: short CRMs (< 300 bps), medium-length CRMs (300–600 bps), and long CRMs (> 600 bps).

CRM Test Group Model auROC auPRC Accuracy Sensitivity Precision F1 Specificity

short CRMs regCNN 83.0% 85.4% 74.4% 69.6% 78.0% 73.6% 79.5%
pure MLP 72.7% 74.6% 67.8% 58.7% 73.0% 65.1% 77.3%

medium-length CRMs regCNN 91.2% 92.4% 82.6% 82.0% 82.8% 82.4% 83.1%
pure MLP 88.2% 90.2% 80.4% 77.9% 81.8% 79.8% 82.8%

long CRMs regCNN 94.0% 94.4% 87.2% 87.2% 89.3% 88.3% 87.1%
pure MLP 87.4% 89.2% 78.2% 79.4% 80.9% 80.2% 76.8%
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4.4. regCNN is robust against different data partition schemes

In applying deep learning or machine learning methods to bio-
logical applications, there is a common pitfall of sample feature
sharing that frequently occurs in genomes [54]. We estimated
the impact of this issue for regCNN. The inflated test accuracy of
many biological deep learning models is mainly caused by the data
information leakage of share features between the training set and
the test set [55]. Therefore, in the preparation of the training/vali-
dation set and the test set used in this research, we have enforced a
restriction that sequences in the test set have no overlapping with
any sequences in the training/validation set to avoid this data
snooping issue. Those sequences that overlap with some sequence
in the test set were removed from the training/validation set to
avoid data snooping. Therefore, the data snooping issue that causes
Fig. 8. regCNN is robust against different data partition schemes. (a) The learning curv
learning curves of regCNN trained with with the target gene-based data partition sche
partition schemes. (d) The PRC comparison of the regCNN models trained under differen
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model generalization deterioration was minimized in the original
construction of regCNN.

We have further used the chromosome-based and target gene-
based data partition schemes to evaluate the level of reduced
model generalization caused by data contamination. In the
chromosome-based data partition scheme, positive and negative
sequences on the X chromosome were reserved as the test set.
Under the chromosome-based data partition scheme, 22,925 posi-
tive CRMs and 21,206 negative sequences were included in the
training/validation set. 5,194 positive CRMs and 4,643 negative
sequences were set aside in the test set. On the other hand, in
the target gene-based data partition scheme, we randomly picked
215 genes and separated their regulating CRMs and closest nega-
tive non-regulating sequences as the test set. In total,
25,567/23,336 positive/negative sequences were used in the
es of regCNN trained with the chromosome-based data partition scheme. (b) The
me. (c) The ROC curve comparison of the regCNN models trained under different
t partition schemes.
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training-validation set, and 2,552/2,513 positive/negative
sequences were cut out to be the test set under the target gene-
based data partition scheme. We also utilized the learning curve
and fivefold cross-validation techniques to ensure proper model
fitting and convergence under these two data partition schemes
(See Fig. 8-a and 8-b). As shown in Fig. 8-c and 8-d, the test
auROC/auPRC values of regCNN are 91.8%/92.5% under the
chromosome-based data partition scheme, 93.5%/93.5% under the
target gene-based data partition scheme, and 92.5%/93.3% under
the default random (training-vs.-test) non-overlapping data parti-
tion scheme. Under all data partition schemes, regCNN all convey
high performance in terms of test auROC/auPRC values, verifying
the excellent model generalization of regCNN to newly given
sequences. In summary, regCNN is robust and generalizes well to
genomic sequences in Drosophila.
4.5. The individual dataset importance in the regCNN model

In regCNN, diverse epigenetic datasets, conservation scores, and
TFBS motif scores were integrated. Through hierarchical convolu-
tion operations, local patterns for each dataset were learned and
utilized to identify potential CRMs. We further inferred the feature
importance provided by these integrated epigenetic datasets and
TFBS scores in regCNN using the SHAP (SHapley Additive exPlana-
tions) tool [56]. SHAP was designed by the Shapley value concept
in game theory to explain the importance of feature inputs to the
obtained model. We first performed the SHAP analysis on the
base-by-base scores of each dataset integrated in regCNN. Then
the final SHAP values for individual datasets were summarized
by summing the base-by-base SHAP values in each CRM. The final
SHAP values of each dataset indicate the feature importance pro-
vided by the dataset local patterns in discriminating potential
CRMs from random sequences. The top 10 dataset SHAP values in
regCNN are plotted in Fig. 9. As shown in Fig. 9, all five genres of
transcription-regulation related datasets contribute to these top
ten dataset SHAP values. Some of the well-known features and epi-
genetic marks can be found in the top 10 important datasets
[25,31]: nucleosome-free sites (which indicate open chromatin
structures), sequence conservation, H3K4me3/H3K9ac ChIP scores
(which are enriched in active promoters), and H3K4me1 ChIP
scores (which are associated with active enhancers). Therefore,
these learned representative CRM features coincide with previous
transcriptional regulation studies. From the explainable AI analysis
on regCNN, we conclude that regCNN identifies potential CRMs
based on biologically interpretable patterns. Notice that regCNN
Fig. 9. The inferred dataset feature importance of regCNN represented in SHAP
values.
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integrates diverse epigenetic experiments conducted in different
cell types. For each epigenetic mark, there are multiple experi-
ments conducted under different cellular conditions. Furthermore,
in the training process, regCNN was trained on literature-curated
Drosophila CRMs verified by report-assay experiments under dif-
ferent cellular conditions. The cell type mixtures in both the epige-
netic data and the CRM ground-truth dataset guided regCNN to
identify all potential CRMs during the training process. Therefore,
the devised model summarizes the patterns from diverse cell-
type-specific features to identify all potential CRMs in different cel-
lular conditions. The specific functional cellular conditions for each
CRM are yet to be determined by further investigation in CRM-
gene relations.
5. Conclusions

Cis-regulatory modules (CRMs), or the modular functional DNA
sequences, play essential roles in metazoa transcriptional regula-
tion. In this research, we developed and designed a novel genomic
CRM identification method called regCNN. regCNN considers and
extracts the base-by-base local summarizing patterns in transcrip-
tion factor binding and epigenetic profiles. We demonstrated that
the designed local pattern extraction convolution architecture
(auROC = 92.5%) helps improve at least 4.7% CRM discrimination
auROC values over the traditional average-based pure multi-layer
perceptron method (auROC = 87.8%). And by considering both
the TFBS binding motifs and the epigenetic profiling datasets, 4%
auROC improvement can be obtained over the epigenetic
profiling-depleted model and the TFBS-depleted model. Moreover,
regCNN outperforms all currently available Drosophila CRM predic-
tion tools by at least 11.3% auROC values on the collected test set.
We also showed that regCNN generalizes well to genomic
sequences by applying different test set partition schemes. Finally,
regCNN is validated to be robust against its resizing window
hyperparameter in dealing with the variable lengths of CRMs. We
believe that the designed algorithm can precisely identify genomic
modular transcriptional regulatory DNA sequences and thus facil-
itates future research on metazoa transcriptional regulation.
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