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Abstract

CD25+ regulatory T cells develop in the thymus (nTregs), but may also be generated in the periphery upon stimulation of
naive CD4 T cells under appropriate conditions (iTregs). To gain insight into the mechanisms governing iTreg development,
we performed longitudinal transcriptional profiling of CD25+ T cells during their differentiation from uncommitted naive
CD4 T cells. Microarray analysis of mRNA from CD25+ iTregs early after stimulation revealed expression of genes involved in
cell cycle progression and T cell activation, which largely overlapped with genes expressed in CD25+ effector T cells (Teffs)
used as a control. Whereas expression of these genes remained elevated in Teffs, it declined gradually in developing iTregs,
resulting in a more quiescent phenotype in mature iTregs. A similar pattern of kinetics was observed for biological processes
and for intracellular pathways over-represented within the expressed genes. A maximum dichotomy of transcriptional
activity between iTregs and Teffs was reached at late stages of their maturation. Of interest, members of the FoxO and
FoxM1 transcription factor family pathways exhibited a reciprocal expression pattern in iTregs and Teffs, suggesting a role of
these transcription factors in determining T cell fate.
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Introduction

CD25+ regulatory T cells (Tregs) are a specialized subset of

CD4 T cells. Tregs play a crucial role in establishing and

maintaining peripheral self-tolerance and in terminating immune

reactions by suppressing the activity of effector T cells (Teffs) and

other immune cells [1–3]. They are characterized by the

expression of the forkhead box P3 (Foxp3) transcription factor

and constitute 5–10% of the peripheral CD4 T cell pool [4].

Deficiencies in Foxp3 lead to severe systemic autoimmunity, and

compromised development and/or function of Tregs is associated

with the development of autoimmune diseases [5–9]. Moreover,

reconstitution of Tregs ameliorates disease activity in several

animal models of autoimmunity, inflammation, and graft rejection

[10–14], indicating a promising therapeutic potential of Tregs and

consequently the necessity to understand in detail their develop-

ment and function.

Tregs were initially found to be generated during T cell

development in the thymus (natural occurring Tregs; nTregs) [15].

However, it has now become clear that Tregs can also be

generated from naive CD4 T cells in peripheral lymphoid tissues

(induced Tregs; iTregs) and that peripheral Treg development

might represent a significant source of circulating Tregs [16–18].

Prolonged exposure to peripheral antigens or suboptimal costim-

ulation during antigen presentation has been described to initiate

the development of iTregs [19]. Different soluble factors, such as

cytokines, retinoic acid or neuropeptides provide additional

signals, further facilitating Foxp3 upregulation and the generation

of peripheral Tregs [20–22]. We have demonstrated that

suboptimal activation of naive CD25- CD4 T cells in the presence

of IL-4 induces the generation of functionally competent Foxp3+
iTregs [23].

Although Foxp3 induction and Foxp3-orchestrated expression

of a number of Treg-specific molecules, such as CD25, cytotoxic

T-lymphocyte antigen 4 (CTLA4), glucocorticoid-induced tumor

necrosis factor receptor (GITR) and CD127, are thought to play a

central role in Treg differentiation [24–26], a meta-analysis of

Treg-transcriptional signatures strongly suggested the involvement

of additional regulatory elements [27]. To gain insight into the

molecular program of extrathymic Treg development, we

analyzed the global gene expression profile of CD25+ Tregs

generated in vitro from peripheral naive CD25- CD4 T cells in the

presence of autologous feeder cells and IL-4. At early develop-

mental stages (days 3 and 5), iTreg development was characterized

by a highly active gene expression status that was not overtly

different than that of developing Teffs, as most of the genes

expressed at that time represented biological processes and

pathways involved in proliferation and cell cycle progression.

With prolonged development, the transcriptional program of

iTregs diminished steadily, resulting in about three times lower

numbers of genes expressed in iTregs as compared to Teffs at day

10, whereas the gene diversity between the two populations

achieved its maximum. Two pathways of the Fox transcription

factor family, ‘‘FoxO family’’ and ‘‘FoxM1 transcription factors’’,

were identified to be specifically over-represented during the

development in iTregs and Teffs, respectively, and might,

therefore, represent decisive molecular pathways specifying iTreg
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development and activation of Teffs, respectively, providing

additional insight into the transcriptional programs potentially

involved in iTreg development.

Materials and Methods

Reagents and Abs
The following mAbs and reagents were used for purification,

stimulation, and staining of human cells: anti-CD16 (3g8FcIII),

anti-CD3 (OKT3), anti-CD8 (OKT8), anti-CD45RO (UCHL-1),

and anti-HLA-DR (L243; American Type Culture Collection,

Manassas, VA); anti-CD19 (Dako Cytomation, Glostrup, Den-

mark); FITC-conjugated anti-CD3, PE-labeled anti-CD4, and

FITC-labeled anti-CD4 (Sigma-Aldrich, Taufkirchen, Germany);

PE-labeled anti-CD25, FITC-labeled anti-CD27, FITC-labeled

anti-CD45RA, and PE-labeled anti-CD45RO (BD Bioscience,

Heidelberg, Germany); polyclonal goat anti-mouse immunoglob-

ulin (Ig) (MP Biomedicals, Solon, OH); sheep red blood cells

(SBRC) (Fiebig-Nährstofftechnik, Idstein, Germany), fetal calf

serum (FCS), phosphate-buffered saline (PBS) (Life Technologies,

Carlsbad, CA), normal human serum (NHS). Human recombi-

nant IL-4 was obtained from Endogen, Rockford, IL.

Cell purification
Peripheral blood mononuclear cells (PBMC) were obtained

from heparinized venous blood donated by healthy individuals by

centrifugation over a Ficoll-Hypaque gradient (Sigma-Aldrich).

For isolation of T cells, PBMC were incubated with SRBC as

described previously [28]. The rosette-negative cells were used as

T cell-depleted PBMC (feeder cells). The rosette-positive cells were

further purified by negative selection panning with mAbs to CD8,

CD16, CD19, HLA-DR, and CD45RO as described previously

[29]. CD25+ and CD25- CD4 cell populations were isolated from

the naive CD4 T cells using CD25 magnetic microbeads from

Miltenyi Biotec (Bergisch Gladbach, Germany) according to the

manufacturer’s instructions. The homogeneity and purity of all

isolated populations were routinely controlled by flow cytometry.

Typically, $95% of the cells were positive for CD3 and CD4 and

$95% of the isolated naive cells were positive for CD45RA and

negative for CD45RO. Naive CD25- CD4 T cells were $98%

negative for CD25, while CD25+ cells were $90% positive for

CD25. More than 98% of the cells were viable after purification.

The study was approved by the ethics committee of the University

of Erlangen, and all subjects gave their written informed consent.

Flow cytometry
For surface staining, T cells (16105/sample) were washed with

PBS containing 2% FCS, incubated with saturating amounts of

directly fluorochrome-labeled mAb against diverse surface mole-

cules for 15 minutes at 4uC, washed, and analyzed by flow

cytometry (Cytomics FC500; Beckman Coulter, Fullerton, CA).

Generation of CD25+ iTregs
All cell cultures were conducted in RPMI 1640 medium

supplemented with penicillin G/streptomycin (50 U/ml), L-

glutamine (2 mM; all from Life Technologies), and 10% NHS at

37uC in a humidified atmosphere containing 5% CO2. CD25+
iTregs were generated in vitro as previously described [23]. Briefly,

purified naive CD25- CD4 T cells were incubated at a

concentration of 16106/ml in the presence of 16106/ml

irradiated (30 Gy) autologous feeder cells in a final volume of

2 ml in 24-well cell culture plates (Costar, Cambrige, MA) for 3, 5,

7 and 10 days. IL-4 at a final concentration of 6.25 ng/ml was

added to the cultures (Fig. S1A). Control cultures were incubated

without exogenous IL-4 and resulted in the generation of activated

effector T cells. At indicated time points, cells were harvested,

counted, analyzed for surface expression of CD4 and CD25, and

processed for CD25+ and CD25- T cell magnetic isolation.

Proliferation assay
CD25+ and CD25- T cells recovered after a 10-day culture

(506103/well) were cultured together (at a 1:1 ratio) or separately

in triplicates for 3 days in 96-well, round-bottom plates (Costar) in

the presence of soluble anti-CD3 mAb (1 mg/ml) and in the

presence of 1006103 autologous irradiated feeder cells. Incorpo-

ration of [3H]TdR (1 mCi/well) by proliferating lymphocytes

during the last 16 h of the culture was measured using a liquid

scintillation counter on a 1205 Wallac Betacounter (Wallac/

Pharmacia, Turku, Finnland).

Preparation of total RNA and real time PCR
Total RNA was extracted from freshly isolated or cultured

CD25+ and CD25- T cells at indicated time points using the

RNeasy Minikit (Qiagen, Hilden, Germany) with an additional

DNA digestion step (RNase Free DNase Set; Qiagen). 0.1–1 mg of

total RNA was transcribed to cDNA for 1 h at 42uC in a total

volume of 20–50 ml containing 16avian myoblastosis virus reverse

transcriptase (AMV RT) buffer (Promega, Mannheim, Germany),

1 mM dNTPs, 100 ng/ml oligo(dT)12–18 (all from GE Healthcare,

Munich, Germany), and 0.25 U/ml AMV RT (Promega). Real

time PCR was performed in duplicate in a final volume of 25 ml

using either 16 the Universal PCR Master Mix and 16TaqMan

Gene Expression Assays-on-Demand for Foxp3, FoxO3a, FoxM1

and cyclophilin A (all from Applied Biosystems, Darmstadt,

Germany) or 16Power SYBR Green PCR Master Mix (Applied

Biosystems) and 70.4 nM primer mix for SYBR Green detection

for MAFF, CCR2, PGDS, PMCH and EF1A1 (MWG-Biotech,

Ebersberg, Germany) in the ABI PRISM 7000 Sequence

Detection System (Applied Biosystems). Primers for SYBR Green

detection were designed using the MacVector software (Accelrys,

Cambridge, UK) to amplify fragments spanning exon-exon

junctions of up to 120 bp in length. Forward-reverse primer pairs

for SYBR Green PCR were as follows, respectively: 59-

CCAGCAAAGCTCTAAAGATCAAGC-39 and 59-AGATGCC

GGTTCAGCTCG-39 for MAFF; 59-CGTTGGGGAGAAGTT

CAGAAGC-39 and 59-TTTTTGGAGTGGGGCAATCC-39 for

CCR2; 59-TGGTAACTCTGTAACTTGGGCAGAC-39 and 59-

GGATGGTTGTCTAACAGGTCAGGC-39 for PGDS; 59-GGA

AGGAGAGATTTTGACATGCTC-39 and 59-GATGATGTGG

ACCAACAGGTATCAG-39 for PMCH; 59-GTTGATATGGTT

CCTGGCAAGC-39 and 59-GCCAGCTCCAGCAGCCTTC-39

for EF1A1. The PCR program was as follows: 95uC for 10 min

followed by 40 cycles of 95uC for 10 sec and 60uC for 1 min and

(for SYBR Green detection) 1 cycle of 95uC for 15 sec, 60uC for

30 sec and 95uC for 15 sec. Relative quantification was performed

by calculating the difference in cross-threshold values (DCt) of the

gene of interest and a housekeeping gene, cyclophilin A and/or

EF1A1, according to the formula 2-DCt. Where indicated, the

relative expression values were normalized to the expression values

in the control condition.

Control of total RNA quality
Total RNA quality was controlled electrophoretically using the

RNA 6000 Pico Assay (Agilent Technologies, Santa Clara, CA)

according to the manufacturer’s instructions. The electrophoretic

RNA separation was performed in an Agilent 2100 Bioanalyzer

and visualized by the 2100 expert software (both from Agilent

Technologies). A successful ladder run resulted in six well-resolved

Transcriptional Program of iTreg Development
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RNA peaks. The electrophoregram of a high quality total RNA

sample consisted of two well-separated ribosomal peaks.

Two-step biotion-labeled cRNA synthesis and microarray
hybridization

100 ng of total RNA were used for synthesis of biotin-labeled

cRNA for microarray hybridization by two cycles of amplification

using the GeneChip Two-Cycle cDNA Synthesis Kit, GeneChip

IVT Labeling Kit (both from Affymetrix, Santa Clara, CA) and

the MEGAscript T7 Kit (Ambion, Austin, TX) according to the

manufacturers’ instructions. 20 mg of biotin-labeled cRNA were

fragmented with 16 fragmentation buffer (Affymetrix) in a final

volume of 40 ml at 94uC for 35 min. The size distribution of

fragmented biotinylated cRNA samples was analyzed electropho-

retically using the RNA 6000 Pico Assay as described above. 15 mg

of fragmented cRNA were used to hybridize on the GeneChip

HG_U133A array (Affymetrix). Hybridization was performed in a

GeneChip Hybridization Oven 640 (Affymetrix) for 16 hours at

45uC before arrays were washed and stained on a GeneChip

Fluidics Station 400 (Affymetrix), and scanned with a GeneChip

Scanner 3000 (Affymetrix).

Microarray analysis
Signal intensities of the probes on the array were imported into

the microarray data analyzing software GeneSpring GX10

(Agilent Technologies) and an absolute detection call for each

probe (present, marginal, or absent) was assigned by a MAS 5

probe summarization algorithm. The whole analysis of the

microarray data was performed using the GeneSpring GX10

software. Baseline transformation to median of all samples was

applied to each probe to normalize signal intensities of each probe

across all samples to its median. Further analysis was performed

with probes that had a present or marginal call in at least one out

of all analyzed samples. Three independent experiments were

performed for microarrays and gene expression was analyzed

between sample groups consisting of three replicates, except a

group of a 10-day Teffs with two replicates. The analysis was

performed in several steps (Fig. S1). First, the probes with signal

intensities not significantly different (p.0.05) between CD25- cells

at either time point and naive CD25- CD4 T cells (day 0) were

determined by the repeated measures one-way analysis of variance

(ANOVA). Here and latter, the Benjamini-Hochberg correction

for p-value calculation was applied to correct for multiple testing.

Probes not regulated in CD25- cells were further analyzed by a

two-way ANOVA between iTregs or Teffs and the respective

CD25- T cell population at all time points followed by Tukey’s

Honestly Significant Difference (TukeyHSD) post hoc test to

identify significantly different probes at each particular time point.

The fold-change analysis was than applied to identify significant

probes at each time point with at least 2-fold differential expression

between means of three experiments in iTregs or Teffs and the

respective CD25- cell population (‘‘iTreg-" and ‘‘Teff-regulated

probes’’, respectively).

iTreg-specific and Teff-specific transcripts were identified within

the iTreg- and Teff-regulated probes, respectively as probes

having a significant (p,0.05) at least 2-fold differential expression

between iTregs and Teffs in each indipendent experiment at

indicated time points as determined by one-way ANOVA followed

by TukeyHSD test and the fold-change analysis. iTreg- and Teff-

specific probes identified at different time points were hierarchi-

cally clustered based on their expression signals in iTregs and Teffs

at the respective time point applying a Euclidean similarity

measure and Complete linkage rule.

The lists of iTreg- and Teff-regulated probes at each time point

were examined for a significant over-representation of biological

processes (p,0.1) and for a significant overlap with human

pathways (p,0.05) by Gene Ontology (GO) analysis on biological

process terms and ‘‘Find Significant Pathway Analysis’’, respec-

tively. Both analyses use a hypergeometric test for a p-value

computation. In case of the GO analysis, a Benjamini-Yekutieli

correction was applied to account for multiple GO term testing.

Over-represented biological processes were graphically visualized

using Graphviz software (http://www.graphviz.org) (Fig. S3). Find

Significant Pathway analysis used immune and cancer signaling

pathways from the Cancer Cell Map (http://cancer.cellmap.org/

cellmap) and BioCyc database (http://biocyc.org) (pre-loaded in

GeneSpring GX10), human pathways from Kyoto Encyclopedia

of Genes and genomes (KEGG; http://www.genome.jp/kegg) and

Nature Pathway Interaction (http://pid.nci.nih.gov) databases

(both imported into GeneSpring GX10). Only pathways with at

least 50% representation on the microarray platform (number of

pathway-related genes on the platform in relation to the total

number of genes in the pathway 6100%) were included into the

analysis. All microarray data are MIAME compliant and have

been deposited in a MIAME compliant database, e.g. NCBI’s

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.

gov/geo) and are accessible through GEO Series accession

number GSE24634.

Statistical analysis
Chi-square test was calculated by using GraphPad Prism 5.0

software (GraphPad Software, La Jolla, CA). Expression micro-

array data of the candidate genes and the results of real-time PCR

were analyzed by the two-tailed paired Student’s t test. p-values

#0.05 were considered as statistically significant differences.

Results

Induction of CD25+ iTregs by priming with IL-4
To generate CD25+ iTregs, we cultured naive CD4 T cells for

10 days with feeder cells in the presence of IL-4 as previously

described [23]. To control for successful CD25+ iTreg develop-

ment, cells were analyzed during the culture for CD25 surface

expression and for Foxp3 mRNA expression, and at the end of

differentiation (e.g. day 10) for their proliferative and suppressive

capacity. As shown in Figure 1A, increasing numbers of CD25+ T

cells were detected in the differentiating cultures irrespective of the

presence of IL-4. Both CD25+ T cell populations expressed Foxp3

mRNA (Fig. 1B). At day 10, however, only the CD25+ T cells

purified from IL-4-containing cultures were anergic and possessed

a regulatory capacity as they suppressed proliferation of CD25-

cells in response to CD3 stimulation (Fig. 1C). CD25+ T cells

derived in the absence of IL-4 proliferated vigorously in response

to CD3 stimulation, did not inhibit CD25- T cell proliferation

(Fig. 1C), produced high levels of the effector cytokines IFNc and

TNF after restimulation with PMA/ionomycine [23] and thus,

represented activated effector T cells. They were used, therefore,

as a non-iTreg control (CD25+ Teff) throughout the study.

Identification of CD25+ iTreg-specific genes
To analyze the transcriptional program during CD25+ iTreg

development, RNA from developing cells was analyzed at different

time points of culture (day 3, 5, 7 and 10) by microarray analysis

using the Affymetrix GeneChip HG_U133A (Fig. S1A). We

restricted the analysis to those transcripts whose expression was

not significantly altered in CD25- T cells as compared to the

starting population during the entire culture period (Fig. S1B, Step

Transcriptional Program of iTreg Development
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1). Of these, a total of 1,558 and 1,707 probes (representing 1,358

and 1,487 transcripts, respectively) were identified to show a more

than two-fold different expression (two-way ANOVA; p,0.05) in

CD25+ iTregs and in Teffs compared to the appropriate CD25-

cell population in at least one analyzed time point (Fig. S1B, Step

2). Of the CD25+ T cell-regulated probes, 912 and 1,006

(representing 778 and 861 transcripts, respectively) were up-

regulated in CD25+ iTregs and Teffs, respectively, in at least one

time point but not down-regulated at any time point, whereas 646

and 700 probes (576 and 621 transcripts, respectively) were down-

regulated in at least one time point but not up-regulated at any

time point in iTregs and Teffs, respectively.

The pattern of the expression of transcripts regulated in CD25+
T cells during the culture period was different between CD25+
iTregs and Teffs (p,0.0001) (Fig. 2). After a peak at day 5, the

numbers of up- or down-regulated probes decreased steadily

through day 7 to day 10 in CD25+ iTregs but remained at a

similar level at days 7 and 10 in CD25+ Teffs. The number of

regulated probes at day 10 in CD25+ Teffs was almost three times

that of CD25+ iTregs (580 vs 209, respectively; Fig. 2).

By comparing the probes regulated in iTregs and Teffs, two

gene lists could be identified that contained the iTreg- and Teff-

specific probes with an at least two-fold different expression

between the two subsets (Fig. S1C). 93 probes corresponding to 88

transcripts were specifically up- or down-regulated in CD25+
iTregs at least at one time point during the differentiation culture.

In CD25+ Teffs, 142 probes (130 transcripts) were specifically

regulated. The number of the specifically regulated genes within

either CD25+ T cell population gradually increased during

differentiation resulting in a maximum number of genes

distinguishing iTregs and Teffs at day 10 (Fig. 3A). This indicates

that the specific genetic program for iTregs and Teffs, respectively,

became more prominent in mature cells. Hierarchical clustering

visualized distinct gene clusters characterizing both populations at

every analyzed time point (Fig. 3B). For example, two cytokine

clusters (IL-8 and IL-17A; and IL-3, IL-4, IL-9, IFNc and IL-13)

were up-regulated at days 3 and 5 in Teffs but not in iTregs. At

days 5, 7 and 10, a gene cluster consisting of inflammation-related

surface molecules such as the IL-12 receptor b2 chain (IL-12RB2)

and the CC chemokine receptor 2 (CCR2) was highly expressed in

Teffs but not in iTregs. Expression of several representative

transcripts was validated by real time PCR (Fig. S2).

Biological process analysis
To gain insight into the function of the regulated transcripts, we

performed a biological process analysis by use of the Gene

Ontology (GO) database (http://www.geneontology.org) (Fig.

S1C). The over-represented processes in developing iTregs and

Teffs could be grouped into three major categories all of which are

Figure 1. CD25+ iTreg development. Human naive CD4 T cells depleted of CD25+ cells were cultured with autologous irradiated feeder cells for
10 days in the presence or absence of IL-4. (A) At days 3, 5, 7 and 10 cells were analyzed for CD25 expression. (B) CD25+ and CD25- populations were
magnetically sorted at the days indicated. Foxp3 mRNA expression was assessed in both CD25+ and CD25- populations by real-time PCR and its
relative expression was calculated in relation to cyclophilin mRNA. (C) At day 10, the proliferative and suppressive capacities of CD25+ and CD25- cells
in response to CD3 stimulation were assessed by thymidine incorporation. Data are shown as a mean 6 SEM of three independent experiments (A, B)
or as a mean 6 SD of one representative experiment performed in triplicates (C).
doi:10.1371/journal.pone.0016913.g001

Figure 2. Number of regulated transcripts in CD25+ T cells
during 10 days of culture. Bars indicate numbers of probes with at
least two-fold differential expression between CD25+ iTregs or Teffs and
their corresponding CD25- cell population at each analyzed time point.
doi:10.1371/journal.pone.0016913.g002

Transcriptional Program of iTreg Development
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Figure 3. iTreg and Teff specific transcripts during development. (A) Number of probes specifically expressed in iTregs and Teffs at different
times during differentiation. (B) Hierarchical clustering was performed on 93 iTreg-specific and 142 Teff-specific probes. Red and green colors indicate
high and low levels of expression, respectively. Rows correspond to individual transcripts. Columns reflect results from three individual donors
denoted as 1 to 3. Cytokine clusters are highlighted by blue boxes (IL8 and IL17A at day 3; and IL3, IL4, IL9, IFNG and IL13 at day 5). Black boxes
denote a cluster of inflammation-related surface proteins.
doi:10.1371/journal.pone.0016913.g003

Table 1. Number of significantly over-represented biological processes within different functional categories.

Category iTregs Teffs

day 3 day 5 day 7 day 10 day 3 day 5 day 7 day 10

Cell cycle regulation 22 10 13 0 32 23 29 27

DNA/RNA metabolism 23 18 15 0 26 13 16 11

Cytoskeleton reorganization 1 0 0 0 4 2 3 3

Miscellaneous* 2 4 0 1 0 2 4 0

*Miscellaneous biological processes. iTregs: day 3 - mitochondrion organization (GO:0007005), protein targeting (GO:0006605); day 5 - NLS-bearing substrate import
into nucleus (GO:0006607), regulation of transcriptional preinitiation complex assembly (GO:0045898), negative regulation of transcriptional preinitiation complex
assembly (GO:0017055), gene expression (GO:0010467); day 10 - positive regulation of I-kappaB kinase/NF-kappaB cascade (GO:0043122). Teffs: day 5 - antigen
processing and presentation of peptide antigen via MHC class I (GO:0002474), gene expression (GO:0010467); day 7 - sulfur metabolic process (GO:0006790), cellular
amino acid metabolic process (GO:0006520), sulfur compound biosynthetic process (GO:0044272), glutation biosynthetic process (GO:0006750).
doi:10.1371/journal.pone.0016913.t001

Transcriptional Program of iTreg Development
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related to cell cycle progression: cell cycle regulation, DNA/RNA

metabolism and cytoskeleton reorganization (Table 1). This

pattern supports the assumption that T cell differentiation is

dependent on and associated with cell proliferation. The details of

biological processes differed in iTregs and Teffs, however.

Whereas the number of GO terms associated with cell

proliferation decreased in developing iTregs and were absent at

day 10, they remained at a largely steady level in Teffs (Table 1).

This is in line with the phenotype of functionally mature iTregs,

which are hypoproliferative and anergic, and Teffs, which are

vigorously proliferative upon stimulation.

Early during differentiation, some of these processes were

specifically represented in iTregs or in Teffs. The majority of

biological processes were, however, utilized by both cell

populations (Fig. 4, Fig. S3). During differentiation, the number

of overlapping processes decreased, and in mature iTregs and

Teffs active biological processes were mutually exclusive. The

single GO term significantly over-represented in mature iTregs

was ‘‘positive regulation of I-kappaB kinase/NF-kappaB cascade’’

(GO:0043122) comprising IL1 beta (39402_at, Hs.126256), IL1

receptor like 1 (207526_s_at, Hs.66), lymphotoxin alpha (206975_at,

Hs.36), tetraspanin 6 (209108_at, Hs.43233), extracellular matrix

protein 1 (209365_s_at, Hs.81071), neurotrophic tyrosine kinase

receptor type 1 (208605_s_at, Hs.406293), receptor-interacting

serin-threonin kinase 2 (209545_s_at, Hs.103755), CASP8 and

FADD like apoptosis regulator (210563_x_at, Hs.390736), and gap

junction protein alpha 1 (201667_at, Hs.74471).

Pathway analysis
As an alternative analysis, we subjected the iTreg- and Teff-

characteristic gene lists to a pathway analysis scanning immune

and cancer pathways pre-loaded in GeneSpring GX10, human

metabolic pathways from the KEGG database and human

pathways from the Nature Pathway Interaction database (Fig.

S1C). Similar to biological processes, early during the differen-

tiation a significant proportion of pathways was utilized by both,

iTregs and Teffs, whereas at day 10 a pathway dichotomy

became obvious (Fig. 5). The number of significantly enriched

pathways identified in iTregs gradually decreased with differen-

tiation (34, 19, 21 and 9 pathways at days 3, 5, 7 and 10,

respectively). In contrast, they remained at relatively high

numbers in developing and mature Teffs (37, 29, 27 and 31

pathways at days 3, 5, 7 and 10, respectively). This pattern

emphasizes once again the quiescent phenotype of mature iTregs

as compared to T effector cells. Consistent with this, a pathway

characteristic for T cell activation, the calcineurin-regulated

NFAT-dependent transcription pathway, was significantly repre-

sented in iTregs only at days 3 and 5, whereas it was active

throughout the culture in Teffs (Fig. 6A). No pathways consisting

exclusively of down-regulated transcripts could be identified in

iTregs suggesting that developing iTregs do not repress a

particular pathway (Table S1).

Further analysis of pathways specifically represented in iTregs

or in Teffs identified a reciprocal pattern of two signaling pathways

of Fox family transcription factors, FoxO and FoxM1 (Fig. 6B).

Figure 4. GO term enrichment analysis of biological processes
in developing iTregs and Teffs. GO term analysis was performed to
identify biological processes significantly over-represented in iTregs and
Teffs. Enriched processes in iTregs (black bars) and Teffs (grey bars) at
different times organized by their significance score (-log10 p value) are
shown. Red and green boxes indicate unique GO terms for iTregs and
Teffs, respectively. Yellow boxes represent GO terms enriched in the
gene lists of both, iTregs and Teffs.
doi:10.1371/journal.pone.0016913.g004
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The schematic illustration of FoxO and FoxM1 transcription

factor networks and the expression profile of transcripts regulated

in iTregs and Teffs are shown in Figs. S4 and S5. Analysis of the

expression profile revealed an up-regulation of FoxO3a

(204132_s_at) in iTregs at days 7 and 10, whereas FoxM1

(202580_x_at) was up-regulated in Teffs, resulting in a shift of the

FoxO3a/FoxM1 ratio in mature populations (Fig. 6C). This

divergent expression pattern was confirmed by real-time PCR

analysis in independent experiments (Fig. 6D). These results

suggest a potential decisive role of the Fox transcription factor

family to determine iTreg versus Teff development during T cell

differentiation.

Discussion

In this study, we analyzed the transcriptional program of

developing CD25+ iTregs using DNA microarray technology. By

comparing the iTreg transcriptome profile with the genes

regulated in Teffs at different time points during their develop-

ment we identified genes differentially expressed in iTregs

compared to Teffs cells at early, middle and late stages of their

maturation. Based on these gene programs, biological processes

and cellular pathways overrepresented in developing cells at each

particular time point could be deduced. This analysis revealed an

activated and proliferative phenotype of iTregs at early develop-

mental stages that gradually became transcriptionally quiescent

during later development and at the fully differentiated stage of

maturation. Importantly, mature iTregs demonstrated the highest

transcriptional diversity with activated Teffs. The iTreg and Teff

transcriptome profiling suggested FoxO family and FoxM1

transcription factor pathways as decisive molecular mechanisms

regulating iTreg development and activation of Teffs, respectively.

To our knowledge, this is the first study that analyzed the global

transcriptome profile and molecular program of human iTreg

development at different developmental stages. Different stimuli

have been described that drive iTreg conversion from CD25-

precursors in the periphery in vivo and in vitro, such as

subimmunostimulatory antigen presentation in vivo [30,31], TGFb
[32,33], retinoic acid [34-37], IFNc [38,39] or particular

neuropeptides (reviewed in [22]). However, a systematic analysis

of molecular processes that facilitate iTreg development in the

periphery has not been carried out. We took advantage of a

previously described in vitro cell culture system which allows iTreg

generation from human naive CD4 CD25- T cells over 10 days in

response to suboptimal stimulation with autologous antigen-

presenting cells and IL-4 [23]. CD25+ iTregs generated in this

setting phenotypically and functionally resemble nTregs, as they

express CD25 and Foxp3, are anergic to mitogenic stimulation

and inhibit the proliferation of effector T cells in response to CD3

stimulation [23]. Therefore, analysis of the gene expression profile

of those CD25+ iTregs at different time points was thought to

allow the identification of genes specifically regulated in Tregs

compared to Teffs and provide insight into the mechanisms

underlying Treg cell development in the periphery.

CD25 and the transcription factor Foxp3 are the best described

and mostly utilized markers for CD25+ Tregs [4,40]. Beside CD25

and Foxp3, a large proportion of genes reported as Treg-specific

genes in nTregs and in TGFb-induced iTregs [27,41,42] were

similarly regulated in mature iTregs generated in our system. For

example, IL2RB, CTLA4, ICOS, IL1R1, IL1RL1, LAG3,

CD103, TRAF1, OX40, CD86, LGALS1, TNFRSF9,

TNFRSF1B, MAF, IRF4, SOCS2, KLRG1, DUSP4 were up-

regulated in our analysis (Table S2) and in nTregs and in TGFb-

induced iTregs [27,41,42]. On the other hand, IL7R, NELL2,

CCR7, ID2, IFNG were down-regulated here (Table S2) as they

were in the previous reports. As the HG_U133A microarray

platform does not include probes for GITR, FOLR4, and GRP83,

the expression of these genes could not be analyzed. Nevertheless,

GITR expression was confirmed in IL-4 induced iTregs by surface

staining [23]. A different surface marker, PECAM1, reported to be

specific for nTregs [43], was down-regulated in our iTregs. This

may be related to their induced nature, since only naive nTreg

cells have been shown to express PECAM1 [43].

With respect to cytokine production, Treg cells are deficient in

the production of pro-inflammatory cytokines [2,44]. In our

system, we observed increased IFNG and IL17A gene expression

in Teffs but not in early and late developing iTregs (Fig. 3B).

Another cluster of Th2-characteristic cytokine genes, IL4, IL13,

IL3 and IL9, showed enhanced expression in Teffs but not in

iTregs at day 5 (Fig. 3B), supporting the conclusion of a

compromised ability of maturating and mature Tregs to produce

effector cytokines in contrast to Teffs [2,44]. Moreover, when

comparing mature iTregs and Teffs (day 10), down-regulation of a

number of cytokine genes such as IFNG, IL2, IL1A, IL8 and IL21

was determined in iTregs. The gene expression pattern of Teffs

was at large comparable with published data sets of effector T cells

[27,42] (Table S3). Of interest, Foxp3 was regulated during the

development of Teffs in our system (Fig. 1B). Foxp3 is expressed in

human T cells upon activation without mediating a regulatory

capacity [45]. Our finding, therefore, is not surprising and in line

with previous reports.

A model of early development of different T cell subsets

including effector and regulatory T cells in the periphery has been

proposed that is characterized by an activation-specific overlap-

ping expression pattern [46]. Accordingly, at later stages, Treg

lineage-specific regulatory genes (such as Foxp3) reduce the

spectrum of effector genes in Tregs, thereby defining their

regulatory functions. Indeed, our analysis of genes regulated in

iTregs and in Teffs at different time points revealed a strong

overlap at the beginning of the development with increasing

differences between expression profiles of developing iTregs and

Teffs up to the most pronounced differences between mature

iTregs and Teffs. The increasing numbers of iTreg-specific and

Teff-specific transcripts throughout the culture time from day 3 to

day 10 illustrate this phenomenon (Fig. 3A). These results correlate

with markedly different functional phenotypes of mature iTregs

and activated Teffs [47].

Increasing differences between iTregs and Teffs during

maturation were also obvious when the functional relevance of

the iTreg-regulated and Teff-regulated transcripts was analyzed by

‘‘pGO enrichment and pathway analysis. Similar to transcripts,

biological processes and pathways that were overrepresented in

developing iTregs decreased in numbers from early to late

developmental stages. In Teffs, in contrast, the numbers of

enriched GO terms and pathways remained high during the whole

culture. This suggests a declining cellular activity of iTregs during

Figure 5. Pathway analysis in developing iTregs and Teffs. Pathway analysis was performed to identify biological pathways significantly over-
represented in iTregs and Teffs. Enriched processes in iTregs (black bars) and Teffs (grey bars) at different times organized by their significance score (-
log10 p value) are shown. Red and green boxes indicate unique pathways for iTregs and Teffs, respectively. Yellow boxes represent pathways
enriched in the gene lists of both, iTregs and Teffs.
doi:10.1371/journal.pone.0016913.g005
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their maturation contrary to constantly activated effector T cells.

The biological processes enriched within maturating iTreg- and

Teff-regulated genes from day 3 to day 7 were common and

predominantly represented processes controlling proliferation and

cell cycle progression. In mature iTregs, however, the transcripts

expressed did not statistically fit the proliferative process construct,

together indicating a vigorous proliferative status of immature

iTregs followed by a decreasing proliferative capacity during

maturation and an anergic phenotype of mature iTregs. In this

regard, a decline of the proliferative capacity of maturating iTregs

in response to anti-CD3 stimulation was observed from day 7 to 14

of the culture (data not shown). Although overrepresented in both

populations, biological processes regulating proliferation reached a

higher significance level in Teffs than in iTregs, indicating less

active proliferation of developing iTregs as compared to Teffs.

This is in line with a previously published report of an inverse

relationship between cell division and Treg conversion, i.e. limited

proliferation is a requirement for effective peripheral Treg

conversion [30].

Foxp3 is a ’’master regulator‘‘ for Treg development [48,49].

Accumulating evidence suggests that Foxp3 functions within a

higher-order regulation network of signaling molecules and

transcription factors during Treg establishment [27]. Deprived

TCR signaling via inhibition of the PI3K/Akt signaling pathway

by rapamycin (mTOR) induces de novo expression of Foxp3 and

Treg-like gene expression profiles [50]. Similarly, Akt has been

identified as a strong repressor of entry into the Treg phenotype in

vitro and in vivo [51]. Notably, the activation of the PI3K/Akt

pathway is impaired in Tregs as indicated by a reduction in Akt

phosphorylation in these cells [52]. However, the molecular links

between impaired PI3K/Akt signaling and subsequent FoxP3

expression are not completely understood. Here, we identified the

‘‘FoxO family signaling’’ pathway as significantly represented in

iTregs during maturation. The expression of FoxO3a, one of the

key transcription factors of the pathway, was increased in iTregs

compared to Teffs during maturation (Fig. 6). Activity of FoxO3a

is directly regulated by Akt, which phosphorylates FoxO3a

resulting in the inactivation of its function by exclusion from the

nucleus [53]. Thus, suboptimal TCR stimulation in combination

with an inhibition of PI3K/Akt signaling might result in FoxO3a

accumulation in the nucleus of iTregs and participate in the

induction of Foxp3 expression [54,55]. Indeed, phosphorylation of

FoxO3a is reduced in Treg cells [52]. Dephosphorylated FoxO3a

regulates, moreover, the transcription of genes promoting cell

cycle arrest [56] that could support its role in restricting the

proliferation of iTregs during their maturation period. Of note, a

key component of TGFb-mediated inhibition of cell proliferation

is a formation of a Smad-FoxO3a complex [57], suggesting a

central role of FoxO signaling in Treg development in the

periphery.

FoxO3a is also known to repress FoxM1 expression and

activation [58,59]. FoxM1 has a critical role in cell proliferation by

regulating various cell cycle regulatory genes [59]. Loss of FoxM1

is associated with mitosis arrest and disrupted mitotic spindle

integrity [60]. In this study, the ‘‘FoxM1 transcription factor

network pathway’’ was significantly represented in developing and

mature Teffs. The representation of this pathway correlates with

their highly proliferative phenotype throughout development. In

contrast, expression of FoxM1 in Tregs declined from early to late

maturation stages, together suggesting an intriguing link between

FoxO3a and FoxM1 transcription factor signaling in determining

the fate of a Treg or Teff.

In conclusion, using microarray analysis of the transcriptional

program of developing iTregs we provide new insight into Treg

development in the periphery. The detailed understanding of

molecules and pathways involved in peripheral Treg differentia-

tion might provide new therapeutic targets for the treatment of

disorders caused by dysregulation of Tregs, such as autoimmune

diseases, chronic infection and graft rejection.

Supporting Information

Figure S1 Microarray gene analysis of iTreg develop-
ment. (A) Schematic drawing of the experimental strategy. iTregs

and Teffs were generated in vitro from naive CD25- CD4 T cells by

stimulation with autologous feeder cells in the presence or absence

of IL-4, respectively. Total RNA was isolated from CD25- CD4 T

cells before culture (day 0) and from purified CD25+ and CD25-

subsets at days 3, 5, 7 and 10 of the cultures and hybridized on

HG_U133A microarray chips. Data sets (n = 50) from three

independent experiments with cells from different donors were

subjected to baseline transformation and the probes were filtered

by flags resulting in a gene list of 15,245 probes with a marginal or

present call in at least one of the 50 samples. (B) Strategy of the

statistical analysis. In the first step, one-way ANOVA was

performed to determine those genes that were not regulated in

CD25- cells throughout the culture assuming that the changes in

gene expression in CD25- cells during the culture reflected

unspecific cell culture interference. The second step was designed

as a two-way ANOVA followed by fold-change analysis testing to

identify probes that were at least two-fold up- or down-regulated in

Teffs or iTregs compared to the corresponding CD25- T cells at

each culture time point. (C) Identification of specific genes and

characteristic biological processes and pathways. The gene lists

from Step 2 were further processed by alternative statistical

analyses: step 3A employed one-way ANOVA to identify genes

that were specifically regulated in iTregs and Teffs; step 3B

performed a GO term analysis of biological processes over-

represented in developing iTregs and Teffs; step 3C utilized the

Cancer Cell Map, BioCyc, KEGG and Nature Pathway

Interaction databases to conduct a pathway analysis in developing

iTregs and Teffs.

(TIF)

Figure S2 Real time PCR analysis. Expression of MAFF

(Hs.517617), CCR2 (Hs.644637), PGDS (Hs.128433), and PMCH

(Hs.707990) in developing iTregs and Teffs from gene chip (A) and

from real time PCR analysis (B). Data are shown as mean+SD

from three (A) and eight (B) experiments in relation to the

expression in naive T cells (day 0). * p,0.05.

(TIF)

Figure S3 Hierarchical network organization of the
significantly enriched GO terms. Each box represents one

GO term and the p value of its enrichment. p1 and p2 values

Figure 6. Pathways characteristic for developing iTregs or Teffs. (A, B) Significance score (-log10 p value) of three pathways characteristic for
iTregs or Teffs development, ‘‘calcineurin-regulated NFAT-dependent transcription in lymphocytes’’ (A), ‘‘FoxO family signaling’’ and ‘‘FoxM1
transcription network’’ (B) during the 10 days of culture. Grey bars indicate significance scores in iTregs, white bars in Teffs. (C, D) Relative expression
of the transcription factors FoxO3a and FoxM1 as a ratio of their mRNA expression levels in iTregs to those in Teffs at each respective time point
determined by microarray (C) and by real-time PCR (D). Data are shown as mean 6 SD from three (C) and five (D) experiments. * p,0.05.
doi:10.1371/journal.pone.0016913.g006
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correspond to the p values in iTregs and Teffs, respectively. Red

and green boxes indicate unique GO terms for iTregs and Teffs,

respectively. Yellow boxes represent GO terms enriched in the

gene lists of both, iTregs and Teffs.

(TIF)

Figure S4 Network organization of ‘‘FoxO family sig-
naling’’ and ‘‘FoxM1 transcription factor network’’
pathways. Each node represents proteins, small molecules or

protein complexes participating in the pathway. Nodes marked by

black cycles correspond to the transcripts identified by the

microarray as to be regulated in developing iTregs (‘‘FoxO family

signaling’’) or in developing Teffs (‘‘FoxM1 transcription factor

network’’).

(TIF)

Figure S5 FoxO and FoxM1 pathways. Expression of the

specific transcripts from ‘‘FoxO family signaling’’ and from

‘‘FoxM1 transcription factor network’’ pathways determined by

microarray analysis is shown as mean+SD from results of three

donors.

(TIF)

Table S1.

(XLS)

Table S2.

(DOC)

Table S3.

(DOC)

Acknowledgments

The authors are thankful to Gary Sims for his help in preparation of the

microarrays and to Daniela Thein for her expert technical assistance. We

would like to acknowledge the blood donors for their continuous support.

Author Contributions

Conceived and designed the experiments: IP AS HS-K. Performed the

experiments: IP. Analyzed the data: IP AS PEL HS-K. Contributed

reagents/materials/analysis tools: HS-K PEL. Wrote the paper: IP AS.

References

1. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-

tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains

(CD25). Breakdown of a single mechanism of self-tolerance causes various

autoimmune diseases. J Immunol 155: 1151–1164.

2. Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than

answers. Nat Rev Immunol 2: 389–400.

3. von Boehmer H (2005) Mechanisms of suppression by suppressor T cells. Nat

Immunol 6: 338–344.

4. Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic

self-tolerance and negative control of immune responses. Annu Rev Immunol

22: 531–562.

5. Ziegler SF (2006) FOXP3: of mice and men. Annu Rev Immunol 24: 209–226.

6. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, et al. (2004)

Compromised function of regulatory T cells in rheumatoid arthritis and reversal

by anti-TNFalpha therapy. J Exp Med 200: 277–285.

7. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, et al.

(2006) TNF downmodulates the function of human CD4+CD25hi T-regulatory

cells. Blood 108: 253–261.

8. Valencia X, Yarboro C, Illei G, Lipsky PE (2007) Deficient CD4+CD25high T

regulatory cell function in patients with active systemic lupus erythematosus.

J Immunol 178: 2579–2588.

9. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional

suppression by CD4+CD25+ regulatory T cells in patients with multiple

sclerosis. J Exp Med 199: 971–979.

10. Mottet C, Uhlig HH, Powrie F (2003) Cutting edge: cure of colitis by

CD4+CD25+ regulatory T cells. J Immunol 170: 3939–3943.

11. Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, et al. (2004) In vitro-expanded

antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med

199: 1455–1465.

12. Morgan ME, Flierman R, van Duivenvoorde LM, Witteveen HJ, van Ewijk W,

et al. (2005) Effective treatment of collagen-induced arthritis by adoptive transfer

of CD25+ regulatory T cells. Arthritis Rheum 52: 2212–2221.

13. Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C, et al. (2007) In vitro-

expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote

experimental transplantation tolerance. Blood 109: 827–835.

14. van Mierlo GJ, Scherer HU, Hameetman M, Morgan ME, Flierman R, et al.

(2008) Cutting edge: TNFR-shedding by CD4+CD25+ regulatory T cells

inhibits the induction of inflammatory mediators. J Immunol 180: 2747–2751.

15. Sakaguchi S, Sakaguchi N (2005) Regulatory T cells in immunologic self-

tolerance and autoimmune disease. Int Rev Immunol 24: 211–226.

16. Jaeckel E, Kretschmer K, Apostolou I, von Boehmer H (2006) Instruction of

Treg commitment in peripheral T cells is suited to reverse autoimmunity. Semin

Immunol 18: 89–92.

17. Lohr J, Knoechel B, Abbas AK (2006) Regulatory T cells in the periphery.

Immunol Rev 212: 149–162.

18. Pillai V, Karandikar NJ (2007) Human regulatory T cells: a unique, stable

thymic subset or a reversible peripheral state of differentiation? Immunol Lett

114: 9–15.

19. Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+
regulatory T cells: more of the same or a division of labor? Immunity 30:

626–635.

20. Apostolou I, Verginis P, Kretschmer K, Polansky J, Huhn J, et al. (2008)

Peripherally induced Treg: mode, stability, and role in specific tolerance. J Clin

Immunol 28: 619–624.

21. Akbar AN, Vukmanovic-Stejic M, Taams LS, Macallan DC (2007) The

dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery.

Nat Rev Immunol 7: 231–237.

22. Gonzalez-Rey E, Chorny A, Delgado M (2007) Regulation of immune tolerance

by anti-inflammatory neuropeptides. Nat Rev Immunol 7: 52–63.

23. Skapenko A, Kalden JR, Lipsky PE, Schulze-Koops H (2005) The IL-4 receptor

alpha-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-

expressing CD25+CD4+ regulatory T cells from CD25-CD4+ precursors.

J Immunol 175: 6107–6116.

24. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA (2007) IL-2 is essential for

TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T

cells and for expansion of these cells. J Immunol 178: 2018–2027.

25. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, et al.

(2007) Foxp3 occupancy and regulation of key target genes during T-cell

stimulation. Nature 445: 931–935.

26. Josefowicz SZ, Rudensky A (2009) Control of regulatory T cell lineage

commitment and maintenance. Immunity 30: 616–625.

27. Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, et al. (2007) Foxp3

transcription-factor-dependent and -independent regulation of the regulatory T

cell transcriptional signature. Immunity 27: 786–800.

28. Rosenberg SA, Lipsky PE (1979) Monocyte dependence of pokeweed mitogen-

induced differentiation of immunoglobulin-secreting cells from human periph-

eral blood mononuclear cells. J Immunol 122: 926–931.

29. Skapenko A, Lipsky PE, Kraetsch HG, Kalden JR, Schulze-Koops H (2001)

Antigen-independent Th2 cell differentiation by stimulation of CD28: regulation

via IL-4 gene expression and mitogen-activated protein kinase activation.

J Immunol 166: 4283–4292.

30. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, et al.

(2005) Inducing and expanding regulatory T cell populations by foreign antigen.

Nat Immunol 6: 1219–1227.

31. Apostolou I, von Boehmer H (2004) In vivo instruction of suppressor

commitment in naive T cells. J Exp Med 199: 1401–1408.

32. Chen W, Jin W, Hardegen N, Lei KJ, Li L, et al. (2003) Conversion of

peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by

TGF-beta induction of transcription factor Foxp3. J Exp Med 198: 1875–1886.

33. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, et al. (2004) Cutting

edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through

Foxp3 induction and down-regulation of Smad7. J Immunol 172: 5149–5153.

34. Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ (2007) All-trans retinoic

acid mediates enhanced T reg cell growth, differentiation, and gut homing in the

face of high levels of co-stimulation. J Exp Med 204: 1765–1774.

35. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, et al.

(2007) A functionally specialized population of mucosal CD103+ DCs induces

Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent

mechanism. J Exp Med 204: 1757–1764.

36. Mucida D, Pino-Lagos K, Kim G, Nowak E, Benson MJ, et al. (2009) Retinoic

acid can directly promote TGF-beta-mediated Foxp3(+) Treg cell conversion of

naive T cells. Immunity 30: 471–472; author reply 472-473.

Transcriptional Program of iTreg Development

PLoS ONE | www.plosone.org 11 February 2011 | Volume 6 | Issue 2 | e16913



37. Nolting J, Daniel C, Reuter S, Stuelten C, Li P, et al. (2009) Retinoic acid can

enhance conversion of naive into regulatory T cells independently of secreted

cytokines. J Exp Med 206: 2131–2139.

38. Hong J, Li N, Zhang X, Zheng B, Zhang JZ (2005) Induction of CD4+CD25+
regulatory T cells by copolymer-I through activation of transcription factor

Foxp3. Proc Natl Acad Sci U S A 102: 6449–6454.

39. Wang Z, Hong J, Sun W, Xu G, Li N, et al. (2006) Role of IFN-gamma in

induction of Foxp3 and conversion of CD4+ CD25- T cells to CD4+ Tregs.

J Clin Invest 116: 2434–2441.

40. Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, et al. (2004) Crucial

role of FOXP3 in the development and function of human CD25+CD4+
regulatory T cells. Int Immunol 16: 1643–1656.

41. Pfoertner S, Jeron A, Probst-Kepper M, Guzman CA, Hansen W, et al. (2006)

Signatures of human regulatory T cells: an encounter with old friends and new

players. Genome Biol 7: R54.

42. Stockis J, Fink W, Francois V, Connerotte T, de Smet C, et al. (2009)

Comparison of stable human Treg and Th clones by transcriptional profiling.

Eur J Immunol 39: 869–882.

43. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, et al. (2009) Functional

delineation and differentiation dynamics of human CD4+ T cells expressing the

FoxP3 transcription factor. Immunity 30: 899–911.

44. Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, et al. (2001)

Identification and functional characterization of human CD4(+)CD25(+) T cells

with regulatory properties isolated from peripheral blood. J Exp Med 193:

1285–1294.

45. Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE (2007)

Transient expression of FOXP3 in human activated nonregulatory CD4+ T

cells. Eur J Immunol 37: 129–138.

46. Cobbold SP (2006) The hidden truth about gene expression in Tregs: is it what

you don’t see that counts? Eur J Immunol 36: 1360–1363.

47. Baecher-Allan C, Viglietta V, Hafler DA (2004) Human CD4+CD25+
regulatory T cells. Semin Immunol 16: 89–98.

48. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development

by the transcription factor Foxp3. Science 299: 1057–1061.

49. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, et al. (2005)

Regulatory T cell lineage specification by the forkhead transcription factor
foxp3. Immunity 22: 329–341.

50. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, et al. (2008) T cell receptor

signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad
Sci U S A 105: 7797–7802.

51. Haxhinasto S, Mathis D, Benoist C (2008) The AKT-mTOR axis regulates de
novo differentiation of CD4+Foxp3+ cells. J Exp Med 205: 565–574.

52. Crellin NK, Garcia RV, Levings MK (2007) Altered activation of AKT is

required for the suppressive function of human CD4+CD25+ T regulatory cells.
Blood 109: 2014–2022.

53. Burgering BM, Medema RH (2003) Decisions on life and death: FOXO
Forkhead transcription factors are in command when PKB/Akt is off duty.

J Leukoc Biol 73: 689–701.
54. Ouyang W, Beckett O, Ma Q, Paik JH, DePinho RA, et al. (2010) Foxo proteins

cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat

Immunol 11: 618–627.
55. Harada Y, Elly C, Ying G, Paik JH, DePinho RA, et al. (2010) Transcription

factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3
expression in induced regulatory T cells. J Exp Med 207: 1381–1391.

56. Ho KK, Myatt SS, Lam EW (2008) Many forks in the path: cycling with FoxO.

Oncogene 27: 2300–2311.
57. Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad

and forkhead pathways in the control of neuroepithelial and glioblastoma cell
proliferation. Cell 117: 211–223.

58. Delpuech O, Griffiths B, East P, Essafi A, Lam EW, et al. (2007) Induction of
Mxi1-SR alpha by FOXO3a contributes to repression of Myc-dependent gene

expression. Mol Cell Biol 27: 4917–4930.

59. Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, et al. (2005) Forkhead
box M1 regulates the transcriptional network of genes essential for mitotic

progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell
Biol 25: 10875–10894.

60. Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, et al. (2005) FoxM1

is required for execution of the mitotic programme and chromosome stability.
Nat Cell Biol 7: 126–136.

Transcriptional Program of iTreg Development

PLoS ONE | www.plosone.org 12 February 2011 | Volume 6 | Issue 2 | e16913


