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ABSTRACT

Here we present ICARUS, a web server to en-
able users without experience in R to undertake
single cell RNA-seq analysis. The focal point of
ICARUS is its intuitive tutorial-style user interface,
designed to guide logical navigation through the mul-
titude of pre-processing, analysis and visualization
steps. ICARUS is easily accessible through a ded-
icated web server (https://launch.icarus-scrnaseq.
cloud.edu.au/) and avoids installation of software on
the user’s computer. Notable features include the fa-
cility to apply quality control thresholds and adjust
dimensionality reduction and cell clustering param-
eters. Data is visualized through 2D/3D UMAP and
t-SNE plots and may be curated to remove poten-
tial confounders such as cell cycle heterogeneity.
ICARUS offers flexible differential expression anal-
ysis with user-defined cell groups and gene set en-
richment analysis to identify likely affected biological
pathways. Eleven organisms including human, dog,
mouse, rat, zebrafish, fruit fly, nematode, yeast, cat-
tle, chicken and pig are currently supported. Visual-
ization of multimodal data including those generated
by CITE-seq and the 10X Genomics Multiome kit is in-
cluded. ICARUS incorporates a function to save the
current state of analysis avoiding computationally in-
tensive steps during repeat analysis. The complete
analysis of a typical single cell RNA-seq dataset by
inexperienced users may be achieved in 1–2 h.

GRAPHICAL ABSTRACT

INTRODUCTION

Many single cell RNA-seq data analysis software require
knowledge of programming in R or python. We present
ICARUS (Interactive single cell RNA-seq analysis with R-
shiny using Seurat), an application for single cell RNA-
seq (scRNA-seq) analysis accessible through standard web
browsers, with an intuitive tutorial style interface and user
control over a wide range of parameters at each analysis
step (Table 1 and Figure 1). ICARUS functionality is based
on the Seurat R package which contains the most compre-
hensive tool set for scRNA-seq data analysis with the lat-
est methodologies and frequent updates (1–4). ICARUS im-
proves on previous analysis and visualization software tools
including 10X Genomics Loupe cell browser or third-party
tools such as Cerebro (5), NASQAR (6), Alona (7), single
cell explorer (8) and others in three main areas: (i) intu-
itive tutorial-style user interface to guide logical navigation
through the multitude of pre-processing, analysis and visu-
alization steps; (ii) extended functionality and increased di-
versity of analysis tools to accommodate the rapidly evolv-
ing singe cell RNA-seq research field; (iii) easy accessibil-
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Table 1. Summary of R packages used for each ICARUS step

Step in ICARUS Main command R packages Reference

Quality control - Seurat (1–4)
Integration of second dataset Seurat::FindIntegrationAnchors

Harmony::RunHarmony
Seurat,
Harmony

(1–4,22)

Dimensionality reduction Seurat::FindVariableFeatures
Seurat::NormalizeData
Seurat::ScaleData
Seurat::RunPCA

Seurat (1–4)

Clustering Seurat::FindNeighbours
Seurat::FindClusters
Seurat::RunUMAP
Seurat::RunTSNE

Seurat (1–4)

Data correction Seurat::CellCycleScoring
Seurat::ScaleData(vars.to.regress)

Seurat (1–4)

Labelling clusters SingleR::SingleR
Celldex::BlueprintEncodeData
Celldex::DatabaseImmuneCellExpressionData
Celldex::HumanPrimaryCellAtlasData
Celldex::ImmGenData
Celldex::MonacoImmuneData
Celldex::MouseRNAseqData
Celldex::NovershternHematopoieticData

SingleR, Celldex (12)

Multimodal analysis - Seurat (1–4)
Differential expression analysis Seurat::FindMarkers Seurat (1–4)
Pathway analysis ClusterProfiler::gseGO

ClusterProfiler::gseKEGG
ClusterProfiler::gseWP
ReactomePA::gsePathway

ClusterProfiler,
ReactomePA

(20,21)

Figure 1. Flow chart of pre-processing, processing and analysis steps performed in ICARUS.

ity through a dedicated web server (https://launch.icarus-
scrnaseq.cloud.edu.au/) that avoids installation of software
on the user’s computer.

MATERIALS AND METHODS

Input data

ICARUS requires a matrix of UMI counts for each gene per
cell. Input data may be in the form of a tab delimited table
with cells as columns and gene features as rows. Seurat R
objects (RDS file) can also be loaded. Alternatively, 10X
CellRanger output data files (barcodes.tsv, features.tsv and
matrix.tsv) may be directly loaded. For data privacy rea-
sons, the user data is not retained on the server after the
user-session is terminated.

Pre-processing

The user may apply various quality control parameters
to the dataset with ICARUS including, the number of
unique genes detected per cell, the number of molecules
detected per cell, mitochondrial and ribosomal percentage.
Cells with a low number of unique genes, low number of
molecules and a high mitochondrial percentage are indica-
tive of perforated cells or low-quality libraries that have un-
dergone a loss of cytoplasmic RNA. It is recommended to
remove these cells before downstream steps to avoid forma-
tion of spurious clusters that may mask biological interpre-
tation during analysis. A scaling and normalization step is
then applied to account for differences in sequence cover-
age that arise from cDNA capture errors or PCR ampli-
fication efficiency differences. ICARUS integrates Seurat’s
dimensionality reduction workflow with principal compo-
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nent analysis prioritising a set of highly variable genes (user-
selectable, 2000 genes default) (3). For visualization of the
sources of cell heterogeneity across the dataset, a dimen-
sionality reduction heatmap and loadings plot displays top
genes within each dimension. Further, a plot of variance
explained by successive principal components can be help-
ful in determining the number of dimensions that captures
the majority of the variance in the dataset (often referred to
as the ‘elbow point’). The elbow point is the recommended
number of dimensions to use for downstream cell cluster-
ing.

Processing

ICARUS performs clustering with graph-based commu-
nity detection. Briefly, a graph of k-nearest neighbours
is formed between cells in high dimensional space where
each cell is a node that is connected to its k-nearest neigh-
bours. The edges of every connection are then weighted
based on its similarities to neighbouring cells using the
Jaccard-similarity algorithm and a community detection al-
gorithm is used to define clusters (3). Clusters are visual-
ized with 2D or 3D UMAP and t-SNE plots. ICARUS
offers user control over clustering parameters including
number of dimensions, number of k-nearest neighbours for
graph construction and choice of clustering algorithm (ei-
ther Louvain, SLM or Leiden). UMAP parameters (near-
est neighbours and minimum distance) and t-SNE param-
eters (perplexity and number of iterations) can also be
adjusted.

A data correction step allows removal of potential tech-
nical and biological confounders that could mask biological
signal, such as cell cycle heterogeneity. For removal of cell
cycle effects, a cell cycle score is first assigned to each cell
based on its expression of G2/M and S phase markers. If
the cell displays low or no expression of these markers, then
the cell is likely not cycling (G1 phase). Each cell cycle score
is modelled against highly variable genes and a corrected
expression matrix is generated for dimensionality reduction
and clustering (2,9,10). Alternatively, the user may opt to
remove the effects of user selected gene(s) or an entire gene
set (MsigDB gene sets) (11). In this case, average normal-
ized gene counts of each gene of interest are computed and
modelled against all expressed genes. The residuals of the
model are scaled and centred and used for dimensionality
reduction and clustering (2).

Marker genes for each cluster may be compared against
known cell marker databases to assign a cell type to exist-
ing clusters. ICARUS utilizes the singleR and Celldex R
packages (12) to annotate cell clusters against cell marker
databases including Blueprint Encode (13), Database of
immune cell expression (DICE) (14), Human primary
cell atlas (15), Immunologic genome project (ImmGen)
(www.immgen.org), Monaco immune data (16), Mouse
RNAseq Dataset (17) and Novershtern Hematopoietic
data (18).

Analysis

Visualization of gene expression across clusters is helpful
in determining the main drivers of cluster formation and

cell heterogeneity. ICARUS provides visualization of nor-
malised and scaled gene counts as UMAP/t-SNE plots and
violin plots. Further, multiple genes or gene sets (MsigDB)
may be visualized as average normalised gene count be-
tween all selected genes.

ICARUS enables users to perform pairwise differential
expression tests between cell clusters of interest or be-
tween samples within a cell cluster and output a list of
differentially expressed genes. Statistical significance test-
ing between pairwise observations is conducted with the
Wilcoxon rank sum test (Wilcoxon–Mann–Whitney test)
with Bonferroni multiple testing correction. The list of
differentially expressed genes are then tested for enriched
terms (gene set enrichment analysis) to identify poten-
tial affected biological pathways (19). Gene set enrichment
and visualization are performed using ClusterProfiler (20)
and ReactomePA (21) R packages. ICARUS currently sup-
ports eleven model organisms and livestock species includ-
ing human (Homo sapiens), dog (Canis lupus familiaris),
mouse (Mus musculus), rat (Rattus norvegicus), zebrafish
(Danio rerio), fruit fly (Drosophila melanogaster), nematode
(Caenorhabditis elegans), yeast (Saccharomyces cerevisiae),
cattle (Bos taurus), chicken (Gallus gallus) and pig (Sus
scrofa).

Graphical visualization of enriched terms includes a dot
plot ordered by gene ratio (number of genes in enriched
gene set/total number of genes in gene set), a gene concept
network showcasing genes involved with the enriched terms
and an enrichment map consisting of a network of enriched
terms with edges connecting overlapping gene sets.

Occasionally, significant heterogeneity exists within com-
puted cell clusters and differential expression tests may be
confounded by the broad cluster classification. ICARUS
provides the user the option to interactively select cus-
tomised cell groups using a lasso select function for differen-
tial expression tests. This function may provide additional
power to detect unique gene expression profiles in rare cell
types that were previously obscured in a wider cluster of
cells.

Advanced features

Integration of a second dataset. Comparisons between dif-
ferent scRNA-seq samples (i.e. control versus treatment
samples or samples across different batches) are challeng-
ing due to technical differences in library preparation and
batch effects (e.g. cells on different microfluidic chips, cells
harvested at different time points or cells in different se-
quencing lanes). Simply merging gene expression matrices
of samples from different conditions/datasets/batches may
result in spurious cell clustering. Instead, methods for data
integration rely on identification of a set of shared vari-
able genes from each dataset to group cells with common
biological states. In brief, pairs of cells from each dataset
that exists within similar high dimensional space are identi-
fied through either Canonical Correction Analysis, Recip-
rocal PCA or Harmony. A neighbour graph is then con-
structed to compute shared neighbour overlap between cells
to output a combined integrated dataset (2,22). The aim
of integration is to enable successful grouping of cells from
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Table 2. Example datasets available in ICARUS

Dataset Available from. . .

2,700 Human peripheral blood
mononuclear cells (Seurat
guided clustering tutorial
dataset)

10x genomics
https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k filtered gene bc matrices.tar.gz

500 human peripheral blood
mononuclear cells

10x genomics
https://cf.10xgenomics.com/samples/cell-exp/6.1.0/500 PBMC 3p LT Chromium Controller/
500 PBMC 3p LT Chromium Controller filtered feature bc matrix.tar.gz

5,000 cells from a combined
cortex, hippocampus and
subventricular zone of an E18
mouse

10x genomics
https://cf.10xgenomics.com/samples/cell-exp/3.0.2/5k neuron v3/
5k neuron v3 filtered feature bc matrix.tar.gz

8,617 cord blood mononuclear
cells (Seurat multimodal data
tutorial), this dataset also
contains CITE-seq data for 11
surface proteins.

NCBI GEO
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE100866

10k Human PBMCs
Multiplexed, 2 CMOs (CellPlex)

10x genomics
https://www.10xgenomics.com/resources/datasets/10-k-human-pbm-cs-multiplexed-2-cm-
os-3--1-standard-6--0-0

one condition/dataset/batch with the same cell types of the
other condition/dataset/batch.

ICARUS offers users the ability to upload a second
dataset for integration with the first dataset. Quality con-
trol functionality as per described in the preprocessing sec-
tion is also available for the second dataset. Integration may
be performed with user selected parameters including the
choice of reduction method (Canonical Correction Analy-
sis, Reciprocal PCA or Harmony) and strength of integra-
tion (k anchors).

Support for multimodal analysis. Multimodal analysis
refers to the simultaneous measurements of several data
types from the same cell. For example, methodologies in-
cluding CITE-seq (23), cell hashing oligos (24) and sin-
gle cell RNA-seq plus ATAC-seq (10X multiome kit) allow
measurements of both single cell transcriptomes and cell-
surface proteins of the same cell. Multimodal data in the
form of a tab delimited count matrix with cells as columns
(cells must be matching those of the scRNA-seq dataset)
and multimodal features as rows can be uploaded into
ICARUS. Multimodal data is visualised alongside scRNA-
seq data to ensure easy comparison and interpretation.

Local save and continue functionality. ICARUS features
local save and continue functionality. At each analysis step
the user may opt to save their progress as a Rdata file con-
taining the Seurat R object and the current working envi-
ronment. The saved file can then be loaded at the CON-
TINUE interface at the ‘Introduction’ tab to resume analy-
sis. The save and continue feature bypasses potential long
computationally intensive processing steps during repeat
analysis. Further, the user is able to reproduce all parame-
ters that were used to complete each analysis step and repli-
cate plots and tables. An automatically updated log will
record the user’s input parameters. Additionally, the Seurat
R object may be saved individually and this may be shared
across sites/teams to facilitate collaboration. The Seurat R
object can be loaded into RStudio for a more in-depth anal-
ysis with a variety of supporting scRNA-seq analysis pack-
ages available in the R environment.

Downloadable plots and tables. All plots and tables pro-
duced in ICARUS are downloadable. Plots may be down-
loaded with user defined height and width and are available
in 6 different file formats including png, jpeg, tiff, png, bmp
and svg. Tables are downloaded as comma separated values
(csv) files.

RESULTS

To demonstrate the utility of ICARUS, five example
datasets listed in Table 2 are available within ICARUS.
These include a dataset of 2700 peripheral blood mononu-
clear cells (PBMC) that was used as demonstration for the
Seurat guided clustering tutorial vignette (https://satijalab.
org/seurat/articles/pbmc3k tutorial.html). Using this 2,700
PBMC dataset, a quality control filter was first applied re-
moving low quality cells with unique gene counts more than
2,500 or less than 200 and cells with over 5% mitochon-
drial content. Dimensionality reduction with PCA was per-
formed prioritising 2,000 highly variable genes. Cell cluster-
ing was performed with the first 10 dimensions, a k-nearest
neighbour value of 20 and the Louvain community detec-
tion algorithm. ICARUS was able to successfully reproduce
the UMAP/t-SNE plots shown in the Seurat clustering vi-
gnette (Figure 2A) and differentiate PBMC cells into 6 cell
types including T cells CD4+, naı̈ve; T cells CD4+, TFH; B
cells, naı̈ve; NK cells; Monocytes, CD14 + and Monocytes,
CD16+ (Figure 2B). An example of differential expres-
sion analyses between B cells and T cells CD4+, naı̈ve cell
clusters showcased top differentially expressed genes com-
prising of HLA genes (HLA-DRB1, HLA-DQA1, HLA-
DPB1, HLA-DPA1) and CD79. Gene set enrichment anal-
yses revealed enriched terms including MHC protein com-
plex assembly, antigen processing and presentation and
peptide antigen assembly (Figure 3).

DISCUSSION

This manuscript describes ICARUS, a web server applica-
tion for guided processing and analysis of single cell RNA-
seq data. The intended goal for ICARUS is to provide
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Figure 2. Comparison of cell clustering and annotation. ICARUS employs the Seurat clustering algorithm. Clustering outcome comparison between Seurat
clustering tutorial vignette (A) and ICARUS (B) on a dataset of 2700 Human PBMCs. Cell cluster labelling in ICARUS by comparison of cluster marker
genes to the Database of Immune Cell Expression.
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Figure 3. User selected differential expression analyses and gene set enrichment. (A) ICARUS provides the user the option to interactively select customised
cell groups using a lasso select function for differential expression tests. (B) Extended visualizations of enriched terms (gene set enrichment analysis)
including a dot plot ordered by gene ratio, a gene concept network showcasing genes involved with enriched terms and an enrichment map consisting of
a network of enriched terms with edges connecting overlapping gene sets. Enriched terms may also be visualised individually as gene pathways (B cell
activation pathway shown in figure).
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users a platform to enable logical and stepwise interpreta-
tion of scRNA-seq data without the requirement of previ-
ous programming knowledge. ICARUS combines a tutorial
style interface with graphical outputs at every step to re-
duce the steep learning curve associated with scRNA-seq
data processing and analysis. Compared to other similar
tools, ICARUS has flexible functionality and includes addi-
tional tools to enable biological interpretation and accom-
modate the rapidly evolving scRNA-seq research field. A
typical scRNA-seq dataset containing 8000 cells with 4000
UMIs per cell may be analysed in ICARUS within 1–2 h us-
ing commodity hardware. Experienced users may utilise the
downloadable R objects for a more in-depth analysis using
the multitude of supporting scRNA-seq and other analysis
packages available in the R environment.

DATA AVAILABILITY

ICARUS is available at https://launch.icarus-scrnaseq.
cloud.edu.au/. The application is free and open to all users
with no login requirement. Alternatively, a docker ver-
sion is accessible through the Docker Hub under the name
‘icarusscrnaseq/icarus’.

ACKNOWLEDGEMENTS

We thank the New Zealand–China Non Communicable
Diseases Research Collaboration Centre (NCD CRCC).
This web server was supported by the Australian National
eResearch Collaboration Tools and Resources (Nectar Re-
search Cloud) initiative.

FUNDING

New Zealand Ministry of Business Innovation and Employ-
ment funding for New Zealand–China Non Communicable
Diseases Research [UOOX1601]. Funding for open access
charge: New Zealand–China Non Communicable Diseases
Research [UOOX1601].
Conflict of interest statement. None declared.

REFERENCES
1. Hao,Y., Hao,S., Andersen-Nissen,E., Mauck,W.M. 3rd, Zheng,S.,

Butler,A., Lee,M.J., Wilk,A.J., Darby,C., Zager,M. et al. (2021)
Integrated analysis of multimodal single-cell data. Cell, 184,
3573–3587.

2. Butler,A., Hoffman,P., Smibert,P., Papalexi,E. and Satija,R. (2018)
Integrating single-cell transcriptomic data across different conditions,
technologies, and species. Nat. Biotechnol., 36, 411–420.

3. Satija,R., Farrell,J.A., Gennert,D., Schier,A.F. and Regev,A. (2015)
Spatial reconstruction of single-cell gene expression data. Nat.
Biotechnol., 33, 495–502.

4. Stuart,T., Butler,A., Hoffman,P., Hafemeister,C., Papalexi,E.,
Mauck,W.M. 3rd, Hao,Y., Stoeckius,M., Smibert,P. and Satija,R.
(2019) Comprehensive integration of single-cell data. Cell, 177,
1888–1902.

5. Hillje,R., Pelicci,P.G. and Luzi,L. (2019) Cerebro: interactive
visualization of scRNA-seq data. Bioinformatics, 36, 2311–2313.

6. Yousif,A., Drou,N., Rowe,J., Khalfan,M. and Gunsalus,K.C. (2020)
NASQAR: a web-based platform for high-throughput sequencing
data analysis and visualization. BMC Bioinf., 21, 267.

7. Franzén,O. and Björkegren,J.L.M. (2020) alona: a web server for
single-cell RNA-seq analysis. Bioinformatics, 36, 3910–3912.

8. Feng,D., Whitehurst,C.E., Shan,D., Hill,J.D. and Yue,Y.G. (2019)
Single cell explorer, collaboration-driven tools to leverage large-scale
single cell RNA-seq data. BMC Genomics, 20, 676.

9. Tirosh,I., Izar,B., Prakadan,S.M., Wadsworth,M.H., Treacy,D.,
Trombetta,J.J., Rotem,A., Rodman,C., Lian,C., Murphy,G. et al.
(2016) Dissecting the multicellular ecosystem of metastatic melanoma
by single-cell RNA-seq. Science (New York, N.Y.), 352, 189–196.

10. Scialdone,A., Tanaka,Y., Jawaid,W., Moignard,V., Wilson,N.K.,
Macaulay,I.C., Marioni,J.C. and Göttgens,B. (2016) Resolving early
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