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Striatal cholinergic interneurons (CINs) are the main source of acetylcholine in the striatum
and are believed to play an important role in basal ganglia physiology and
pathophysiology. The role of CINs in striatal function is known mostly from extracellular
recordings of tonically active striatal neurons in monkeys, which are believed to
correspond to CINs. Because these neurons transiently respond to motivationally cues
with brief pauses, flanked by bursts of increased activity, they are classically viewed as key
players in reward-related learning. However, CIN modulatory function within the striatal
network has been mainly inferred from the action of acetylcholine agonists/antagonists or
through CIN activation. These manipulations are far from recapitulating CIN activity in
response to behaviorally-relevant stimuli. New technical tools such as optogenetics allow
researchers to specifically manipulate this sparse neuronal population and to mimic their
typical pause response. For example, it is now possible to investigate how short inhibition
of CIN activity shapes striatal properties. Here, we review the most recent literature and
show how these new techniques have brought considerable insights into the functional
role of CINs in normal and pathological states, raising several interesting and novel
questions. To continue moving forward, it is crucial to determine in detail CIN activity
changes during behavior, particularly in rodents. We will also discuss how computational
approaches combined with optogenetics will contribute to further our understanding of
the CIN role in striatal circuits.

Keywords: striatal cholinergic interneurons, basal ganglia, optogenetics, computational modelling,
Parkinson’s disease
INTRODUCTION

The striatum is a brain region containing high levels of acetylcholine (ACh), muscarinic receptors,
and other ACh-related markers (Weiner et al., 1990; Hersch et al., 1994). Cholinergic interneurons
(CINs) are the main source of ACh in the striatum [but see (Dautan, 2014)]. Despite their small
numbers (1–3% of all striatal cells) and scattered distribution throughout the striatum, CINs have
dense terminal fields that overlap those of dopaminergic projections coming from the substantia
in.org December 2019 | Volume 10 | Article 14881
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nigra pars compacta (Bolam et al., 1984). CINs contact the two
populations of striatal output neurons (also called medium spiny
neurons, MSNs) that express either the dopamine D1 or D2
receptors. While most striatal neurons are not autonomously
active, CINs exhibit a regular spiking activity in absence of any
synaptic inputs (Bennett et al., 2000). Extracellular recordings
performed in vivo in the striatum of monkeys also reveal the
presence of tonically active neurons (TANs), which are thought
to correspond to CINs (Aosaki et al., 1995). Hence, the
morphofunctional features of CINs—mainly their extensive
arborization primarily directed to MSNs and their tonic
activity—place them as potent modulators of striatal output.
Striatal output regulation is a fundamental process of the basal
ganglia functioning, as a balanced activity between D1 and
D2 MSNs is required to ensure correct motor and
cognitive behaviors.

The improvement of parkinsonian tremor by both
dopaminergic agonists and anticholinergic drugs led to the
dopamine (DA)-ACh balance hypothesis, where DA and ACh
are believed to play opposite roles in the striatum (Barbeau,
1962). Even though the prescription of anticholinergic drugs has
been phased out due to their side-effects, this long standing
clinical observation underlines the functional impact of ACh as
the level of DA falls and has often led to the consideration of
Parkinson’s disease (PD) as a hypercholinergic disorder [but see
(McKinley, 2019)]. There is indeed compelling evidence showing
that DA depletion triggers complex alterations in striatal
cholinergic signaling, activity, and connectivity (Aosaki, 1994;
Raz, 2001; Ding, 2006; Salin, 2009). However, there is no
consensual view explaining how CINs contribute to motor
symptoms and abnormal network dynamic in PD.

At the cellular level, CIN modulation of the striatal network
has been mainly inferred from the action of ACh agonists or
through CIN activation. While nicotinic receptors (nAChRs) are
expressed by interneurons and extrinsic afferent terminals,
MSNs respond to ACh exclusively via muscarinic receptors
(mAChRs): M1 receptors are present on D1 and D2 MSNs
and M4 receptors are preferentially expressed by D1 MSNs.
Activation of mAChRs modulates an array of voltage-gated
channels and intracellular pathways in MSNs. Determining the
combinatorial effect of these actions, potentially even opposing
each other, is highly challenging and has recently been covered at
length by excellent recent reviews (Tanimura, 2018; Ztaou and
Amalric, 2019; Abudukeyoumu et al., 2019). A hallmark of CINs
is their continuous tonic activity, which is expected to lead to a
high level of ACh in the striatum, and the stereotypical bursts
and pauses activity that they acquire during sensorimotor
learning (Apicella, 2007). We can assume that a drop in ACh
release, as expected to happen after a brief decrease in firing,
conveys meaningful information to the striatal network. A recent
hypothesis proposes that the pause would open a permissive
temporal window during which corticostriatal synaptic plasticity
occurs (Deffains and Bergman, 2015). However, it is still unclear
how inhibition of CIN activity shapes striatal properties. Here,
we review the related literature and show how optogenetic and
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computational approaches may contribute to further our
understanding of this topic.
CONSEQUENCES OF CHOLINERGIC
INTERNEURON INHIBITION ON STRIATAL
PROPERTIES

The widespread excitatory input from the cortex targeting D1
and D2 MSNs sets the activity of the direct and indirect
striatofugal pathways which play a fundamental role in
movement planning and action selection. Understanding how
CINs modulate the dynamics of corticostriatal processing and
MSN activity is therefore essential to uncover basal ganglia
function. Cholinergic modulation of long-term corticostriatal
plasticity has been addressed in excellent reviews (Lovinger, 2010;
Lerner and Kreitzer, 2011) and will not be further discussed here.

The effects of cholinergic antagonists on corticostriatal
transmission might provide interesting insights to predict how
a pause in CIN firing impacts striatal output. It was reported that
atropine, a broad mAChRs antagonist, or methoctramine, at a
concentration that blocks M2 and M3 mAChRs, lead to a modest
increase in corticostriatal transmission via the inhibition of
mAChRs located on the glutamatergic terminals, suggesting
the existence of tonic cholinergic presynaptic inhibition
(Pakhotin and Bracci, 2007). On the other hand, pirenzepine, a
blocker of M1 mAChRs, reduces corticostriatal transmission
(Wang, 2006; Tozzi, 2011). In these last two studies, the
authors suggest that lowering M1 mAChR activity in MSNs
leads to the opening of L-type Ca2+ channels, which then triggers
endocannabinoids release. Endocannabinoids are then able to
reduce glutamate transmission by activating presynaptic CB1
receptors. Hence, mAChRs inhibition could exert opposite
actions on basal corticostriatal transmission depending on
their pre- or postsynaptic localization. Nicotinic a7 receptors
have been described on cortical glutamatergic terminals but
whether these receptors directly modulate corticostriatal
transmission is still unclear (Howe et al., 2016).

One of the caveats of pharmacological experiments is that
they do not allow to assess the effects of endogenous ACh that
depends on the temporal dynamic of CIN firing. Moreover, CINs
might co-release glutamate and GABA along with ACh, with
effects that cannot be apprehended through this approach
(Higley et al . , 2009; Lozovaya, 2018). Optogenetic
manipulations, enabling control of electrical activity in specific
cell types with high temporal accuracy, can provide substantial
insights into these issues. Here, we review the few studies
showing the impact of optogenetic inhibition of CIN activity in
the dorsal striatum. In vitro, we and others have shown that
inhibition of CIN firing with halorhodopsin (eNpHR) is
associated with a decrease in D1 and D2 MSN excitability that
might involve a lowering of M1 mAChRs activation (Maurice,
2015; Zucca et al., 2018). In anaesthetized mice, opto-inhibition
of eNpHR-expressing CINs was also reported to decrease MSN
activity by hyperpolarizing their membrane potential and
December 2019 | Volume 10 | Article 1488
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increasing the duration of down states (Zucca et al., 2018). In
contrast, eNpHR-induced inhibition of CIN firing in freely
moving mice did not alter MSN activity (English, 2011). In
this last study, it is the rebound of action potentials occurring at
the end of the eNpHR-induced hyperpolarization that triggered a
decrease in MSN firing. Interestingly, despite the cellular effect
induced by this pause-rebound, it was not followed by any
detectable behavioral responses (English, 2011). This is in
agreement with other works showing that opto-inhibition of
CIN firing does not affect locomotion, anxiety‐like behavior,
social memory recognition, and visuospatial object recognition
(Maurice, 2015; Ztaou et al., 2018). In contrast, the behavior of
PD mice, which perform poorly in all these tests, is improved by
CIN silencing (Maurice, 2015). Restoring the balance between
the striatofugal pathways at the level of the substantia nigra pars
reticulata might be one component of the positive effect of CIN
inhibition in parkinsonian condition (Maurice, 2015).

What conclusions can we draw from this brief overview?
Obviously, more work is needed to understand how CIN
inhibition shapes striatal output and modulates basal ganglia-
related behavior. The conflicting effects of CIN firing inhibition
on MSN activity and the lack of clear behavioral response in
normal mice can be interpreted in different ways: (i) the light
parameters (i.e. light duration, pattern or timing delivery) used
to manipulate CIN firing are not physiologically relevant, (ii)
CINs do not impact basal ganglia-related behaviors in
physiological conditions and/or (iii) the behavioral tasks used
are not appropriate to reveal CIN functions in rodents. What we
know about the function of CINs comes from studies carried out
in primates, describing the correlative changes in electrical
activity of presumed-CINs during behavior. Optogenetics,
mainly applied in rodents for technical reasons, is perfectly
suited to go beyond correlational analysis and to investigate
the causal implication of CINs in behavior. However, we first need
to accurately describe the firing properties of these cells in rodents
to be able to manipulate their activity in an appropriate way.
ACTIVITY OF CHOLINERGIC
INTERNEURONS DURING BEHAVIOR

The identification of CINs in behaving animals is usually based on
their unique in vivo extracellular firing activity (i.e. tonically active
at 5 spikes/s, sometimes in a burst mode) and broad spike
waveform (i.e. spike duration > 2 ms). These electrical properties
are easily distinguishable fromall the other striatal cell populations
and represent a good signature of CINs as confirmed later by
in vivo juxtacellular labelling (Inokawa et al., 2010; Sharott et al.,
2012). Using these classification criteria, early studies first defined
the pattern of CINs activity during classical conditioning. In these
experiments, animals have to learn the association between a
neutral stimulus (i.e. often a tone) and an unexpected reward. In
this context, CINs classically respond with a pause in firing that
occurs shortly after the conditioned stimulus and lasts around 200
ms. This pause can also be preceded and/or followed by excitatory
burst responses (Kimura et al., 1984; Aosaki, 1994; Apicella, 2017).
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Interestingly, this stereotypical pause appears during learning
(Aosaki, 1994) and is time-locked to the response of nigral
dopaminergic neurons (Morris et al., 2004). It is also dependent
on the integrity of both dopaminergic neurons (Aosaki et al., 1994;
Raz et al., 1996) and glutamatergic inputs coming from the
intralaminar thalamus (Matsumoto et al., 2001).

What is not yet clear is whether the pause and burst
components carry different signals used to underlie specific
functions (Apicella, 2002; Apicella, 2007). Importantly, these
activity patterns are mostly synchronized in the CINs population
(Raz et al., 1996) such that they might efficiently translate into
global change of striatal ACh level, providing a temporal window
for complex pre- and post-synaptic modifications of striatal
network and plastic changes (Deffains and Bergman, 2015; Cox
andWitten, 2019). As a consequence, the pause response of CINs
is considered as a key cellular substrate for reward-based
learning, and may be particularly important for stimulus-
response and action-outcome associations. The exact cellular
and network explanations underlying the generation of the
pause/burst firing responses are not known precisely. Multiple
mechanisms have been proposed to generate these responses.
They all have in common the capacity to broadcast efficiently the
information to spatially-distributed CINs (Goldberg and
Reynolds, 2011; Schulz and Reynolds, 2013; Zhang and Cragg,
2017). Such broadcast mechanisms include:

a) a change in intrinsic excitability driven by excitatory synaptic
inputs (Oswald et al., 2009; Ding et al., 2010; Doig et al., 2014;
Zhang et al., 2018; Reynolds et al., 2004). This scenario has
been well described for cortical and intralaminar nucleus
thalamic inputs but whether it can occur from any other
known glutamatergic sources [such as the one coming from
the pedonculopontine nucleus (Assous et al., 2019)] remained
to be addressed.

b) a putative effect of DA directly onto CINs (Yan et al., 1997;
Maurice, 2004; Yan and Surmeier, 1997).

c) a cholinergic input coming from the pedunculopontine and
laterodorsal tegmental nuclei that synapse preferentially with
CINs and give rise to excitatory responses (Dautan, 2014;
Dautan, 2018).

d) a direct inhibitory inputs coming from striatal GABAergic
interneurons surrounding MSNs (Gonzales et al., 2013).
Activation of one CIN is, for example, able to inhibit the
firing of nearby CINs via nicotinic excitation of striatal
GABAergic interneurons. This microcircuit allows a wide-
spread inhibition of CINs by recurrent inhibition (Sullivan
et al., 2008; Faust et al., 2016).

Also, external sources such as GABAergic neurons from the
midbrain, or from the globus pallidus (GP), or from unknown
origin might also synchronize CIN population (Zhang and
Cragg, 2017). Among these GABAergic sources, the inhibitory
inputs coming from GP neurons appear to be functionally
efficient at inducing a pause in CINs (Klug et al., 2018).
However, it is important to mention that the pallido-striatal
inputs could originate from two main populations of GP
neurons, namely the prototypic and the arkypallidal neurons
December 2019 | Volume 10 | Article 1488
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(Mallet, 2012), and that the respective contribution of
arkypallidal or prototypic neurons in the CIN pause response
have not yet been assessed. That being said, anatomical evidences
would argue that arkypallidal neurons represent a good cellular
substrate to generate a synchronized pause in CIN firing. Indeed,
arkypallidal neurons provide widespread striatal GABAergic
inhibition (Mallet, 2012; Mallet, 2016) that densely target, with
“basket-like” perisomatic contacts, the soma and proximal
dendrites of CINs (Mallet, 2012). It should also be noted that CINs
represent preferential targets for arkypallidal neurons, as suggested
by the larger number of apposition that a single-labeled arkypallidal
cells make onto CINs (Mallet, 2012). Altogether, we propose that
GABAergic arkypallidal neurons constitute a powerful mechanism
to generate synchronized inhibitory responses in CINs population.
Whether this arkypallidal-CINs circuit is part of a feed-back or a
feed-forward loop is not known but should be addressed in
future studies.

Apart from the classical conditioning experiments, the
contribution of CIN activity has also been tested during
operant tasks. In these experiments, the animal has to execute
an action to obtain a reward. These studies have revealed the
involvement of CINs in more complex behavioral aspects such as
contextual (Apicella, 2007), temporal (Morris et al., 2004), goal-
directed action (Bradfield et al., 2013), sensori-motor gating
(Ding et al., 2010), movement control/modulation (Yarom and
Cohen, 2011; Nougaret and Ravel, 2015; Lee et al., 2006), and
action inhibition (Lee et al., 2006). Interestingly, the expression
of the pause in CIN firing is largely dependent on the behavioral
task paradigm (Benhamou et al., 2014). This might actually
explain some of the discrepancies originally found between
monkey and rodent recordings.

In addition, recent works have taken advantage of transgenic
ChAT-Cre mice to genetically identify CINs and record their
activity with two-photon calcium imaging and fiber photometry,
during spontaneous locomotion in head-fixed animals (Gritton,
2019; Howe, 2019; Rehani, 2019). In doing so, novel features of
CIN contributions to global locomotion control have been
described. In particular, one study found that CINs increase
their activity during behavioral state transition, and could thus
favor the transition from one behavioral state to another (Howe,
2019). Alternatively, CINs activation can reduce ongoing
movement while synchronizing the activity of MSNs (Gritton,
2019). This synchronizing effect on striatal neurons is a
remarkable feature especially considering that excessive
expression of synchronized oscillatory activity in the beta
frequency band (12–30 Hz) is a hallmark associated with PD
and possibly linked to akinesia/bradykinesia in PD patients
(Brown, 2007) [but see (Nambu et al., 2015; McGregor and
Nelson, 2019)]. This further adds to the view that CIN
dysfunctional activity contributes to the pathophysiology of PD.
Indeed, there is good evidence to suggest that the loss of DA in
the striatum modifies the cholinergic signalling (Tanimura, 2018;
McKinley, 2019; Ztaou and Amalric, 2019) and increases the
correlated activity between CINs (Raz, 2001). Although the
minimal neuronal circuit generating the parkinsonian beta
synchronizations in basal ganglia circuits are not known, it is
Frontiers in Pharmacology | www.frontiersin.org 4
possible that CIN activity represents a good candidate to promote
synchronized activity in these neuronal networks. Indeed,
cholinergic agonist infusion in the striatum (McCarthy, 2011)
and optogenetic excitation of CINs (Kondabolu, 2016) can induce
an increase in the expression of beta oscillations. In addition,
CINs opto-excitation in normal animals generates parkinsonian-
like motor deficits (Kondabolu, 2016) while CINs opto-inhibition
in PD mice decreases motor symptoms (Maurice, 2015).
EXPLORING CHOLINERGIC
INTERNEURONS FUNCTIONS IN BASAL
GANGLIA NETWORK: CONTRIBUTION OF
COMPUTATIONAL MODELING

CINsmodulate striatal activity during behavior. A theoretical study
of theputative functionof theseneurons inmotor learningand their
possible role in pathophysiology through modeling could drive
experimentally testable predictions and thereby guide further
experimental investigation. Previous modeling efforts involving
CINs remain relatively sparse. They range from simulating
intracellular and ion-channel dynamics linked to cholinergic
signaling to the effect of CIN activity modulation on behavior.

On the microscopic scale, two modeling studies have
highlighted the tight coupling between DA neurons and CINs
due to the dopaminergic modulation of both the intrinsic
currents generating tonic firing (Aosaki et al., 1998; Maurice,
2004; Wilson and Goldberg, 2006; Deng et al., 2007) and the
external inputs to CINs (Nicola et al., 2000; Pisani et al., 2000).
Szalisznyó and Müller (2009) analyzed conductance-based
changes in CIN subthreshold oscillations induced by DA and
predicted that DA can switch CINs between stable oscillatory
and fixed-point behaviors, with opposing effects of D1- and D2-
type dopamine receptors. Tan and Bullock (2008) have shown
that DA inputs robustly cooperate with thalamic inputs to control
cue-dependent CIN pauses. Thereby, DA strongly affects
performance- and learning-related dynamics in the striatum. The
DA-CINscouplingcouldexplain theadaptivelyscaledDAburst and
the CIN burst and pause observed experimentally in response to
reward-predicting cues. These changes would thus not necessarily
require a modification in the weight of synapses onto CINs.

On the macroscopic scale, the influence of CINs on behavior
can be either immediate, due to the modulation of striatal output
by CINs, or delayed/persistent, due to ACh-dependent plasticity
in the striatal network that leads to long-term changes in striatal
response to its external inputs. A recent study by Vogt and
Hofmann (2012) modeled the modulation in the activity of DA
neurons and CINs in relation to external reward delivery and its
internal expectation. They show that activity changes and their
effect on learning outcome can be explained by a direct effect of
neuromodulators (DA and ACh) on postsynaptic activity, even
with unmodulated, two-factor spike timing-dependent plasticity
(STDP). Obviously, it does not prohibit joint operation together
with three-factor STDP rules. Interestingly, CIN pause could
represent a time window to gate phasic DA release and “bracket”
December 2019 | Volume 10 | Article 1488
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the plasticity window, while DA variations reciprocally modulate
the CIN pause duration to adjust this window (Kim, 2019). In the
context of reward-based motor adaptation, phasic DA release
could thereby deliver reward information for reinforcement
learning in a timely manner. Changes in CIN-DA interactions
due to DA depletion would then produce poor performance of
motor adaptation. Alternatively, CINs could act mainly onMSNs
to suppress their firing and regulate local inhibitory network
(Ashby and Crossley, 2011; Franklin and Frank, 2015).

To go beyond this current state of theoretical investigations,
one may ask the following questions. What are the respective/
specific roles of DA and ACh during learning? How redundant
are these signals? Are they separable in time or space? What is
the specific motor impairment expected due to the abnormal
CIN activity following DA depletion and could some
PD symptoms be linked to CIN signaling dysfunction? These
questions may be answered by integrating current experimental
evidence and DA-ACh interactions and its effect on striatal
dynamics revealed by previous theoretical work in a circuit
model of the basal ganglia-thalamo-cortical loop. This model
may display action selection properties and DA-driven
reinforcement learning (Leblois et al., 2006; Guthrie et al.,
2013), as well as PD-related dysfunction under DA depletion.
The computational advantages brought by CINs and the neural
mechanisms can be investigated in such a theoretical framework.
Specific predictions can then be derived from model concerning
the effects of manipulating CIN activity in a reinforcement
learning protocol. These predictions could eventually be
tested experimentally with physiological recordings performed
in an operant conditioning task to ensure that the suggested
mechanisms are indeed at play in the striatum during
motor learning.
Frontiers in Pharmacology | www.frontiersin.org 5
CONCLUDING REMARKS

Our current understanding of the role of CINs in striatal function
derives mostly from extracellular recordings of TANs in monkeys.
Because these neurons transiently respond to motivationally
relevant cues with brief pauses, flanked by bursts of increased
activity, they are classically viewed as key players in reward
related learning. However, how CINs, and particularly the pause
in their tonic firing, modulate striatal output has yet to be
demonstrated. It is also undisputable that CINs play a key role in
relation to dysfunctional aspect of basal ganglia information
processing such as in PD and it seems important that future
works keep dissecting the causal role of CINs in striatal circuits.
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