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Motor learning in real‑world pool 
billiards
Shlomi Haar1,3*, Camille M. van Assel1 & A. Aldo Faisal1,2,3,4,5*

The neurobehavioral mechanisms of human motor-control and learning evolved in free behaving, 
real-life settings, yet this is studied mostly in reductionistic lab-based experiments. Here we take a 
step towards a more real-world motor neuroscience using wearables for naturalistic full-body motion-
tracking and the sports of pool billiards to frame a real-world skill learning experiment. First, we asked 
if well-known features of motor learning in lab-based experiments generalize to a real-world task. 
We found similarities in many features such as multiple learning rates, and the relationship between 
task-related variability and motor learning. Our data-driven approach reveals the structure and 
complexity of movement, variability, and motor learning, enabling an in-depth understanding of the 
structure of motor learning in three ways: First, while expecting most of the movement learning is 
done by the cue-wielding arm, we find that motor learning affects the whole body, changing motor-
control from head to toe. Second, during learning, all subjects decreased their movement variability 
and their variability in the outcome. Subjects who were initially more variable were also more variable 
after learning. Lastly, when screening the link across subjects between initial variability in individual 
joints and learning, we found that only the initial variability in the right forearm supination shows 
a significant correlation to the subjects’ learning rates. This is in-line with the relationship between 
learning and variability: while learning leads to an overall reduction in movement variability, only 
initial variability in specific task-relevant dimensions can facilitate faster learning.

Motor learning is a key feature of our development and daily lives, from a baby learning to crawl, an adult learning 
a new sport, or a patient undergoing rehabilitation after a stroke. The process of learning a real-world motor skill 
is usually long and complex, and difficult to quantify as tasks are naturally unconstrained and highly variable. 
Most of the motor learning literature focuses on relatively simple tasks, performed in a laboratory setup or even 
within an MRI scanner, such as force-field adaptations1–4, visuomotor perturbations5–9, and sequence-learning of 
finger tapping or pinching tasks10–13. These laboratory-based learning tasks enable us to isolate specific features of 
motor learning and dissect them individually, thus provide elegant experiment designs to verify the experiment-
ers’ hypothesis. As a result, motor learning in the real world is rarely studied. While laboratory-tasks play an 
important role in our understanding of sensorimotor control and learning, they address a very restricted range 
of behaviours that do not capture the full complexity of real-world motor control and may overlook fundamental 
principles of motor control and learning in real-life14,15.

Neurobehavioral mechanisms are subject to evolutionary selection pressures and survive only if they are 
relevant in natural tasks. Thus, studying operation in natural contexts allows us to evaluate mechanisms the 
nervous system has been designed for16,17. Example in sensory neuroscience the use of natural sensory stimuli 
has led to a revolution of our mechanistic understanding of perception18,19. Over the past decade, there were 
a few notable efforts to study motor learning in unconstrained tasks. One line of research devised more com-
plex tasks for skill learning20–22 (e.g. skittles) which were implemented as computer-based gamified tasks that 
emulate real-world tasks. Others moved away from the computer screen but were still highly constrained; e.g. 
throwing a frisbee while the subject’s trunk is strapped to the chair to prevent trunk movement23. Another line 
of inquiry used free-behaviour in real-world tasks such as tool-making or juggling17,24–27. In these studies, we 
and others focused on anatomical and functional MRI measurable changes following learning. In a 3-year long 
complex tool-making apprenticeship experiment17 we were able to quantify changes in motor control precision 
and improvements of task outcomes, but given the 100 s of hours of training involved and complexity of the task 
itself, we were not able to record trial-by-trial learning effects. Therefore, the findings and insights of learning 
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studied in the computational motor control literature—at the level of actual changes in motor coordination and 
control policies—has received little attention in previous real-world learning studies.

One of the main challenges of understanding real-world behaviour and specifically motor learning is to 
identify underlying simplicities in a highly variable stream of movements that are not well constrained. We take 
a data-driven approach to analyse a real-world task and thereby illustrate a process by which one can investigate 
a real-world motor learning task in a principled manner. We aim to inject as few assumptions a priori as possible 
about task-relevant joints or mechanisms of learning, instead we aim to use plausible methods to reveal these 
to us. The paradigm we choose is the game of pool table billiards. Pool is a real-world task that involves many 
different sub-tasks (precision, alignment, ballistic movements, high-level sequential planning and sequencing 
of shots and ball positions) which requires advanced skills—hence it is a highly competitive sport. While our 
ultimate goal is to move to a data analysis framework for real-world motor learning in arbitrary tasks, we find 
that the game of pool offers a useful intermediate goal that frames the behavioural data in a way that makes our 
approach amenable to be understood in the currently dominant framework of laboratory-tasks and measures. 
Pool billiards has natural spatial constraints (the area in and around the pool table), divisibility of behaviour into 
trials (shots of the ball) allowing us to visualize results in the same framework of lab-based motor learning tasks 
and a clear outcome (sink the ball into the pocket). Subjects had to do a pool shot to put the ball in the pocket 
using unconstrained full-body, self-paced movement, with as many preparatory movements as the subject needs 
for each shoot, the only constraints arose from the placement of the white cue ball which the subjects shoot 
with the cue stick and the red target ball (that needs to go into the pocket). We implemented this as a real-world 
experiment, effectively only adding sensors to the subject and the pool table, i.e. subjects use the normal pool 
cue, balls, and pool table they would in a leisure setting and thus carry out natural motor commands, receive the 
natural somatosensory feedback and experience the same satisfaction (rewards) when they put the ball in the 
pocket as this is a real-world task. Crucially, the skill of subjects in putting the ball into the pocket is learnable 
in the time course of 1–2 h, allowing us to record and analyse the experiments as one session.

To tackle the complexity of the high dimensional full-body motor control and task-space (game objects) 
movement, we recorded continuously the full-body movement during the entire learning period (about an hour 
and a half) and measured balls movements automatically on the table. EEG activity was also recorded during the 
task via mobile brain imaging, but to focus here on the motor kinematics learning we chose to report the neural 
activity results elsewhere28. We quantify the trends in full-body movement and task performance separately 
during the entire learning process, and look for correlations between the changes in the body movement and 
the performance in the task.

We structured the results as follows: We ground our results in previous work on laboratory-tasks, to show that 
our unconstrained task and its task goal (directional error of the target ball relative to the pocket it is meant to go 
in) displays the well-known features of human motor learning, namely learning curves with characteristic double 
exponential shape. We then characterize full-body movement structure during the task, and how learning changes 
the kinematics of every of the measured 18 joints. In our analysis, we will alternate between taking a data-driven 
view that attempts to be task-ignorant to identify underlying simplicities indicative of biological mechanisms in 
the data, and a task-based view to interpret the data-driven findings by using task-domain knowledge. Finally, we 
compare across subjects to characterize how their performance, motor variability, and learning rates are linked.

Results
30 right-handed volunteers, with little to no previous experience playing billiards, performed 300 repeated trials 
(6 sets of 50 trials each with short breaks in-between) where the cue ball and target ball were placed in the same 
locations, and subjects were asked to shoot the target ball towards the far-left corner pocket (Fig. 1A). During 
the entire learning process, we recorded the subjects’ full-body movements with a ‘suit’ of inertial measurement 
units (IMUs; Fig. 1B), and the balls on the pool table were tracked with a high-speed camera to assess the out-
come of each trial (Fig. 1C).

Movement and learning in a real‑world pool task.  The ball tracking data showed learning curve for 
the decay in the directional error of the target ball (relative to the direction from its origin to the centre of the 
target pocket) over trials (Fig. 1D). This learning curve was best fit with a double exponential curve (Supplemen-
tary Fig. S1). The direction of the error in the initial trials was consistent across subjects as they tended to hit 
the centre of the target ball and shot it forward towards the centre of the table. For measuring success rates and 
intertrial variability we divided the trials into blocks of 25 trials (each experimental set of 50 trials was divided 
into two blocks to increase the resolution in time). To improve robustness and account for outliers, we fitted the 
errors in each block with a t-distribution and used the location and scale parameters (µ and σ) as the blocks’ 
centre and variability measures. The learning curve over blocks (Fig. 1E) emphasised the reduction in the inter-
subject variability during learning (decreasing error bars). The success rate over blocks (percentage of successful 
trials in each block; Fig. 1F) showed similar learning to the directional error.

Learning was also evident in the intertrial variability in the shooting direction which decayed over learning 
(Fig. 1G). Since learning also occurred within a block (especially during the first block) and the variability might 
be driven by the learning gradient, we corrected for it by calculating intertrial variability over the residuals from 
a regression line fitted to the ball direction in each block (while the learning curve is exponential, within the 
small blocks of 25 trials it is almost linear). This corrected intertrial variability showed only minor reduction in 
the initial blocks, relative to the uncorrected variability, and showed the same decay pattern over the learning 
(Fig. 1H). The scatter in the trial-by-trial data (Fig. 1D) is due to both inter-trial variability (evident in Fig. 1G,H) 
and inter-subject variability (evident in the error bars in Fig. 1E).
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Overall, the task performance data suggested that subjects reached peak performance by the fifth experimental 
set (blocks 9–10, trials 200–250) and were doing the same (or even slightly worse) on the last experimental set 
(blocks 11–12, trials 250–300). Thus, we refer to the last two experimental sets (blocks 9–12, trials 201–300) as 
the ‘learning plateau’, while being mindful that professional pool players train over months and years to improve 
or maintain their skills.

Kinematic data were recorded using a wearable motion tracking ‘suit’ of wireless IMUs, where individual 
wireless sensors (matchbox-sized) were attached via Velcro to elastic straps fixed around the subjects’ body 
without constraining movement. The full-body kinematics were analysed in terms of joint angles using 3 degrees 
of freedom for each joint following the International Society of Biomechanics (ISB) recommendations for Euler 
angle extractions of Z (flexion/extension), X (abduction/adduction), and Y (internal/external rotation). Note, 
this standard approach includes hinge joints of the body which have only 1 degree of freedom being recorded as 
3 Euler angles. The full-body movements were analysed over the angular joint velocity profiles of all joints. The 
data allowed us to reconstruct the full-body pose at any given moment, which we checked for visual correctness 
on a subject-by-subject basis against video ground truth. However, we chose not to look at joint angle’s probability 
distributions, as those are more sensitive to potential drifts in the IMUs (and contain small changes not spottable 
by the human eye). We previously showed that joint angular velocity probability distributions are more subject 
invariant than joint angle distributions suggesting these are the reproducible features across subjects in natural 
behavior29. In the current study, this robustness is quite intuitive: all subjects stood in front of the same pool 
table and used the same cue stick, thus the subjects’ body size influenced their joint angles distributions (taller 
subjects with longer arms had to bend more towards the table and flex their elbow less than shorter subjects with 
shorter limbs) but not joints angular velocity probability distributions (Fig. 2).

In the first step of our data-driven analysis, we wanted to identify the key joints for the task: we analysed 
the angular velocity profiles of all joints, averaged across the initial block trials of all subjects, and found that 
most of the movement is done by the right arm, and specifically in the right shoulder (Fig. 2 inner circle). This 

Figure 1.   Experimental setup and task performance. (A) 30 right-handed healthy subjects performed 300 
repeated trials of billiards shoots of the target (red) ball towards the far-left corner. (B) Full body movement 
was recorded with a ‘suit’ of 17 wireless IMUs (Xsens MVN Awinda). (C) The pool balls were tracked with a 
high-speed camera. Dashed lines show the trajectories of the cue (white) and target (red) balls over 50 trials of 
an example subject. (D) The trial-by-trial directional error of the target-ball (relative to the direction from its 
origin to the centre of the target pocket), averaged across all subjects, with a double-exponential fit (red curve). 
The time constant of the fast and slow components were 6 and 129 trials, respectively. Grey lines mark the range 
of successful trials (less than 3 degrees form the centre of the pocket). (E) The mean absolute directional error 
of the target-ball. (F) The success rates. (G) Directional variability and (H) directional variability corrected for 
learning (see text). (E–H) presented over blocks of 25 trials, averaged across all subjects, error bars represent 
SEM.
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is expected as all subjects were right-handed and used their right hand to hold the cue stick and make the shot. 
Taking domain understanding of the task into account, we can explain the shoulder movement by the naivety of 
the subjects, as pool billiards guidebooks30–33 emphasize that the shooting movement should be from the elbow 
down while the shoulder should be kept still. Correspondingly, the angular velocity profiles averaged across the 
initial block of the learning plateau (trials 201–225) showed similar distributions with an overall decrease in 
peak velocities relative to the initial trials but an increase in the peak angular velocity of ‘right elbow rotation’, 
which is the rotation between the upper arm and the forearm sensor and is equivalent to forearm supination 
(Fig. 2 outer circle).

The angular velocities of the shooting (right) arm were much larger than those of all other joints. For vis-
ibility, in Fig. 2 we used two different ranges on the y-axis for the joints of the shooting right arm (6 rad/s) and 
for all other body joints (2 rad/s). The high variance (relative to the mean) in some of the non-shooting arm 
joints that do move (such as the left elbow) could be caused primarily by variability across 1. trials and 2. subjects 
and specifically in its timing relative to the shot (e.g. While some subjects in some shots had a small left elbow 
movement just before the peak of the shot, others had it shortly after). Thus, aligning the traces with respect to 
the shot results in variability. In previous studies, the sensor noise was shown to be much smaller than both the 
inter- and intra-subject variability34, and to decay even more for slower movements35,36.

To quantify the overall change in the within-trial variability structure of the body over trials, we use the 
generalised variance, which is the determinant of the covariance matrix37 and is intuitively related to the multi-
dimensional scatter of data points around their mean. We measured the generalised variance over the angular 

Figure 2.   Angular velocity profiles. Angular velocity profiles in 3 degrees of freedom (DoF) for each joint (blue: 
flexion/extension, red: abduction/adduction; green: internal/external rotation) averaged across subjects and 
trials over the first block of trials (1–25) in the inner circle (grey background) and the first block after learning 
plateau (201–225) in the outer circle (white background). Shaded areas represent the standard error of the 
mean. Data was recorded in 60 Hz, X axis is in seconds, covering a 1 s window around the timepoint the cue hit 
the ball. Y axis is in radians per second. The joints of the right arm which do most of movement in the task are 
highlighted in orange box and have a different scale on the y axis and grey line to indicate the y axis limits of all 
other joints. The avatar image in the centre is the full body reconstruction of one of the subjects during a trial, 
taken through the Xsens MVN analyze.
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velocity profiles of all joints and found that it increased rapidly over the first ~ 40 trials and later decreased slowly 
(Fig. 3A). To understand what drives the generalised variance peak we plotted the variance–covariance matrixes 
of the first block, the second block (over the peak generalised variance), and ninth block (after learning plateaus) 
(Fig. 3B). It shows that the changes in the generalised variance were driven by an increase in the variance of all 
DoFs of the right shoulder and the negative covariance between the abduction/adduction and internal/external 
rotation of the right shoulder to the flexion/extension of the right shoulder and wrist. The internal/external 
rotation of the right elbow showed a continuous increase in its variance, which did not follow the trend of the 
generalised variance.

Next we set to study the complexity of the movement—as defined by the number of degrees of freedom used 
by the subject—since the use of multiple degrees of freedom in the movement is a hallmark of skill learning38. 
For that purpose, we applied Principal component analysis (PCA) across joints for the angular velocity profiles 
per trial for each subject and used the number of PCs that explain more than 1% of the variance to quantify the 
degrees of freedom in each trial movement. While in all trials of all subjects most of the variance can be explained 
by the first PC (Supplementary Fig. S2), there is a slow but consistent rise in the number of PCs that explain more 
than 1% of the variance in the joint angular velocity profiles (Fig. 3C). The manipulative complexity, suggested 
by Belić and Faisal39 as a way to quantify complexity for a given number of PCs on a fixed scale (C = 1 implies 
that all PCs contribute equally, and C = 0 if one PC explains all data variability), showed cleaner trajectory with 
the same trend (Fig. 3D). This suggests that over trials subjects use more degrees of freedom in their movement.

In the next step of our data-driven analysis, we wanted to identify signatures of learning joint-by-joint. For 
that, we defined a measure of task performance in single-joint space, which we named the Velocity Profile Error 
(VPE). VPE is the minimal correlation distances between the angular velocity profile of each joint in each trial 
to the angular velocity profiles of that joint in all successful trials (for more see “Methods” section). For all joints, 
VPE showed a clear pattern of decay over trials in an exponential learning curve (Fig. 4A). We fitted it with 
a single exponential learning curve (see fits time constants and goodness of fit in Supplementary Table S1). A 
proximal-to-distal gradient in the time constant of these learning curves was observed across the right arm, from 
the shoulder to the elbow and the wrist rotation (Supplementary Fig. S3). Intertrial variability in joint move-
ment was measured over the VPEs in each block. Learning was also evident in the decay of the VPE intertrial 
variability during the learning over most joints across the body (Fig. 4B).

Inter‑subject differences in variability and learning.  In the final step of our data-driven analysis, we 
addressed the individuality of the subjects and looked across subjects for correlations between their task per-
formance, learning rate, and joint movements. Since this is an exploratory study, all statistical tests are reported 
with caution and thus are not presented in the text but only in the figure (Fig. 5)—where the readers can see the 
data points and make their judgment as for the true significance. The statistics are presented in Spearman rank 
correlation, to deal account for outliers and non-linear trends, and p-values are FDR corrected for multiple com-
parisons. The regression lines are presented only for visual account and include their 95% confidence intervals 

Figure 3.   Variance and complexity. (A) The trial-by-trial generalised variance, with a double-exponential fit 
(red curve). (B) The variance covariance matrix of the right arm joints angular velocity profiles averaged across 
subjects and trials over the initial block (trials 1–25), the second block (trials 26–50), in which the generalised 
variance peaks, and first block after learning plateau (block 9, trials 201–225). The order of the DoF for each 
joint is: flexion/extension, abduction/adduction, internal/external rotation. (C) The number of principal 
components (PCs) that explain more than 1% of the variance in the angular velocity profiles of all joints in a 
single trial, with an exponential fit (red curve). (D) The manipulative complexity (Belić and Faisal, 2015), with 
an exponential fit (red curve). (A,C,D) Averaged across all subjects over all trials.
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Figure 4.   Learning over joints. (A) Trial-by-trial Velocity Profile Error (VPE) for all 3 DoF of all joints, 
averaged across all subjects, with an exponential fit. The time constants of the fits are reported under the title 
and the goodness of fit is reported in Supplementary Table S1. (B) VPE intertrial variability (ITV) over blocks of 
25 trials, averaged across all subjects. The color code of the DoF is the same as in Fig. 2 (blue: flexion/extension; 
red: abduction/adduction; green: internal/external rotation). The avatar image in the centre is the full body 
reconstruction of one of the subjects during a trial, taken through the Xsens MVN analyze.
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to address outlier biases. We found substantial differences between subjects in their initial errors, final errors, 
intertrial variability, and learning, which are overlooked in the group average results. One subject, who had low 
initial errors, showed no learning, i.e. did not reduce her error over trials from the first block (trials 1–25) to 
the learning plateau (trials 201–300). For all other subjects, the final errors were smaller than the initial errors 
(Fig. 5A). There was a significant correlation between the initial and the final errors, meaning subjects with 
higher initial errors tended to have higher final errors as well.

While over the learning most subjects decreased their intertrial variability in the outcome (ball direction; 
Figs. 1H, 5B) there was some tendency (though non-significant) for subjects who were initially more variable 
to be also more variable after learning (Fig. 5B). The intertrial variability of the joint angular velocity profiles, 
which also decreased over learning (Fig. 4B), showed a clearer and stronger correlation between the initial and 
the final intertrial variability (Fig. 5E, Supplementary Fig. S4). While this phenomenon was observed in vari-
ous joints across the body, and dominant in the abduction across the spine joints, it was most dominant in the 
right shoulder abduction and rotation, the two joint angles that do most of the movement and carry most of its 
variance (Fig. 2).

Learning was defined as the difference between the initial error (over the first block: trials 1–25) and the final 
error (over the learning plateau: trials 201–300) normalised by the initial error. For the one subject who showed 
no learning (had bigger errors during the learning plateau than during the first block), we set learning to zero to 
avoid negative learning value. While there is a negative relation between learning and final error by definition, due 
to the normalization by the initial error (which was highly variant), there was no significant correlation between 
the learning and the final error (as subjects who started worse could have learned more but still not perform 
better after learning), but there was only a trend that more learning leads to smaller final errors (Fig. 5C). We 
speculated that the manipulative complexity (the degrees of freedom in the movement) might explain part of 

Figure 5.   Variability and learning across subjects. (A) Correlation between subjects’ mean absolute directional 
error (in degrees) over the first block (trials 1–25) and the learning plateau (trials 201–300). (B) Correlation 
between subjects’ directional variability (in degrees) over first block (corrected for learning trend, see text) 
and over the learning plateau. (C) Correlation between subjects’ mean absolute directional error over the 
learning plateau and their learning. (D) Correlation between subjects’ directional variability over the first block 
(corrected for learning trend, see text) and their learning. (E) Correlation between subjects’ VPE variability (in 
logarithmic scale) over the first block and the learning plateau for the right arm joints. (F) Correlation between 
subjects’ VPE variability (in logarithmic scale) over the first block and their learning for the right arm joints. 
(A–F) Correlation values are Spearman rank correlation, p-values are FDR corrected for multiple comparisons, 
regression lines (black) are linear fits with 95% confidence intervals (doted lines). (A,B) unity lines are in grey.
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the inter-subject variability in learning rates. Presumably, subjects that learn more also show a higher increase in 
their manipulative complexity. Yet, we found no such relation. Both the initial (over the first block: trials 1–25) 
and the final (over the learning plateau: trials 201–300) manipulative complexity levels showed only a weak, 
non-significant, correlation to learning, and the increase in manipulative complexity showed no correlation to 
learning (Supplementary Fig. S5).

We then tested if higher levels of initial task-relevant motor variability (variability in the directional error 
of the target ball) in this complex real-world task could predict faster learning across individuals, as found in 
simple lab experiments40. We indeed found that individuals with higher intertrial variability in the directional 
error of the target ball over the first block showed more learning (Spearman rank correlation r = 0.64, p < 0.001; 
Fig. 5D). Importantly, this is the corrected intertrial variability (as in Fig. 1H) which is calculated over the 
residuals from a regression line fitted to the ball direction to correct for the learning that is happening within 
the block. As a control, we also tested for correlation with the initial variability in the target ball velocity—which 
is a task-irrelevant motor variability—and found no correlation (Spearman rank correlation r = 0.06, p = 0.77).

Since much of the learning is happening during the first 25 trials, calculating learning over blocks can lead 
to a ceiling effect. Therefore, to test the robustness of the correlation between learning and variability, we re-
calculated the learning rate based on the 5, 7, 10, 15, and 20 initial trials (Supplementary Fig. S6). All choices of 
more than 5 trials showed a significant correlation between the initial variability and the learning. In the case 
of 5 trials, there were 2 outlier subjects with high variability and little learning who damaged the correlation. 
These 2 subjects had an initial ‘lucky shot’ which biased the learning calculation. Once including more trials, 
this effect was washed out.

Next, we tested the link between learning and initial variability over the joint angular velocity profiles of the 
right arm (Fig. 5F). We found that the only joint angle where the intertrial variability showed a significant cor-
relation to learning was the right elbow rotation (Spearman rank correlation r = 0.47, p = 0.0086), which is the 
forearm supination. We further tested the link over the full-body kinematics (Supplementary Fig. S7) and found 
no other joint that showed this correlation. Thus, while learning leads to an overall reduction in movement vari-
ability, only initial variability in specific, task-relevant, dimensions can facilitate/predict learning.

Discussion
In this paper, we introduce a new paradigm for studying naturalistic motor learning during whole-body move-
ment in a complex real-world motor skill task. Our results present new insights into motor learning in the real-
world. While the learning curves in this in-the-wild paradigm are within the same range of those reported in 
reductionistic motor adaptation tasks2,41 we find that this learning is taking place not only in the task-relevant 
joints but across the entire body. Also, we found that task-relevant initial variability in the ball direction (move-
ment outcome) can predict learning, like in laboratory-tasks40, and so can the initial variability in the right 
forearm supination which is the task-relevant joint angle variability.

While pushing towards real-world neuroscience, we started here with a relatively constrained version of the 
real-world task, asking subjects to perform repeated trials of the same pool shot. This was to enable analysis 
using well-developed methods of laboratory-tasks. Nonetheless, it is a major step in the direction of a naturalistic 
study. First, we allow full-body unconstrained movement. Second, we do not use any artificial go cue and allow 
self-paced movement and as many preparatory movements as the subject needs for each shoot. Third, subjects 
receive natural somatosensory feedback. And last, we do not perturb the feedback to induce learning.

Fundamentals of real‑world motor learning.  Across all subjects, we found that motor learning is a 
holistic process—the body is affected as a whole by learning the task. This was evident in the decrease in the 
VPE and the intertrial variability over learning (Fig. 4A,B). This result should not come as a surprise considering 
decades of research in sport science showing this relationship. For example, baseball pitcher’s torso, pelvis, and 
leg movements are directly associated with ball velocity42–44. Recently it was also demonstrated with full-body 
motion capture in a ball throwing task45. And yet, unlike baseball pitches, basketball throws, or any uncon-
strained overarm throw, where the whole body is moving, in a pool shot the shooting arm is doing most of the 
movement and there is very little body movement. Thus, the whole-body learning is not trivial and suggestive 
that even in arm movement laboratory-tasks there is probably a whole-body learning aspect that is overlooked.

We also found a proximal-to-distal gradient in the learning rates over the right arm joints (Fig. 4A, Sup-
plementary Fig. S3). This is especially interesting in light of the well-known phenomenon of proximal-to-distal 
sequence in limb movements in sports science46 and rehabilitation47. While there are records of proximal-to-distal 
sequence at multiple time scales48, our results are the first to suggest that this gradient also occur over repetitions 
as part of the learning process.

Variability and learning.  Intertrial variability is a fundamental characteristic of human movements and 
its underling neural activity49. It was recently reported that individuals exhibit distinct magnitudes of move-
ment variability, which are consistent across movements and effectors, suggesting individual traits in movement 
variability50. Our results show that subjects who were initially more variable tended to be also more variable 
after learning in many joints across the body (Fig. 5E, Supplementary Fig. S4) and specifically in those of right 
shoulder that carry most of the variance in the movement. This result is in-line with the notion that there is an 
individual trait in movement variability.

A decay in the intertrial variability is considered a feature of skill learning20,22,51–56, but not of error-based 
adaptation. While lower variability associated with lower means is a well-known statistical phenomenon, it is 
not evident in all learning tasks. In current billiards paradigm for example, in our VR version of the task, we 
report no decay in intertrial variability over learning57, which may suggest that the learning there is more through 
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error-based adaptation. Here, across subjects, we see a decay in intertrial variability which suggests skill learning. 
Importantly, the novel finding here is that we see this decay in intertrial variability not only in the trial outcome 
(the direction of the target ball) but also in the body movement across the different joints (Fig. 4B). Therefore, 
our data suggest that the decay in the intertrial variability during skill learning is also a holistic process evident 
across the whole body.

While there is a clear group effect of intertrial variability decay, we also highlight inter-subject differences in 
the variability decay (Fig. 5B). Namely, while for some subjects the inter-trial variability after learning is much 
lower than in early learning, for others there is no real difference between the two and for some even a slight 
increase. This is discussed in depth in the follow-up paper where we analyse the neural activity in this task and 
discuss the learning mechanisms involved28. There we found two subgroups of subjects based on their neural 
activity while performing the task. We also found significant differences in the variability decay patterns of the 
two subgroups but not in their absolute error decay. The neural and behavioural differences led us to speculate 
that two different learning mechanisms are contributing to the task: error-based adaptation and reward-based 
reinforcement learning, where the predominant learning mechanism is different between subjects28. This might 
be transformative for rehabilitation.

Initial intertrial kinematic variability is also thought to be critical for motor learning58–62. It was suggested that 
individuals with higher levels of task-relevant movement variability exhibit faster motor learning in both skill 
learning and error-based motor adaptation paradigms40. The failures to reproduce this result in visuomotor adap-
tation studies63,64, led to the idea that experiments with task-relevant feedback (which is common in visuomotor 
studies) emphasize execution noise over planning noise, whereas measurements made without feedback (as in40) 
may primarily reflect planning noise62. This is in-line with a recent modelling work in a visuomotor adaptation 
study (with task-relevant feedback) in which subjects with higher planning noise showed faster learning, but the 
overall movement variability was dominated by execution noise that was negatively correlated with learning65. 
In our task there were no manipulations or perturbations, thus, task-relevant feedback was fully available to the 
participants. On the other hand, in real-world, there is no baseline variability, and the variability was measured 
during early learning and therefore is probably dominated by planning noise, as subjects explore, regardless of 
the visual feedback. Indeed, subjects with higher variability in the target ball direction over the first block showed 
higher learning rates (Fig. 5D). Our results straighten the link between variability and learning and are the first 
to show that it applies to real-world tasks. Moreover, the only joint angle that showed a significant correlation 
between initial variability and learning was the right forearm supination (measured by the right elbow rotation 
in our IMUs setup, Fig. 5F, Supplementary Fig. S7). Following the idea that task-relevant variability predicts 
learning, it would suggest that the right elbow rotation is the task-relevant joint angle to adjust during the initial 
learning of a simple pool shoot. Indeed, guidebooks for pool and billiards emphasize that while shooting one 
should keep one’s body still and move only the back (right) arm from the elbow down. While the elbow flexion 
movement gives the power to the shoot, the forearm supination (also known as ‘screwing’ in billiards) maintains 
the direction of the cue.

It is important to note that this refers specifically to the forearm supination around the elbow and not around 
the wrist. This is due to the nature of the data collected with the sensors suit where the joint angles are recorded 
with 3 degrees of freedom based on the angles between the sensors from both sides of each joint. Thus, hinge 
joints of the body which have only one anatomical degree of freedom have been recorded as 3 Euler angles. 
Specifically, the elbow rotation is the rotation between the upper arm sensor and the forearm sensor and is 
equivalent to forearm supination around the elbow. The wrist rotation is the rotation between the forearm sensor 
and the hand sensor and is equivalent to hand supination. Similarly, the elbow abduction/adduction should be 
negligible as it is a hinge joint66. Yet there is an abduction/adduction movement around our elbow (especially 
when the elbow flexion is around 90 degrees as in a pool shot) which is captured by the sensors and recorded as 
elbow abduction/adduction.

We note that the above results are correlational and cannot address the question of causality: e.g. can higher 
initial variability cause faster learning? While the study of real-world tasks takes us closer to understanding 
real-world motor learning, it is lacking the key advantage of laboratory tasks of highly controlled manipulations 
of known variables, to isolate specific movement/learning components. We therefore developed an embodied 
virtual reality (VR) version of our pool task57, As the VR-based approach enables visual feedback manipulations 
while subjects are executing the same real-world task. However, establishing a real-world task as done here is an 
essential precondition for understanding motor learning and the motor system and the way it has evolved and 
developed. For example, we have shown that measuring and incorporating unconstrained real-world kinematics 
can boost the decoding performance of smart neuroprosthetics67.

Conclusions.  In this study, we demonstrate the feasibility and importance of studying human neuroscience 
in-the-wild, and specifically in naturalistic real-world skill tasks. While finding similarities in learning struc-
ture between our real-world paradigm and lab-based motor learning studies, we highlight crucial differences, 
namely, real-world motor learning is a holistic full-body process. Looking at the motor behaviour over learning 
across the entire body enabled us to explore the relationship between variability and learning and define task-
relevant variability that can facilitate learning.

Methods
Ethics statement.  All experimental procedures were approved by Imperial College Research Ethics Com-
mittee and performed in accordance with the declaration of Helsinki. All subjects gave informed consent prior to 
participating in the study. Written informed consent was obtained from the individual in Fig. 1A for the publica-
tion of any potentially identifiable images included in this article.
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Experimental setup and design.  30 right-handed healthy human volunteers with normal or corrected-
to-normal visual acuity (12 women and 18 men, aged 24 ± 3) participated in the study. The recruitment criteria 
were that they played pool/billiards/snooker for leisure fewer than 5 times in their life, never in the recent 
6 months, and had never received any pool game instructions. All volunteers gave informed consent before par-
ticipating in the study, and all experimental procedures were approved by the Imperial College Research Ethics 
Committee and performed in accordance with the declaration of Helsinki. The volunteers stood in front of a 5 
ft pool table (Riley Leisure, Bristol, UK) with 1 7/8″ (48 mm diameter) pool balls. Volunteers performed 300 
repeated trials where the cue ball (white) and the target ball (red) were placed in the same locations. We asked 
volunteers to shoot the target ball towards the pocket of the far-left corner (Fig. 1A). Trials were split into 6 sets 
of 50 trials with a short break in-between to allow the subjects to rest a bit and reduce potential fatigue. Each 
experimental set (of 50 trials) took 8 to 12 min. For the data analysis, we further split each set into two blocks 
of 25 trials each, resulting in 12 blocks. During the entire learning process, we recorded the subjects’ full-body 
movements with a motion-tracking ‘suit’ of 17 wireless inertial measurement units (IMUs; Fig. 1B). The balls on 
the pool table were tracked with a high-speed camera (Dalsa Genie Nano, Teledyne DALSA, Waterloo, Ontario) 
to assess the subjects’ success in the game and to analyze the changes throughout learning, not only in the body 
movement but also in its outcome—the ball movement (Fig. 1C).

Balls tracking.  The balls movement on the pool table were tracked with a computer vision system mounted 
from the ceiling. The computer vision camera was a Genie Nano C1280 Color Camera (Teledyne Dalsa, Water-
loo, Canada), colour images were recorded with a resolution of 752 × 444 pixels and a frequency of 200 Hz. This 
Ethernet-based camera was controlled via the Common Vision Blox Management Console (Stemmer Imaging, 
Puchheim, Germany) and image videos recorded with our custom software written in C++ based on a template 
provided by Stemmer Imaging. Our software captured the high-performance event timer, the camera frames 
and converted the images from the camera’s proprietary CVB format to the open-source OpenCV (https​://openc​
v.org/) image format for further processing in OpenCV. The video frames were stored as an uncompressed AVI 
file to preserve the mapping between pixel changes and timings and the computer’s real-time clock time-stamps 
were recorded to a text file. Each trial was subject-paced, so the experimenter observed the subject and hit the 
spacebar key as an additional trigger event to the time-stamps text file. This timing data was later used to assist 
segmentation of the continuous data stream into trials. The positions of the two pool balls (white cue ball and 
red target ball) were calculated from the video recordings offline using custom software written in C++ using 
OpenCV. Then, with custom software written in MATLAB (R2017a, The MathWorks, Inc., MA, USA), we seg-
mented the ball tracking data and extracted the trajectory of the balls in each trial. For each trial, a 20 × 20 pixels 
(approx 40 × 40 mm) bounding box was set around the centre of the 48 mm diameter cue ball. The time the cen-
tre of the ball left the bounding box was recorded as the beginning of the cue ball movement. The pixel resolution 
and frame rate were thus sufficient to detect movement onset, acceleration and deceleration of the pool balls. 
The target (red) ball initial position and its position in the point of its peak velocity were used to calculate the 
ball movement angle (relative to a perfectly straight line between the white cue ball and the red target ball). We 
subtracted this angle from the centre of the pocket angle (the angle the target ball initial position and the centre 
of the pocket relative to the same straight line between the balls) to calculate the directional error for each shot.

Full‑body motion tracking.  Kinematic data were recorded at 60 Hz using a wearable motion tracking ‘suit’ 
of 17 wireless IMUs (Xsens MVN Awinda, Xsens Technologies BV, Enschede, The Netherlands). Data acquisi-
tion was controlled via a graphical interface (MVN Analyze, Xsens Technologies BV, Enschede, The Nether-
lands). Xsens MVN uses a biomechanical model and proprietary algorithms to estimate 3D joint kinematics68,69. 
The Xsens sensors shows high accuracy35,70, and the Xsens MVN system was used and validated in tracking real-
world behaviour in many sports including football34, horse riding71, ski72 and snowboarding73. The Xsens 3D 
joint kinematics were exported as XML files and analysed using custom software written in MATLAB (R2017a, 
The MathWorks, Inc., MA, USA). The Xsens full-body kinematics were extracted in joint angles in 3 degrees of 
freedom for each joint that followed the International Society of Biomechanics (ISB) recommendations for Euler 
angle extractions of Z (flexion/extension), X (abduction/adduction) Y (internal/external rotation). This standard 
approach includes hinge joints of the body which have only 1 degree of freedom being recorded as 3 Euler angles.

Angular velocity profile analysis.  From the Xsens 3D joint angles we extracted the angular velocity pro-
files of all joints in all trials. We defined the peak of the trial as the peak of the average absolute angular velocity 
across the DoFs of the right shoulder and the right elbow. We aligned all trials around the peak angular velocity 
of the trial and cropped a window of 1 s around the peak for the analysis of joint angular velocity profiles during 
the shot and its follow-through. This time window covered the entire movement of the pool shoot while elimi-
nating the preparatory movement and the mock shoots (Fig. 2).

Task performance and learning measures.  The task performance was measured by the trial error 
which was defined as an absolute angular difference between the target ball movement vector direction and the 
desired direction to land the target ball in the centre of the pocket. The decay of error over trials is the clearest 
signature of learning in the task. For measuring success rates and intertrial variability we divided the trials into 
blocks of 25 trials by dividing each experimental set of 50 trials to two blocks. This was done to increase the 
resolution in time from calculating those on the full sets. Success rate in each block was defined by the ratio of 
successful trial (in which the ball fell into the pocket). To improve robustness and account for outliers, we fitted 
the errors in each block with a t-distribution and used the location and scale parameters (µ and σ) as the blocks’ 
centre and variability measures. To correct for learning within a block, we also calculated a corrected intertrial 

https://opencv.org/
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variability, which was the intertrial variability over the residuals from a regression line fitted to the ball direction 
in each block. This correction for the learning trend within a block does not change the variability measure by 
much (Fig. 1G,H). This is since our variability measure is not the standard deviation, but the scale parameter of 
a t-distribution fitted to the errors. When correcting the change in the distribution fitted was mostly an increase 
in the degrees of freedom and a not decrease in the scale (i.e. the early trials which were much higher than the 
mean and the late trials which were much lower become closer to the mean and therefore the distribution is 
more normal as it loses the heavy tails). This is highlighting the robustness of the scale measure for variability.

To quantify the within-trial variability structure of the body movement, we use the generalised variance, 
which is the determinant of the covariance matrix37 and is intuitively related to the multidimensional scatter of 
data points around their mean. We measured the generalised variance over the velocity profiles of all joints in 
each trial to see how it changes with learning. To study the complexity of the body movement which was defined 
by the number of degrees of freedom used by the subject we applied principal component analysis (PCA) across 
joints for the velocity profiles per trial for each subject and used the number of PCs that explain more than 1% 
of the variance to quantify the degrees of freedom in each trial movement. We also calculated the manipulative 
complexity which was suggested by Belić and Faisal39 as a way to quantify complexity for a given number of PCs 
on a fixed scale (C = 1 implies that all PCs contribute equally, and C = 0 if one PC explains all data variability).

Statistical analysis.  Trial by trial learning curves of single-trial performance measure (directional error of 
the target ball relative to the centre of the pocket) were fitted with a single, double, and triple exponential learn-
ing curve using Matlab fit function. As in most motor learning datasets, the double exponential curve showed 
the best fit (Supplementary Fig. S1).

As a measure of task performance in body space, correlation distances (one minus Pearson correlation coef-
ficient) were calculated between the angular velocity profile of each joint in each trial to the angular velocity 
profiles of that joint in all successful trials. The minimum over these correlation distances produced a single 
measure of Velocity Profile Error (VPE) for each joint in each trial.

Thus, VPE in trial i  was the minimal correlation distances between the angular velocity profile in trial i 
( velProf i ) and the angular velocity profiles in successful trials s ( velProf s ). While there are multiple combina-
tions of body variables that can all lead to successful task performance, this measure looks for the distance from 
the nearest successful solution used by the subjects and thus provides a metric that accounts for the redundancy 
in the body.

All correlations between error, variability, and learning are Spearman’s rank correlation coefficients to be 
robust to outliers and non-linear trends, and their p-values are FDR corrected for multiple comparisons. Regres-
sion lines are based on linear regression fits (in logarithmic scale for VPE variability) and are presented with 
95% confidence intervals.
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