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Abstract

Pathogenic mutations in DPAGT1 are manifested as two possible phenotypes: congenital

disorder of glycosylation DPAGT1-CDG (also known as CDG-Ij), and limb-girdle congenital

myasthenic syndrome (CMS) with tubular aggregates. UDP-N-acetylglucosamine-dolichyl-

phosphate N-acetylglucosamine phosphotransferase (GPT), the protein encoded by

DPAGT1, is an endoplasmic reticulum (ER)-resident protein involved in an initial step in the

N-glycosylation pathway. The aim of the present study was to examine the effect of six vari-

ants in DPAGT1 detected in patients with DPAGT1-CDG, and the role of endoplasmic retic-

ulum stress, as part of the search for therapeutic strategies to use against DPAGT1-CDG.

The effect of the six mutations, i.e., c.358C>A (p.Leu120Met), c.791T>G (p.Val264Gly),

c.901C>T (p.Arg301Cys), c.902G>A (p.Arg301His), c.1154T>G (p.Leu385Arg), and of the

novel mutation c.329T>C (p.Phe110Ser), were examined via the analysis of DPAGT1 tran-

scriptional profiles and GTP levels in patient-derived fibroblasts. In addition, the transient

expression of different mutations was analysed in COS-7 cells. The results obtained,

together with those of bioinformatic studies, revealed these mutations to affect the splicing

process, the stability of GTP, or the ability of this protein to correctly localise in the ER mem-

brane. The unfolded protein response (UPR; the response to ER stress) was found not to be

active in patient-derived fibroblasts, unlike that seen in cells from patients with PMM2-CDG

or DPM1-CDG. Even so, the fibroblasts of patients with DPAGT1-CDG seemed to be more

sensitive to the stressor tunicamycin. The present work improves our knowledge of

DPAGT1-CDG and provides bases for developing tailored splicing and folding therapies.

PLOS ONE | https://doi.org/10.1371/journal.pone.0179456 June 29, 2017 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Yuste-Checa P, Vega AI, Martı́n-Higueras
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Introduction

Protein glycosylation refers to the co- and post-translational covalent attachment of oligosac-

charide moieties to newly synthesised proteins. This is a complex, multistep and highly regu-

lated process. Many different proteins comprise the cellular machinery involved, which takes

place in the cytosol, endoplasmic reticulum and Golgi apparatus. DPAGT1 codes for UDP-N-

acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase (GPT; EC

number 2.7.8.15), an enzyme involved in one of the initial steps of the N-glycosylation path-

way. This ER-resident transmembrane protein catalyses the transfer of N-acetylglucosamine

from cytosolic UDP-N-acetylglucosamine to dolichol-phosphate, which is also located in the

ER membrane. The result is the formation of dolichol-pyrophosphate-N-acetylglucosamine—

the carrier of the sugars that are finally attached to proteins in glycosylation. DPAGT1 defects

manifest as two alternative phenotypes: congenital disorder of glycosylation DPAGT1-CDG

(MIM: 608093; previously known as CDG-Ij), and limb-girdle congenital myasthenic syn-

drome (CMS) (MIM 614750) with tubular aggregates. The former is a severe, multisystem dis-

ease, with most patients presenting moderate to severe psychomotor disability, microcephaly,

hypotonia and epilepsy. The clinical manifestations of CMS, in contrast, include muscle weak-

ness plus minimal or absent craniobulbar symptoms [1,2]. The primary pathogenic mecha-

nism arising through DPAGT1 mutations that leads to CMS is the hypoglycosylation of

acetylcholine receptors in neuron endplates. This is also true for mutations in other genes

(e.g., GFPT1,ALG2 and ALG14) involved in the N-glycosylation pathway that result in CMS

[3].

Glycosylated proteins are involved in many biological processes, including cell signalling,

immune defence, and protein folding and stability, etc. [4]. The glycosylation of nascent pro-

teins modifies their physical properties, increasing their stability and directing their folding

and quality control in the ER [5,6]. Only properly folded proteins are allowed to reach the

Golgi apparatus; incompletely folded proteins are retained in the ER until their folding is com-

plete, otherwise they are translocated back to the cytosol to be degraded by the proteasome sys-

tem (ERAD, ER-associated protein degradation).

A balance between protein folding and protein degradation needs to be established if ER

homeostasis is to be maintained. An excess of improperly folded proteins leads to ER stress

and the activation of the unfolded protein response (UPR) [7]. In some CDGs, the accumula-

tion of hypoglycosylated proteins in the ER leads to the moderate, chronic activation of the

UPR [8,9,10,11]. Therapies designed to attenuate ER stress and/or enhance the protection

offered by the UPR might therefore be useful. Indeed, increasing GRP78 levels in cerebellar

neurons to restore ER homeostasis has been proposed as a potential therapeutic target for

PMM2-CDG [9]

Improving our knowledge of the pathogenic, molecular mechanisms associated with

DPAGT1-CDG may provide information of use in the development of tailored therapeutic

strategies. The present work functionally characterises six disease-causing mutations identified

in three patients with DPAGT1-CDG, and examines the possible contribution of ER stress in

the pathophysiology of this disease.

Materials and methods

Cell lines and culture conditions

PMM2-CDG, DPAGT1-CDG, and DPM1-CDG patients included in the study were selected

by clinical findings and abnormal serum transferrin pattern analysed by isoelectrofocusing or

high-performance liquid. Mutations in PMM2 were sought by Sanger sequencing and patients

DPAGT1-CDG
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with non–PMM2-CDG were examined by massive parallel sequencing. DPAGT1-CDG,

PMM2-CDG and DPM1-CDG patient-derived fibroblasts (Table 1 and S1 Table) were grown

from skin biopsies (taken with informed consent) in minimal essential medium supplemented

with 1% glutamine, 10% foetal calf serum, and antibiotics, under standard conditions.

GM08680 (Coriell Institute for Medical Research, NIGMS Human Genetic Cell Repository,

Camden, New Jersey) and CC2509 (Lonza, Basel, Switzerland) cell were used as healthy con-

trols. All DPAGT1 and DMP1 patients-derived fibroblasts available in the laboratory were

selected. In the case of PMM2 derived-fibroblast were included four cases compound hetero-

zygous of a severe pathogenic variant and one destabilizing mutations [12]

COS-7 cells were grown in minimal essential medium supplemented with 1% glutamine,

5% foetal calf serum, and antibiotics; these cells were used to overexpress mutant DPAGT1

proteins in transient expression experiments (see below).

Genetic analysis

Genetic analyses were performed for three patients with DPAGT1-CDG. RNA and/or geno-

mic DNA was extracted from patient-derived fibroblasts or whole blood using the MagNA

Pure Compact Kit (Roche Applied Sciences) according to the manufacturer’s instructions.

Genetic analysis was performed by conventional Sanger sequencing, or by DNA massive paral-

lel sequencing of either the whole exome or of a customised panel of 43 CDG-associated genes

(SureSelect, Agilent, Santa Clara, California). All massive parallel sequencing was performed

in a Hiseq2000 sequencer (Illumina, San Diego, California). After alignment of the reads and

annotation of single nucleotide variants (SNVs), the latter were filtered by segregation analysis,

population frequency and bioinformatic analysis to select pathogenic candidates.

DPAGT1 transcriptional profile analysis was performed using specific primers for amplify-

ing the entire coding DPAGT1 cDNA and employing the SuperScript1Vilo™ cDNA Synthesis

Kit (Life Technologies, Carlsbad, California). The primers used for RT-PCR amplification or

Sanger sequencing can be provided upon request.

The Ethics Committee of the Universidad Autónoma de Madrid approved the present study.

Written informed consent from the parents or their guardians was obtained prior to analysis.

Western blotting

Patient-derived cells were harvested with trypsin and resuspended in lysis buffer (1% triton,

10% glycerol, 150mM NaCl, 10mM trisHCl, pH 7.5) containing Complete Mini EDTA-free

Protease Inhibitor Cocktail (Roche Applied Sciences, Mannheim, Germany). Protein amounts

were quantified via the Bradford assay (BioRad, Hercules, CA, USA); samples were prepared

in NuPage1LDS sample buffer 4x (Life Technologies, Carlsbad, California) and dithiothreitol

(DTT) and subjected to electrophoresis in 10% NuPAGE Novex Bis-Tris mini gels (Life Tech-

nologies, Carlsbad, California). ProSieve Color Protein Markers (Lonza, Basel, Switzerland)

Table 1. Genotype/phenotype of DPAGT1 defective patients.

Ref. Paternal allele Maternal allele Phenotype Reference

P1 c.901C>T (p.

Arg301Cys)

c.1154T>G (p.

Leu385Arg)

Foetal hypokinesia, facial dysmorphism, hypertrichosis, hypotonia, papilar atrophy,

bilateral cochlear impairment

[21]

P2 c.791T>G (p.

Val264Gly)

c.358C>A (p.

Leu120Met)

Hypotonia (CMS) [30]

P3 c.902G>A (p.

Arg301His)

c.329T>C (p.

Phe110Ser)

Hypotonia, muscle weakness, hypoacusia, psychomotor retardation This work

https://doi.org/10.1371/journal.pone.0179456.t001

DPAGT1-CDG
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were used as molecular weight markers. Proteins were transferred to nitrocellulose membranes

using the iBlot Dry Blotting System (Life Technologies, Carlsbad, California). Membranes

were blocked for at least 1 h with 0.05% PBS-Tween and 5% low-fat milk. Immunodetection

was performed using anti-GPT (Abcam, Cambridge, UK), anti-Grp78 (Novus Biologicals, Lit-

tleton, CO, USA), anti-CHOP (Pierce Biotechnology, Waltham, MA, USA), anti-Herp (Santa

Cruz Biotechnology, Santa Cruz, CA, USA) or anti-tubulin antibodies (Sigma-Aldrich,

St. Louis, MO, USA). Horseradish peroxidase-conjugated goat anti-rabbit and goat anti-

mouse immunoglobulin G (Santa Cruz Biotechnology, Santa Cruz, CA, USA) were used as

secondary antibodies. The Enhanced Chemiluminescence System (GE Healthcare, Bucking-

hamshire, UK) was used for detection.

Immunofluorescence microscopy

Patient-derived fibroblasts were grown on glass coverslips and fixed with 10% formalin for 20

min at room temperature. The fixed cells were blocked with blocking solution (PBS 1x, 0.1%

triton, 5% foetal bovine serum) for 30 min and the cells then incubated overnight at 4˚C with

anti-GPT antibody (Santa Cruz Biotechnology, Dallas, TX, USA) diluted 1:50 in blocking solu-

tion plus anti-calnexin antibody (StressMarq, Victoria, British Columbia) diluted 1:200 in

blocking solution. After washing three times with PBS, anti-goat Alexa 555 (Life Technologies,

Carlsbad, California) and anti-rabbit Alexa 488 antibodies (Life Technologies, Carlsbad, Cali-

fornia) diluted 1:500 in blocking solution were applied for 1 h at room temperature. The cells

were then washed with PBS and incubated with DAPI (Merck, Whitehouse Station, NJ, USA)

diluted 1:2500 in PBS for 5 min. Samples were observed using an Axiovert200 inverted micro-

scope; photographs were taken using a C9100-02 digital camera (Hamamatsu, Hamamatsu

City, Japan).

Expression of wild type and DPAGT1 mutants

COS-7 cells were cotransfected with the pCMV6-AC-GFP expression plasmid encoding

human DPAGT1 cDNA (NM_ 001382.3) fused to GFP (RG201787, OriGene, Rockville, MD,

USA), and with the Living Color1 vector encoding calreticulin fused with DsRed (BD Biosci-

ences, San Jose, Ca, USA). JetPET (Polyplus Transfection, New York, NY, USA) was used as

the transfection reagent. Cells were incubated for 48 h and then observed using an Axiovert200

inverted microscope. Photographs were taken using a C9100-02 digital camera (Hamamatsu,

Hamamatsu City, Japan). Shadow and background corrections were made before taking pho-

tographs to allow quantification of expression using Fiji software.

RT-PCR and quantitative RT-PCR

Total RNA was isolated using Tripure Isolation Reagent (Life Technologies, Carlsbad, Califor-

nia) following the manufacturer’s recommendations. Samples were quantified using a Nano-

drop ND-1000 device (Thermo Scientific, Wilmington, MA, USA). cDNA was synthesised by

RT-PCR using the High-Capacity cDNA Archive Kit (Life Technologies, Carlsbad, California)

in the case of XBP1 RT-PCR and the GeneAmp PCR Amplification System (Applied Biosys-

tems) in the case ATF4, DDIT3 and HSPA5 qRT-PCR. XBP1 and GAPDH cDNA amplification

was performed by PCR using platinum Taq DNA polymerase (Life Technologies, Carlsbad,

California) following the manufacturer’s instructions, making use of the primers XBP1 sense

(5' TTACGAGAGAAAACTCATGGC3'), XBP1 antisense (5' GGGTCCAAGTTGTCCAGAATGC
3'), GADPH sense (5' GTCGGAGTCAACGGATTTGG3') and GAPDH antisense (5' TGAG
CCCCAGCCTTCTCC3'). mRNA expression levels of ATF4, DDIT3 and HSPA5 were deter-

mined in control and patient-derived fibroblasts before and after tunicamycin treatment

DPAGT1-CDG
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(2.5 μg/ml for 16 h) by qRT-PCR using the LightCycler1480 SYBR Green I Master Kit (Roche

Applied Sciences), Universal ProbeLibrary probe #88 (ATF4), probe #64 (HSPA5), and probe

#9 (DDIT3) (Roche Diagnostics), and employing a LightCycler1480 instrument. Data were

analysed using Lightcycler1 software (Roche Applied Sciences), correlating the initial template

concentration with the cycle threshold (Ct) to obtain the relative quantity (RQ) of RNA. The

RQ is defined as RQ = 2−ΔΔCt, where ΔΔCt is the ΔCt of the patient cell line minus the ΔCt of

the control cell line, and ΔCt is the Ct of the target gene minus the Ct of the housekeeping

gene (GAPDH).

Statistical analysis

Statistical analyses were performed using IBM SPSS Statistics v.21 software for Windows. The

2-tailed Student t test was used to compare the amount of GPT mutant proteins localised in

the ER and the relative mRNA expression level of the UPR genes. Data are reported as

means ± SD.

Results

Genetic analysis

The following nucleotide changes were detected in DPAGT1: c.329T>C (p.Phe110Ser)

(described for the first time in this work), c.358C>A (p.Leu120Met), c.791T>G (p.

Val264Gly), c.901C>T (p.Arg301Cys), c.902G>A (p.Arg301His) and c.1154T>G (p.

Leu385Arg). All three patients were compound heterozygous (Table 1). Fig 1 shows p.Phe110-

Ser, p.Val264Gly and p.Leu385Arg to be located in intermembrane domains, while p.

Le120Met, p.Arg301Cys and p.Arg301His are located in the cytosolic domain of the protein.

Analysis of the predicted effect of these exonic SNVs indicated all to be likely disease-

causing mutations since they affected highly or moderately conserved residues. Additionally,

all but c.901C>T were predicted to have an effect on the splicing process. The bioinformatic

analysis revealed a greater chance of exon skipping for the c.358C>A and c.791T>G muta-

tions due to their potential alteration of an exonic splicing enhancer sequence (Table 2).

Fig 1. Diagram of GPT protein and location of the reported mutations. Predicted structural model based on the data

obtained from The Universal Protein Resource (UniProt), primary accession number Q9H3H5 [17]. Disease-causing

mutations included in this work are shown in red.

https://doi.org/10.1371/journal.pone.0179456.g001

DPAGT1-CDG
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DPAGT1 transcriptional profile analysis of patient-derived fibroblasts revealed the presence

of full-length transcripts in all three patients. However, sequence analysis indicated one

patient’s (patient 2) transcript to carry the c.358C>A mutation only, with no trace of the

c.791T>G mutation. Cycloheximide treatment of this patient’s fibroblasts allowed the detec-

tion of two transcripts, one lacking exons 2 and 3 (probably caused by the effect of the nucleo-

tide change c.358C>A (Fig 2).

Total GPT was determined in all three patients’ cells by Western blotting (data not shown).

In patients 1 and 3, immunofluorescence (labelling the GPT protein and the ER marker Cal-

nexin) suggested the GPT to be improperly localised in the ER (Fig 3A).

Functional analysis of the mutations

To determine the effect of each mutation on GTP stability and the location of mutant proteins

in the ER, COS-7 cells were cotransfected with two expression plasmids, one coding for the

GFP-GPT fusion protein, the other for calreticulin-DsRed as an ER marker. The effect of

c.791T>G (p.Val264Gly) on GTP stability and location was also examined, despite the appar-

ent lack of the full length transcript carrying the mutation, in case some trace of the protein

was produced. The results showed the p.Leu385Arg mutant protein to be almost completely

absent (Fig 3) suggesting its stability to be severely affected. The p.Phe110Ser and p.Val264Gly

mutant proteins were reduced in quantity by 30 and 40% respectively compared to the wild

type protein, suggesting them to be less stable or to be incorrectly localised (Fig 3). In contrast,

the p.Leu120Met, p.Arg301Cys and p.Arg301His mutant proteins seemed to be stable and

properly localised in the ER (Fig 4).

ER stress analysis

To gain insight into the pathophysiology of DPAGT1-CDG, and the possibility of targeting the

UPR as a therapeutic strategy, the activation of genes involved in this response were analysed.

Fibroblasts from patients with PMM2-CDG and DPM1-CDG, previously described as show-

ing moderate, chronic UPR activation [8,10,13], were used as positive controls.

Fig 2. DPAGT1-transcriptional profile analysis of patient 2-derived fibroblasts. Cycloheximide

treatment and further sequencing analysis revealed two transcripts, one lacking exons 2 and 3.

https://doi.org/10.1371/journal.pone.0179456.g002
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The activation of the three UPR signal transducers—the PERK, ATF6 and IRE1 arms- was

examined by the study of the relative mRNA expression of ATF4 (which codes for the protein

ATF4), HSPA5 (which codes for the protein Grp78) and the analysis of XBP1 splicing, respec-

tively. The activation of apoptosis was examined via the relative expression of mRNA levels of

DDIT3 (which codes for the protein CHOP). The results showed no induction of these genes

in the DPAGT1-CDG patient-derived fibroblasts (Fig 5A), while the PMM2-CDG- and

DPM1-CDG patient-derived cells showed increases in the expression of ATF4 and HSPA5
compared to the control cell line. This indicates a moderate activation of the PERK and ATF6

arms of the UPR respectively. Apoptosis in these latter cells was also increased due to an ele-

vated expression of DDIT3.

The sensitivity of the three types of patient-derived cells to stressors was analysed via their

treatment with tunicamycin, a potent inducer of the UPR. This compound inhibits activity of

the GPT protein [14], and thus glycosylation. Compared to control cells, the DPAGT1-CDG

patient-derived fibroblasts were found to be more sensitive to tunicamycin, with activation of

all three UPR arms. In contrast, the PMM2-CDG and DPM1-CDG patient-derived cells

appeared slightly less sensitive to tunicamycin than the control cells (Fig 5A).

The levels of CHOP, Grp78 and Herp (which is also involved in the activation of the UPR)

in DPAGT1-CDG patient-derived fibroblasts were analysed before and after tunicamycin

treatment. The results confirmed these cells to show no basal UPR activation but greater sensi-

tivity to tunicamycin compared to controls (Fig 5B).

The results for IRE1 arm activation showed the appearance of the spliced XBP1 form in

control and patient-derived fibroblast treated with tunicamycin. However, neither the

DPAGT1-CDG, nor PMM2-CDG, or DPM1-CDG patient-derived cells produced this form in

the absence of tunicamycin, indicating the IRE arm not to be activated (Fig 5C). Finally, in the

DPM1-CDG and PMM2-CDG patient-derived fibroblast, the response to tunicamycin seemed

to be weaker than in the control cells.

Fig 3. GPT protein level and location in control and DPAGT1-CDG patient-derived fibroblasts. Double

labelled immunofluorescence analysis of control (C) and patient cell lines (patients 1, 2 and 3). Cells were

double-labelled with GPT (red fluorescence) and Calnexin (green fluorescence) antibodies (ER marker).

https://doi.org/10.1371/journal.pone.0179456.g003
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Discussion

The comprehensive functional characterization of disease-causing mutations allows tailored

therapeutic strategies to be designed. The present work contributes towards the search for

therapeutic targets for the treatment of DPAGT1-CDG.

Immunofluorescence analysis revealed GTP to be incorrectly localised in the ER in

DPAGT1-CDG patient-derived fibroblasts from two patients (2 and 3). Since the present

patients were compound heterozygous, the specific effect of each change had to be elucidated.

Mutant expression analysis in the COS-7 expression system, in combination with DPAGT1
transcriptional profile studies in patient-derived fibroblasts, showed all the studied variants to

be pathogenic, either affecting the splicing process, the correct folding of the protein, and/or

its subcellular location. Transient expression studies with p.Phe110Ser, p.Val264Gly and p.

Leu385Arg cDNA showed the ER to contain reduced amounts of mutant GPT. It is notewor-

thy that these three residues (Phe110, Val264 and Leu385) are located in the transmembrane

domains of the GTP protein, and that the amino acid changes are large, moderate and moder-

ate respectively, as described by the Grantham distance [15]. This indicates a likely effect on

the hydrophobicity and/or structure of the corresponding domains, suggesting difficulties may

arise in the protein being embedded in the ER membrane. The results for the p.Leu385Arg

mutation suggest it to have a strong effect on protein stability, and that it is likely degraded

rapidly by the ER-associated protein degradation system. Finally, the mutation p.Phe110Ser

seems to affect the correct localization of GPT in the ER.

Fig 4. Expression analysis of GTP mutations. A) COS-7 cells were cotransfected with the wild type

GPT-GFP fused protein (green fluorescence) or the protein bearing the mutations (p.Phe110Ser, p.

Leu120Met, p.Val264Gly, p.Arg301Cys, p.Arg301His and p.Leu385Arg) and with the Calreticulin-DsRed

fused protein (red fluorescence) as an ER marker. B) Quantification of GPT-GFP (colocalised with Calnexin-

DsRed protein) fluorescence intensity. Data were collected from two different experiments; at least 80 images

were analysed. Data represent mean ± SD. ***p<0.001.

https://doi.org/10.1371/journal.pone.0179456.g004
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The DPAGT1 transcriptional profiles and bioinformatic predictions suggest that the nucle-

otide change c.358C>A (p.Leu120Met) affects the splicing process since it is located in an

exonic splicing enhancer. In agreement, an aberrant transcript lacking exon 2 and 3 was

detected. This effect has also been described for the mutation c.360G>C located two nucleo-

tides downstream [16]. The present results showed this mutation to have no effect on GPT sta-

bility protein or its localisation in ER. However, it should be noted that the present expression

analysis was performed using cDNA, which can reveal no effect on splicing. Indeed, even if the

protein was produced, residue Leu120 lies close to the Mg2+ binding domain (Fig 1), which

has an important role in protein activity. Previous reports describe other disease-causing

mutations to lie near this domain [16,17,18,19,20], suggesting that mutation p.Leu120Met

likely affects GPT activity.

Fig 5. UPR activation in DPAGT1-CDG/CMS, PMM2-CDG and DPM1-CDG patient-derived fibroblasts. A) Quantification of ATF4,

HSPA5 (Grp78 protein) and DDIT3 (CHOP protein) gene expression before and after treatment with tunicamycin (measured by

qRT-PCR). Data represent mean ± SD of two controls, three DPAGT1-CDG/CMS, four PMM2-CDG and three DPM1-CDG cell lines.

The results are represented as relative mRNA expression compared to the control-derived fibroblasts before treatment. Data were

obtained via at least three experiments. *p<0.05; **p<0.01; ***p<0.001. B) Western blot analysis of DPAGT1-CDG patient-derived

fibroblasts before and after treatment with tunicamycin. Equal amounts of total soluble protein were loaded onto the SDS-PAGE gel and

the proteins immunodetected using anti-CHOP, anti-Grp78, anti-Herp antibodies, with anti-tubulin as a loading control. C) RT-PCR

analysis of XBP1 splicing transcription factor in patient-derived fibroblasts untreated and treated with tunicamycin. XBP1 U: Unspliced

XBP1 form; XBP1 S: spliced XBP1 form. GAPDH was used as internal control gene ().

https://doi.org/10.1371/journal.pone.0179456.g005
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p.Arg301Cys and p.Arg301His—changes predicted to be harmful by several algorithms

[21,22]—were not found in control samples. The results show that they had no effect on splic-

ing, and their transient expressions indicated them to have no effect on protein stability or

localization in the ER either. These results conflict, however, with the observed mislocalization

of the protein in the fibroblasts of patients 1 and 3. Given the reduced presence of GPT bearing

the changes p.Phe110Ser and p.Leu385Arg due to they affect potentially the splicing process or

the stability of the protein respectively, the majority of the GPT in these patients’ cells must be

of the p.Arg301Cys and p.Arg301His types. The overexpression of p.Phe110Ser and p.

Leu385Arg mutant proteins, however, might allow their harmful effect to be overcome [12].

Further work is needed to determine whether these changes really have harmful effects, and

the underlying mechanisms that might be involved.

Functional analysis provides insight into the pathogenesis of diseases and can help uncover

therapeutic options. With respect to the present destabilizing changes, mutation-specific fold-

ing therapies aimed at rescuing protein folding and trafficking might be possible via the use of

pharmacological chaperones (PCs) and proteostasis regulators (PRs), which have already

shown promise in the treatment of conformational diseases [23]. Research is already underway

on a number of PCs and PRs that might rescue cystic fibrosis transmembrane conductance

regulator (CFTR), changes which lead to cystic fibrosis [24,25,26]. Indeed, one such PC, Luma-

caftor, has been approved by the US Food and Drug Administration for use in combination

with the "potentiator" Ivacaftor for the rescue of CFTR channel function (http://pi.vrtx.com/

files/uspi_lumacaftor_ivacaftor.pdf).

As have been reported previously, we have detected ER stress in PMM2 and DPM1 patient-

derived fibroblasts, but unexpectedly it was not found in the present DPAGT1-CDG patient-

derived fibroblasts. In addition to the misfolded hypoglycosylated proteins unable to leave the

ER, the accumulation of free and truncated LLO might contribute towards ER stress [11]. LLO

analysis of DPM1-CDG cells by other authors [27] showed an accumulation of the truncated

LLO form. In PMM2-CDG patient-derived fibroblasts, the ER stress observed might be caused

by a subphysiological glucose concentration that induces the accumulation of LLO intermedi-

ates [28]. Further, mannose-6-P accumulation in a zebrafish model of PMM2-CDG appears to

promote LLO hydrolysis, releasing Dol-P-P, which can then be recycled to make new LLO and

free glycans [29]. These glycans accumulate, and might be partly responsible for the observed

ER stress. In contrast, no ER stress was observed in the DPAGT1-CDG patient-derived fibro-

blasts, which might be due to their LLO having a normal structure [17,21]. The present results

also showed that the PMM2-CDG and DPM1-CDG patient-derived fibroblasts were less effi-

cient than controls in responding to the ER stress induced by tunicamycin, supporting the

idea of ER stress adaptation [10]. However, the DPAGT1-CDG patient-derived fibroblasts

seemed to have a more effective response to tunicamycin than the control cells, perhaps

because GPT is this stressor’s target [14]. Further experiments are needed to determine why

these cells are more sensitive to tunicamycin.

In conclusion, this work increases the number of mutations known to be associated with

DPAGT1-CDG, and provides bases for developing tailored therapies.
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