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Scrutinizing the Mechanisms of West Non–Zone 3 Conditions
during Tidal Ventilation

A long time ago, it was demonstrated that blood flow through
arterioles, capillaries, or veins is well mediated by the Poiseuille law

(the gradient between the upward and backward pressures of the
vessel), provided the proper backward pressure is used, taking into
account the surrounding pressure of the vessel and its closing
pressure, leading to the principle of the vascular waterfall and the
Starling resistor with different vessel zone conditions in which zone 3
regards the absence of any flow limitation (1). West zones are no
more than the application of this principle to the pulmonary
capillaries (2). Figure 1 illustrates its application to the vena cava as
well as the pulmonary capillaries.
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In this issue of the Journal, Slobod and colleagues (pp.
1311–1319) report interesting results regarding the prevalence of
lung non–zone 3 conditions during inspiration across a 2- to 12-
ml/kg range of VT in 51 postoperative passively ventilated cardiac
surgery patients (3). Using detailed invasive hemodynamic
phenotyping, coupled with echocardiography in a few patients,
the authors found that even low VT was associated with a cyclic
inspiratory increase in markers of right ventricular (RV)
afterload and a decrease in RV stroke volume. Non–zone 3
conditions were present in.50% of subjects at a VT > 6 ml/kg,
with a corresponding mean driving pressure of 11–12 cm H2O.

In non–zone 3 conditions, the backward pressure for the
pulmonary flow is no longer the pulmonary venous pressure but
now the distending pressure of the alveoli (i.e., transpulmonary

pressure) (2). This usually suggests a partial (zone 2) or complete
(zone 1) collapse of pulmonary capillaries with a limited or
interrupted flow. Slobod and colleagues found a linear
relationship between transpulmonary pressure at end inspiration
and the rise in RV afterload. It is interesting to note that this
relationship was already reported, but as being curvilinear (4),
demonstrating that above a given value of transpulmonary
pressure, West zone 2 or zone 1 conditions occur, abruptly
increasing RV afterload. Jardin and colleagues (5) previously
reported in patients with acute respiratory distress syndrome
(ARDS) that transpulmonary pressure increased when VT or
positive end-expiratory pressure was increased; this generated an
increase in RV isovolumetric contraction pressure (a good
surrogate of RV afterload) and a decrease in pulmonary artery
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Figure 1. Impact of mechanical ventilation on systemic venous return and pulmonary blood flow, with their potential interaction. A model of a
vascular waterfall and the Starling resistor. Left part: Potential impact of mechanical ventilation on systemic venous return and right ventricular
(RV) preload. The venous return is normally driven by the difference between the upward mean systemic pressure (Pms) and the backward
right atrial pressure (PRA), with no influence of the surrounding pressure of the vena cava, which is the pleural pressure (Ppl), a situation
corresponding to a zone 3 condition (Pms.PRA.Ppl). Pms is the equilibrium pressure into the circulatory system when the heart stops
beating. The cyclic rise in airway pressure (Paw) induces a predominant rise in Ppl in case of normal lung compliance (CL) (15), impeding
partially or completely the systemic venous return by inducing a zone 2 (Pms.Ppl.PRA) or zone 1 (Ppl.Pms.PRA) condition, respectively.
Middle part: Potential impact of mechanical ventilation on pulmonary blood flow and RV afterload. The pulmonary blood flow is normally driven
by the difference between the upward systolic right ventricle pressure (PRV) and the backward left atrial pressure (PLA), with no influence of the
surrounding pressure of lung capillaries, which is the transpulmonary pressure (PL), a situation corresponding to a West zone 3 condition
(PRV.PLA.PL). The cyclic rise in Paw induces a predominant rise in PL in case of altered CL (15), impeding partially or completely the
pulmonary blood flow by inducing a zone 2 (PRV.PL.PLA) or zone 1 (PL.PRV.PLA) condition, respectively. The preload effect, by impeding
venous return and RV preload, may reduce PRV and PLA, inducing a transition from West zone 3 to zone 2 or from zone 2 to zone 1 (gray
dashed arrows). Right part: Curvilinear relationship between transpulmonary pressure and RV afterload as a consequence of West zone
condition alterations.
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pulse pressure (a good surrogate of RV stroke volume), as
reemphasized by Slobod and colleagues.

The new information in the Slobod and colleagues study is that
the effect of tidal ventilation on RV afterload was also observed in
patients without ARDS with a low VT, whereas it was usually
considered that such a deleterious effect of mechanical ventilation is
especially pronounced in patients with ARDS, in whom
transpulmonary pressure is more likely to be severely elevated. In
patients without ARDS, mechanical ventilation is expected to cause a
decrease in systemic venous return (preload effect) mediated by a
significant change in intrathoracic pressure (pleural pressure), which
may reduce the superior vena cava transmural pressure toward its
critical closing pressure, inducing venous return flow limitation,
according to a vascular waterfall effect and the Starling resistor
principle (6, 7) (Figure 1). This is especially true in cases of central
hypovolemia and fluid responsiveness status. Notably, compliance of
the respiratory system, as well as that of the lung and chest wall, were
far to be normal in the post–cardiac surgery patients evaluated by
Slobod and colleagues. This could explain in part their results
suggesting an afterload effect even in patients without ARDS with
low VT.

Other specific points in this study deserve discussion. First,
the hemodynamic consequence of increased RV afterload is
usually prominent when RV function was previously impaired.
Slobod and colleagues report a decrease in RV stroke volume
during insufflation, but, unfortunately, they do not report RV
function at baseline. Second, the authors state that many critically
ill patients have “RV limitation” (i.e., their right ventricle cannot
increase its end-diastolic volume in response to increased afterload
to maintain stroke volume). This assertion is questionable for
several reasons. RV failure was defined in critically ill patients as a
state in which the right ventricle is unable to meet the demands
for blood flow without excessive use of the Frank-Starling
mechanism (8). In many acute clinical situations, such as massive
pulmonary embolism or ARDS, increased RV afterload is
associated with RV dilatation and venous congestion (9).
Interestingly, Slobod and colleagues not only reported an “RV
limitation” during insufflation but also a decrease in transmural
right atrial pressure (i.e., the distending pressure of the right
atrium). This could suggest that alteration of the RV afterload
parameters they observed was related to an upstream decrease in
systemic venous return and RV preload mediated by mechanical
ventilation, a crucial point to be well understood (Figure 1).

Indeed, lungWest zones are supported by a potential
competition between alveolar distending pressure and pulmonary
capillary flow. This competition was reported by Zapol and colleagues
many years ago to occur only in patients with acute lung injury and
not in patients with normal lung compliance (10). A decrease in
pulmonary blood flow, as a consequence of a preload effect of
mechanical ventilation, may potentiateWest non–zone 3 conditions,
especially when lung compliance is depressed. This competition
is corrected by fluid loading, especially when the patient is
hypovolemic (11).

When the increase in RV afterload is really the primum
movens, non–zone 3 conditions are usually related to lung
overinflation (an abnormal and absolute increase in alveolar
distending pressure) (Figure 1), and the decrease in RV stroke
volume is associated with RV dilatation, as previously reported
using echocardiography in patients with ARDS during tidal

ventilation (12). The decrease in systemic venous return is
then the consequence (transmural right atrial pressure is
increased) and not the cause (transmural right atrial pressure
is decreased) of the afterload effect (12). In this case, RV
function may be worsened by fluid loading (13, 14) and
requires adjustment of ventilator settings and strategies to
relieve pulmonary vascular dysfunction.

In conclusion, the study of Slobod and colleagues is
definitely interesting to analyze. Its main value is to allow
intensivists to better understand heart–lung interactions and
their respective mechanisms. Although some data on RV size and
RV function are missing, we may assume that changes in RV
afterload observed in their patients without ARDS were at least in
part primarily related to a decrease in systemic venous return and
RV preload. A “pure” RV afterload effect, as observed in patients
with ARDS, is associated with RV dilatation and venous
congestion. In clinical practice, echocardiography is therefore
essential in depicting these respective effects because fluid
management in these 2 conditions is opposite.�
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Another Study Shows Electronic Cigarettes Harm Lungs: It Is Time
for Researchers to Move from the Tobacco Playbook to a
Tobacco Endgame

Electronic cigarette (e-cigarette) use is common among adolescents
and young adults. An entry to nicotine addiction, e-cigarettes are
casually associated with future combustible cigarette and dual-use
among young people and with significant harm to cardiovascular and
respiratory health in adults. In this issue of the Journal, Xie and
colleagues (pp. 1320–1329) report on the association of electronic
cigarette use with respiratory symptom development among young
adults in the United States using data from the PATH (Population
Assessment of Tobacco and Health) study (1). They present
longitudinal data from PATHWaves two through five, reflecting
survey data from 2014 to 2019, demonstrating that both former and
current e-cigarette use is associated with the development of
respiratory symptoms and wheezing in 18- to 24-year-old young
adults who otherwise had no respiratory disease or symptoms at
baseline. The associations were seen whether or not subjects reported
ever smoking combustible cigarettes.

As the authors note, “e-cigarettes have gained immense
popularity,” including high rates of current e-cigarette use among
youth who have never smoked combustible cigarettes. This state of
affairs has come about through deliberate and effective targeting of
youth through investments in marketing and promotion by the
tobacco industry. Abundant evidence shows that e-cigarettes contain
toxic chemicals with inflammatory and carcinogenic effects; while
concentrations are often lower than those found in combustible

cigarettes, this is relevant to their potential harm-reduction benefit
and not to addiction of new users.

This paper reports important and significant findings
contributing to our understanding of the harms of e-cigarette
products. The analysis uses all available PATH data and appropriately
excludes participants with preexisting respiratory disease. Young
people with asthma, for example, are likely to have very different
patterns of use and exposure and to have been nonusers of any
nicotine products because of potential symptom exacerbation. Xie
and colleagues cite two other longitudinal studies using PATH data to
explore the association between e-cigarettes and wheezing. One, using
longitudinal data, reported similar odds of wheezing in 12- to
17-year-old adolescents who used e-cigarettes (2). The other, using
the same data and similar design, found dual use of e-cigarettes and
combustible cigarettes, but not e-cigarettes alone, associated with
more respiratory symptoms in those aged 12 or older (3). Another
research group is constructing summary measures to define
‘“functionally important respiratory symptoms” with regard to
self-reported health status, using PATH data (4).

The important underlying questions, however, are not
whether symptoms are casually proven if one includes the few
12- to 14-year-olds who vape in samples or whether young people
develop wheezing, cough, or both symptoms from e-cigarette
exposure. Nor is it appropriate to conclude that more research is
needed to understand what damage these products might cause.
Rather, the question that must be asked is whether these competing
analyses continue to undermine and delay effective action to protect
the public’s health. Throughout its history, the tobacco industry has
used multipronged efforts to distort and promote disagreement over
the scientific evidence, and uses these controversies to delay effective
regulatory action (5). The “tobacco playbook” is increasingly
recognized in other industries, and its effects are clearly seen in the
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