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Abstract: A change in cadence during walking or running might be indicated for a variety of
reasons, among which mobility improvement and injury prevention. In a within-subject study design,
we examined whether walking or running cadences are modulated best by means of step-based or
stride-based auditory pacing. Sixteen experienced runners walked and ran on a treadmill while
synchronizing with step-based and stride-based pacing at slow, preferred and fast pacing frequencies
in synchronization-perturbation and synchronization-continuation conditions. We quantified the
variability of the relative phase between pacing cues and footfalls and the responses to perturbations
in the pacing signal as measures of coordinative stability; the more stable the auditory-motor
coordination, the stronger the modulating effect of pacing. Furthermore, we quantified the deviation
from the prescribed cadence after removal of the pacing signal as a measure of internalization of this
cadence. Synchronization was achieved less often in running, especially at slow pacing frequencies.
If synchronization was achieved, coordinative stability was similar, and the paced cadence was
well internalized for preferred and fast pacing frequencies. Step-based pacing led to more stable
auditory-motor coordination than stride-based pacing in both walking and running. We therefore
concluded that step-based auditory pacing deserves preference as a means to modulate cadence in
walking and running.

Keywords: acoustic pacing; cadence; perturbations; relative phase; sensorimotor synchronization;
coordinative stability

1. Introduction

Increasing cadence in locomotion might be beneficial for a variety of reasons and auditory pacing
could well be used to achieve this. For instance, with respect to walking it has been suggested that
increasing cadence of stroke patients, who often have a reduced ability to modulate cadence, could help
increase their walking speed and improve mobility [1,2]. Most stroke patients are able to adjust
their cadence to an external beat [3–5]. With regard to running, research has suggested that running
injuries due to overload might be reduced by increasing cadence at a given speed [6,7]. Small increases
in cadence (+ 10%, and corresponding decreases in step length [8]) result in a reduction of energy
absorption in the joints of the lower extremities [7] as well as a decrease in braking impulse and
instantaneous vertical loading rate [9]. Runners are also able to couple their cadence to an external
beat [10,11].

Auditory pacing is commonly used to prescribe a particular movement frequency in cyclic tasks,
including locomotion. In locomotion, auditory pacing can be readily provided via a headset. Auditory
cues in the form of a beat can be used to influence the movement pattern through a process known as
auditory-motor synchronization [11–17], defined here as the coordination of rhythmic movements,
such as steps, to external stimuli, such as metronome beeps. Stable coordination between steps
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and cues is associated with a strong effect of pacing on the movement pattern [4,18]. The stability
of auditory-motor coordination is often examined in terms of the variability of the relative phase
between steps and cues, with lower variability representing higher stability [4,13,19]. In addition,
step adjustments to rhythm perturbations in the pacing signal can be used to assess the stability of
auditory-motor coordination, with faster corrections representing higher stability [4,12,20,21].

Two factors influence auditory-motor coordination: coupling strength and frequency detuning [22].
Coupling strength refers to how weak or strong the interaction is between two oscillators, here between
rhythmic limb movements and auditory cues. Different types of pacing (e.g., one or two cues
per movement cycle) are associated with different coupling strengths, which affect the stability of
auditory-motor coordination [22]. Most research on auditory pacing has been conducted in the
context of finger and hand movements [12,23–25], but the same concept holds for auditory-motor
coordination during locomotion [13,14,26]. In finger and hand movement tasks, coupling is stronger
for one cue per tap (1:1 ratio) than for one cue every other tap (1:2 ratio) [22], resulting in superior
auditory-motor coordination. One study compared a 1:1 ratio (pacing steps) to a 1:2 ratio (pacing
strides) in walking [4]. As for tapping, a superior auditory-motor coordination for the 1:1 ratio (one cue
per step; stronger coupling) was found compared to the 1:2 ratio (one cue per stride, that is, one cue
every other step; weaker coupling). In the present study, we sought to verify these coupling-strength
effects for walking and to extend them to running using a within-subjects design requiring experienced
runners (i.e., participants who could perform all conditions).

In tapping, synchronization between taps and cues typically occurs within a certain frequency
range [12,27]. That is, if the difference between the preferred unpaced tapping frequency and the
imposed pacing frequency becomes too large, synchronization becomes impossible. This relates to the
second factor affecting auditory-motor coordination, frequency detuning, defined for two coupled
oscillators as the mismatch between their intrinsic frequencies [22,28]. Modulating cadence with
auditory pacing by definition implies detuning, as pacing frequencies differ from one’s preferred
cadence. With a frequency mismatch, synchronization between steps and cues may or may not
occur, depending on the strength of the coupling (i.e., weaker for pacing strides than for pacing
steps) and the magnitude of the mismatch (i.e., how much the paced frequency differs from one’s
preferred cadence in the absence of pacing). Hence, fewer occurrences of synchronization are to be
expected for stride-based pacing (weaker coupling) than for step-based pacing (stronger coupling),
and particularly so for pacing frequencies other than one’s preferred frequency. If synchronization
does occur, detuning is expected to affect the stability of auditory-motor coordination [13,22], with
superior auditory-motor coordination (i.e., lower relative-phase variability, faster responses to rhythm
perturbations) at one’s preferred cadence (i.e., no detuning). Detuning also affects lead-lag relationships
between steps and pacing cues during synchronized auditory-motor coordination [12,22]. Footfalls
typically precede pacing cues (i.e., anticipation tendency [12,24]), with the magnitude of this phase
lead depending on the frequency mismatch between the pacing frequency and one’s preferred cadence
in the absence of pacing [12,13]. In line with this detuning effect, the intrinsically faster oscillator
(i.e., walker/runner paced at slower-than-preferred cadence) tends to lead and the intrinsically slower
oscillator (i.e., walker/runner paced at faster-than-preferred cadence) tends to lag the anticipation
tendency seen in the absence of detuning (i.e., walker/runner paced at their preferred cadence) [12,13].
The mean relative phase between cues and steps indicates the phase lead/lag.

Not only do indicators of synchronization and the stability of auditory-motor coordination matter
when one wants to modulate cadence with auditory pacing, but also the extent to which the prescribed
cadence can be internalized when pacing is turned off. This modulating effect of pacing in terms
of internalization of the prescribed cadence can be examined using a synchronization-continuation
paradigm, with lower deviations from the prescribed cadence after removal of the pacing signal
representing stronger internalization [23,29–31]. Furthermore, besides objective findings, the subjective
experience of the user about the various pacing types matter for practical reasons such as compliance [32].
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Ideally, objective synchronization, stability and internalization findings match participants’ subjective
experiences with the various types of cues.

In sum, the purpose of the present study was to compare the effectiveness of step-based and
stride-based pacing for modulating walking and running cadences. We expected more synchronization
and more stable auditory-motor coordination with step-based pacing (stronger coupling) for both
walking and running, reflecting a superior cadence-modulating effect [4,18]. As a reflection of this,
we expected participants’ subjective experiences about the various types of cues to match objective
synchronization, auditory-motor coordination and internalization findings in that participants would
best rate the pacing type with the strongest coupling (i.e., step-based pacing). Furthermore, we expected
more stable auditory-motor coordination with congruent pacing (i.e., pacing matching one’s preferred
cadence), and decreasing phase leads with faster pacing. Finally, we expected a larger detuning-related
deviation from the prescribed cadence after removal of the pacing signal in slow and fast pacing
conditions, with a change of cadence towards one’s preferred cadence.

2. Materials and Methods

2.1. Experiment

2.1.1. Participants

Sixteen healthy runners (6 male/10 female), 29 ± 6 years of age (mean ± standard deviation)
participated in the study. Runners were only included if they were uninjured, fell within the age range
of 18 to 40 years, ran more than 7.5 km per week, and participated in at least one competitive race in
2018 and 2019. On average, the runners included in the present study ran 29.4 ± 12.7 km per week and
participated in 11 ± 7 races in 2018 and 2019.

2.1.2. Ethics

All participants provided written informed consent before participation. The protocol was in
accordance with the Declaration of Helsinki and approved by the Scientific and Ethical Review Board
(VCWE) of the Faculty of Behavioural and Movement Sciences of the Vrije Universiteit Amsterdam
(VCWE-2019-006R1).

2.1.3. Equipment

The participants walked and ran on an instrumented treadmill (Dual-belt; Motekforce Link,
Amsterdam), which was equipped with two force platforms. Auditory cues were generated by a
computer and provided through speakers. Auditory cues and force-platform data were sampled
simultaneously at 500 Hz.

2.1.4. Procedure

All participants completed the measurement protocol for both walking and running (the
order of which was counterbalanced over participants; Table 1). Before the measurements started,
the participants walked or ran (depending on the upcoming locomotion condition) on the treadmill for
approximately 10 min at varying speeds in order to familiarize themselves with the treadmill. At the
end of the familiarization period, the speed was increased (and then decreased) and the participants
were asked to indicate when the speed was too high (low) to walk/run comfortably for half an hour.
These two limits were averaged to obtain a speed that the participants indicated to be comfortable with.
If not, the speed was adjusted by 0.5 km/h. When a comfortable speed was established, the participants
walked/ran at the determined speed for one minute to determine the preferred cadence.

In each locomotion block, participants performed two tasks (Table 1): a synchronization-
perturbation task (Figure 1a,b; [4,20,21]) and a synchronization-continuation task (Figure 1c; [33,34]).
During the synchronization-perturbation task, the participants were paced at a certain cadence.
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The auditory cues were provided to the participants as a sequence of metronome beeps. Beep duration
was 0.05 s, including 0.005 s fading at the start and end of each beep to make them sound less mechanical.
After one minute of adaptation and synchronization, 60◦ phase perturbations were introduced in the
pacing signal (360◦ corresponds to one stride). There were four phase-delay (+60◦; Figure 1a) and
four phase-advance perturbations (−60◦; Figure 1b), separated by 30 to 40 steps. The number of steps
between perturbations and the perturbation direction were randomized to ensure that participants
could not anticipate the perturbations. Participants were instructed to adjust their footfalls to the
cues [20,26]. During the synchronization-continuation task, they were also paced at a certain cadence
for one minute. Subsequently, pacing was removed for the final 90 s. Participants were instructed to
maintain the imposed cadence (Figure 1c).

Table 1. Overview of the different conditions and the order of these conditions.

Locomotion Task Pacing Type Pacing Frequency

counterbalanced fixed order counterbalanced random order

running synchronization-perturbation step-based Slow

Preferred
walking synchronization-continuation stride-based

Fast
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Figure 1. The synchronization-perturbation and synchronization-continuation tasks. Stride-based
(upper) and step-based (lower) pacing rhythms are indicated by the vertical lines. (a) Phase-delay
perturbations. The actual beep (black) comes later than expected according to the rhythm (grey).
(b) Phase-advance perturbations. The actual beep (black) comes earlier than expected according to the
rhythm (grey). (c) Continuation. The beeps no longer appear.

Step-based and stride-based pacing were compared for both walking and running (Table 1).
For step-based pacing, beeps alternated in pitch (500 Hz and 800 Hz) to pace the footfalls of both feet.
For stride-based pacing, beeps of 800 Hz pitch were used to pace one of the two footfalls per gait cycle.
All conditions were performed with pacing at the preferred cadence, a slower cadence (0.9 * preferred)
and a faster cadence (1.1 * preferred; Table 1).

After all conditions were completed, the participants walked/ran for one minute at the comfortable
speed without any cues to verify the preferred cadence. Subsequently, they filled out a questionnaire
about how they experienced the types of pacing; in particular, they were asked to rate difficulty,
perceived performance, comfort and enjoyment on a visual scale.
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Participants completed all 24 conditions (repeated-measures design). The order of both locomotion
type and pacing type was counterbalanced over participants. The task and pacing frequency conditions
were grouped per locomotion and pacing type condition to avoid confusion for the participants.
The order of the pacing frequencies was randomized within each condition (Table 1).

2.2. Analysis

MATLAB® (MathWorks®, R2018b) was used for all calculations prior to statistical analysis.
The dataset, comprising preprocessed series, calculated series and event streams per participant and
condition, is available in the Supplementary Materials of this paper.

Cadence was determined based on the moments of foot strike (Figure 2e). For walking, moments of
foot strike were extracted from the collected center-of-pressure data (COP; Figure 2a) [35]. For running,
foot strike was determined as the moment the vertical component of the force vector reached a preset
threshold of 5% of the maximum vertical force (Figure 2d). Cadences were normalized to the preferred
cadence as assessed at the start of each locomotion type block.
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Figure 2. Example of representative data during stationary auditory-motor coordination. (a) The filtered
(low-pass, second-order Butterworth filter with a cut-off frequency of 10 Hz) center of pressure (COP)
for two seconds of walking for one participant. The blue circles indicate instants of foot strike and the
green circles indicate cue onsets. (b) The filtered center of pressure (COP) for two seconds of running
for one participant. The blue circles indicate instants of foot strike and the green circles indicate cue
onsets (corresponding to panel d). (c) The vertical force data for the same two seconds of walking.
The vertical blue lines indicate instants of foot strike and the vertical green lines indicate cue onsets
(corresponding to panel a). (d) The vertical force data for the same two seconds of running. The vertical
blue lines indicate instants of foot strike, defined as the moment in time when the vertical force crosses
the threshold of 5% of the maximum vertical force (black dotted line). The vertical green lines indicate
cue onsets. (e) The cadence for 100 steps of walking (light grey line) and running (dark grey line) and
the corresponding (preferred) pacing frequencies (light green line for walking and dark green line for
running) (f) The relative phase (φ) for 100 steps of walking (lighter grey line) and running (darker grey
line). A positive relative phase indicates that the foot strikes are ahead of the cues.
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2.2.1. Synchronization Phase

Per condition, a series of point estimates of relative phase (φ in ◦) between the foot strikes and the
cues was determined according to:

φ = 360 ∗
(cue onset − f oot strike)
interval ipsilateral cues

(1)

where cue onset and foot strike represent the time instants corresponding, respectively, to the cue
onsets and the foot strikes in seconds, starting with the first matched pair, while the interval ipsilateral
cues represents the duration in seconds between two ipsilateral cues [20] (Figure 2d). A 360◦ phase
progression corresponds to a full stride. For the stride-based pacing conditions, a virtual cue was used
to calculate the relative phase for each foot strike (i.e., paced and unpaced step).

The cumulative relative-phase error was calculated for each window of 50 steps in the
synchronization phase for the synchronization-perturbation conditions. This error was defined
as the sum of consecutive changes in the relative phase and calculated according to:

Cumulative relative phase error =
∑

step=2:n

(φstep −φstep−1) (2)

in which φ is the relative phase and step is the step for which the relative-phase error is calculated.
For all windows with an absolute cumulative relative-phase error below 54◦, we determined the
standard deviation of the relative phase. If there was no window with an absolute cumulative
relative-phase error below 54◦ [20], or if the lowest standard deviation of the relative phase was
greater than 30◦, we deemed synchronization to be absent. The number of participants who achieved
synchronization in each condition was analyzed using Friedman’s ANOVA and Wilcoxon signed ranks
test. If synchronization was achieved, the window with the lowest standard deviation of the relative
phase was used for further analysis. The constant error of the normalized cadence was determined
as the mean difference between the cadence and the target cadence, such that a positive difference
indicates that the cadence is higher than the target. Furthermore, circular statistics [36] was used
to calculate the mean (magnitude of the anticipation tendency in auditory-motor coordination) and
variability (stability of auditory-motor coordination) of the relative phase (φ).

2.2.2. Synchronization-Perturbation Task

There were three possible valid responses to a perturbation: a 60◦ correction towards the
pre-perturbation relative phase (typical response), a 120◦ correction leading to a half-cycle phase shift,
and a 300◦ correction leading to a full-cycle phase shift. We used the criteria as specified in [20] to
determine whether a response was valid and to classify the responses as typical, half-cycle phase shift
and full-cycle phase shift. If the response to the perturbation was classified as typical, the number
of steps needed to correct the perturbation and return to stable auditory-motor coordination was
determined according to [20].

2.2.3. Synchronization-Continuation Task

The continuation phase was only analyzed if synchronization was achieved during the
synchronization phase of this task, that is, when the absolute cumulative relative-phase error over the
final 50 steps was smaller than 54◦ [20] and the standard deviation of the relative phase was smaller
than 30◦. To examine how well participants were able to continue moving at the imposed cadence after
removal of the cues we defined borders of 0.05 around the targeted normalized cadences, leading to five
ranges into which the cadences (per step) during synchronization and continuation were distributed:
below 0.85, 0.85 to 0.95, 0.95 to 1.05, 1.05 to 1.15, and above 1.15. The constant error, defined as the mean
difference between the cadence and the target cadence, such that a positive constant error indicates a
cadence higher than the target, was calculated for the first 100 steps after removal of the cues.
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2.2.4. Statistical Analysis

The statistical analysis was performed in IBM SPSS Statistics 25. Results were deemed significant
at α < 0.05, and effect sizes were quantified as partial eta squared (ηp

2). Preferred cadences as
assessed at the start and end of each locomotion type experimental block were compared using
a two-tailed paired-samples t-test, accompanied by the intra-class correlation coefficient (ICC) for
absolute agreement (with values < 0.5, between 0.5 and 0.75, between 0.75 and 0.9 and > 0.9 signaling
poor, moderate, good and excellent agreement, respectively [37]). The mean and standard deviation
of the relative phase (φ), the number of steps needed to correct the perturbation, and the constant
error of the normalized cadence during synchronization and continuation were compared between
conditions using 2 (pacing type) × 2 (locomotion) × 3 (pacing frequency) repeated-measures ANOVA
with Bonferroni-corrected post-hoc analyses of significant effects. With regard to the questionnaire, we
compared participants’ ratings on difficulty, perceived performance, comfort, and enjoyment with a 2
(pacing type) × 2 (locomotion) repeated-measures ANOVA.

3. Results

The comfortable speeds for walking and running were 5.22 ± 0.48 km/h and 10.47 ± 0.94 km/h,
respectively. The corresponding preferred cadence for walking was 113.41 ± 5.95 steps/min
(114.21 ± 6.27 steps/min after completing the measurements; ICC = 0.79; t(15) = −0.79, p = 0.44).
For running, the preferred cadence was 162.20 ± 8.78 steps/min (164.18 ± 9.99 steps/min after
completing the measurements; ICC = 0.78; t(15) = −1.44, p = 0.17).

3.1. Synchronization Phase

The number of participants who achieved synchronization differed significantly across conditions
(X2(16) = 31.97, p = 0.001). Significantly less participants achieved synchronization in the running
conditions than in the walking conditions (T = 0, r = −0.68; Table 2). Furthermore, synchronization
was achieved less often for the slow pacing frequency compared to preferred (T = 0, r = −0.64) and fast
(T = 6, r = −0.50) pacing frequencies (Table 2). Five out of 16 participants achieved synchronization
in all conditions, and three out of 16 participants achieved synchronization in (less than) half of the
conditions. The other eight participants achieved synchronization in 9 to 11 out of 12 conditions.
The participants who synchronized with the pacing signal did so with the normalized cadences shown
in Table 2.

Table 2. Normalized cadence during stationary auditory-motor coordination (mean ± standard
deviation (sd)) and the number of participants N who did (not) achieve synchronization.

Step-Based Stride-Based

Slow Preferred Fast Slow Preferred Fast

Walking Mean ± sd 0.91 ± 0.009 1.00 ± 0.002 1.11 ± 0.002 0.91 ± 0.004 1.00 ± 0.001 1.11 ± 0.003
N (Missing) 12 (4) 15 (1) 15 (1) 14 (2) 15 (1) 14 (2)

Running Mean ± sd 0.91 ± 0.004 1.00 ± 0.002 1.11 ± 0.001 0.91 ± 0.003 1.00 ± 0.003 1.11 ± 0.002
N (Missing) 9 (7) 14 (2) 13 (3) 9 (7) 15 (1) 12 (4)

Due to the lack of synchronization in at least one condition, 11 participants would be excluded from
the planned repeated-measures ANOVA. Given the distribution of invalid conditions in the running
conditions with detuning, we instead used a 2 (pacing type) × 2 (locomotion) repeated-measures
ANOVA including only the conditions with the preferred pacing frequency, and a 2 (pacing type) × 3
(pacing frequency) repeated-measures ANOVA including only the walking conditions. This led to the
inclusion of 13 and 11 participants, respectively.

The constant error of the normalized cadence during synchronization with preferred pacing
frequency was 0.001 ± 0.001. There were no significant differences in constant error across locomotion
types and pacing types. However, there was a significant effect of frequency on the constant error,



Brain Sci. 2020, 10, 273 8 of 16

F(1.20, 11.97) = 56.37, p = 0.000, ηp
2 = 0.85 (Greenhouse-Geisser corrected values are reported, because

Mauchly’s test was significant, p = 0.007). Post-hoc tests with Bonferroni correction revealed a small,
but significantly higher constant error for the slow (0.009 ± 0.005) and fast (0.012 ± 0.001) pacing
frequencies compared to the preferred pacing frequency (0.001 ± 0.001; p < 0.001).

For the walking conditions, pacing frequency had a significant effect on the mean relative phase,
F(1.24, 12.37) = 18.56, p = 0.001, ηp

2 = 0.65. Post-hoc tests with Bonferroni correction revealed that the
mean relative phase of slow (38.83◦ ± 22.27◦), preferred (18.93◦ ± 10.85◦), and fast (−0.79◦ ± 13.09◦)
pacing-frequency conditions all differed significantly from each other (p < 0.05; Figure 3). For the
conditions with the preferred pacing frequency, a trend suggested a larger mean relative phase for
running (33.81◦ ± 21.61◦) than for walking (21.66◦ ± 11.18◦), p = 0.053. No significant main effect of
pacing type was found, nor any significant interactions.
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Variability of the relative phase was significantly higher with stride-based (5.48◦ ± 2.01◦) than
step-based pacing (4.50◦ ± 1.92◦), F(1, 12) = 8.68, p = 0.012, ηp

2 = 0.42 (Figure 4a). There was a significant
effect of frequency on the variability of the relative phase in walking (F(2, 20) = 3.75, p = 0.042,
ηp

2 = 0.27). Post-hoc tests with Bonferroni correction revealed no significant individual differences
between slow (5.72◦ ± 0.55◦), preferred (4.78◦ ± 0.41◦), and fast (5.75◦ ± 0.58◦) pacing frequencies
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3.2. Perturbation Analysis

How often the different responses to the perturbations occurred varied across conditions (Figures 5
and 6). Friedman’s ANOVA indicated that there were significant differences in the number of typical
responses (|60◦|) across conditions (X2(11) = 63.95, p < 0.001; Figure 5). Wilcoxon tests with Bonferroni
correction were used to make specific comparisons. Participants had less typical responses for running
(3.51 ± 1.98; out of 8 perturbations) than for walking (5.22 ± 2.11; T = 0, r = 0.88), and less typical
responses for slow pacing frequency conditions (3.17 ± 2.11) than for preferred frequency conditions
(5.55 ± 1.95; T = 1.5, r = 0.86). The number of typical responses did not differ between step-based
(4.36 ± 1.96) and stride-based (4.36 ± 2.15) pacing conditions. Similar but opposite differences were
found for the number of invalid responses (X2(11) = 63.88, p < 0.001; T = 0, r = 0.88; T = 1.5, r = 0.86,
respectively; Figure 5).

Brain Sci. 2020, 10, x FOR PEER REVIEW 9 of 17 

 
Figure 4. Variability of the relative phase (ϕ) during stationary auditory-motor coordination. (a) The 
different pacing types (N = 13) (b) The different pacing frequencies (N = 11). Error bars represent the 
standard error of the mean. 

3.2. Perturbation Analysis 

How often the different responses to the perturbations occurred varied across conditions 
(Figures 5 and 6). Friedman’s ANOVA indicated that there were significant differences in the number 
of typical responses (|60°|) across conditions (Χ2(11) = 63.95, p < 0.001; Figure 5). Wilcoxon tests with 
Bonferroni correction were used to make specific comparisons. Participants had less typical responses 
for running (3.51 ± 1.98; out of 8 perturbations) than for walking (5.22 ± 2.11; T = 0, r = 0.88), and less 
typical responses for slow pacing frequency conditions (3.17 ± 2.11) than for preferred frequency 
conditions (5.55 ± 1.95; T = 1.5, r = 0.86). The number of typical responses did not differ between step-
based (4.36 ± 1.96) and stride-based (4.36 ± 2.15) pacing conditions. Similar but opposite differences 
were found for the number of invalid responses (Χ2(11) = 63.88, p < 0.001; T = 0, r = 0.88; T = 1.5, r = 
0.86, respectively; Figure 5). 

 
Figure 5. Distribution of response types over the different conditions. The total number of 
perturbations was 128 (16 participants times eight perturbations per condition). 

Figure 5. Distribution of response types over the different conditions. The total number of perturbations
was 128 (16 participants times eight perturbations per condition).Brain Sci. 2020, 10, x FOR PEER REVIEW 10 of 17 

Figure 6. Relative phase for the valid responses to the perturbations with the mean pre-perturbation 
subtracted. The relative phase for walking is presented on the left side and that for running on the 
right side. A positive perturbation is a delay in the cues and a negative perturbation is an advance in 
the cues. 

Qualitative inspection of Figures 5 and 6 reveals that with detuning, atypical (|120°| and |300°|) 
responses occur more often and with step responses in the direction of the preferred cadence. That 
is, participants predominantly adopt a slower-step response to correct for a phase-advance 
perturbation (−60°) with fast pacing frequency (yielding −120° and −300° adjustments) and a faster-
step response to correct a phase-delay perturbation (+60°) with slow pacing frequency (yielding +120° 
and +300° adjustments [4]). 

For typical responses, the number of steps needed to correct for a perturbation were compared 
with a 2 (pacing type) × 2 (locomotion) repeated-measures ANOVA (N = 15; preferred frequency 
conditions only), and with a 2 (pacing type) × 3 (pacing frequency) repeated-measures ANOVA (N = 
12; walking conditions only). There were no significant main effects of pacing type, locomotion or the 
pacing type x locomotion interaction (p > 0.05) on the number of steps needed to correct for a 
perturbation with the preferred pacing frequency. For the walking conditions, there was a significant 
effect of frequency on the number of steps needed to correct, F(2, 22) = 8.06, p = 0.002, ηp2 = 0.42. Post-
hoc tests showed that this number was significantly higher for slow (9.66 ± 1.84) than fast (7.81 ± 1.48) 
pacing frequencies (p = 0.011), but neither of those differed significantly from the number of steps 
needed for the preferred pacing frequency (9.12 ± 1.77). Furthermore, there was a significant 
interaction of pacing type and pacing frequency, F(2, 22) = 4.77, p = 0.019, ηp2 = 0.30 (Figure 7). Post-
hoc tests with Bonferroni correction revealed that for the preferred pacing frequency, the number of 
steps needed to correct for a perturbation was significantly lower with step-based (8.41 ± 1.96) than 
with stride-based (9.83 ± 1.80) pacing, p = 0.003, in the absence of significant differences between 
pacing types for slow and fast pacing frequencies. 

Figure 6. Relative phase for the valid responses to the perturbations with the mean pre-perturbation
subtracted. The relative phase for walking is presented on the left side and that for running on the
right side. A positive perturbation is a delay in the cues and a negative perturbation is an advance in
the cues.
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Qualitative inspection of Figures 5 and 6 reveals that with detuning, atypical (|120◦| and |300◦|)
responses occur more often and with step responses in the direction of the preferred cadence. That is,
participants predominantly adopt a slower-step response to correct for a phase-advance perturbation
(−60◦) with fast pacing frequency (yielding −120◦ and −300◦ adjustments) and a faster-step response
to correct a phase-delay perturbation (+60◦) with slow pacing frequency (yielding +120◦ and +300◦

adjustments [4]).
For typical responses, the number of steps needed to correct for a perturbation were compared with

a 2 (pacing type) × 2 (locomotion) repeated-measures ANOVA (N = 15; preferred frequency conditions
only), and with a 2 (pacing type) × 3 (pacing frequency) repeated-measures ANOVA (N = 12; walking
conditions only). There were no significant main effects of pacing type, locomotion or the pacing
type x locomotion interaction (p > 0.05) on the number of steps needed to correct for a perturbation
with the preferred pacing frequency. For the walking conditions, there was a significant effect of
frequency on the number of steps needed to correct, F(2, 22) = 8.06, p = 0.002, ηp

2 = 0.42. Post-hoc tests
showed that this number was significantly higher for slow (9.66 ± 1.84) than fast (7.81 ± 1.48) pacing
frequencies (p = 0.011), but neither of those differed significantly from the number of steps needed
for the preferred pacing frequency (9.12 ± 1.77). Furthermore, there was a significant interaction of
pacing type and pacing frequency, F(2, 22) = 4.77, p = 0.019, ηp

2 = 0.30 (Figure 7). Post-hoc tests with
Bonferroni correction revealed that for the preferred pacing frequency, the number of steps needed to
correct for a perturbation was significantly lower with step-based (8.41 ± 1.96) than with stride-based
(9.83 ± 1.80) pacing, p = 0.003, in the absence of significant differences between pacing types for slow
and fast pacing frequencies.
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3.3. Continuation Analysis

If stable auditory-motor coordination was not achieved during the final 50 steps of the
synchronization phase, participants were excluded from the analysis of the continuation phase.
Figure 8 shows the histograms of the normalized cadence data separately for the synchronization
and continuation parts of the conditions for the nine participants who achieved synchronization in
all walking trials. The figure shows that the cadence, by and large, remains within the correct range
during continuation. The tables above the separate figures show the percentage of steps with the
cadence in the corresponding range per condition.
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Figure 8. Histograms of the normalized cadence. (a) Synchronization phase. (b) Continuation phase.
Vertical dotted lines represent the borders of the ranges around the slow (0.9), preferred (1.0) and fast
(1.1) frequencies. The percentages of cadences falling in each frequency range are displayed above the
figure for the three pacing frequencies separately. The data displayed belongs to the nine participants
included in the constant error analysis for walking. As some of these participants did not synchronize
in all conditions, displayed histograms were based on N = 7 for running with preferred step-based, and
slow and preferred stride-based pacing conditions and N = 6 for the running with slow step-based
pacing conditions.

The constant error between the target cadence and the performed cadences during continuation
were compared with a 2 (pacing type) × 2 (locomotion) repeated-measures ANOVA (N = 9; preferred
frequency conditions only), and with a 2 (pacing type) × 3 (pacing frequency) repeated-measures
ANOVA (N = 9; walking conditions only). In line with the qualitative inspection of Figure 8,
no significant main or interaction effects of pacing type and locomotion were found in the preferred
frequency conditions (0.002 ± 0.009). In walking, there was a significant effect of pacing frequency
on the constant error, F(2, 16) = 3.81, p = 0.044, ηp

2 = 0.32. Post-hoc tests with Bonferroni correction
revealed a higher constant error for the slow pacing frequency (0.019 ± 0.018) compared to the preferred
frequency (0.001 ± 0.015, p < 0.05). Figure 8 indeed shows that the histograms for the slow pacing
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frequency are shifted somewhat to the right, that is, in the direction of one’s preferred cadence.
No significant interactions were found.

3.4. Questionnaire

The results of the questionnaire are presented in Figure 9. Individual participant ratings are
available in the Supplementary Material. Participants rated their synchronization performance to be
better for step-based (73.07 ± 17.00) than for stride-based pacing (59.37 ± 24.67; F(1, 14) = 6.06, p = 0.027,
ηp

2 = 0.30). They further rated comfort higher for step-based (66.47 ± 18.71) than for stride-based
(55.13 ± 22.73) pacing (F(1, 14) = 4.97, p = 0.043, ηp

2 = 0.26). Difficulty and enjoyment rates did not
differ between step-based and stride-based pacing (p > 0.05). No significant differences in the ratings
between walking and running were found, nor any significant interactions.Brain Sci. 2020, 10, 273 13 of 17 
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Figure 9. The mean and standard error of the ratings for perceived difficulty, performance, comfort
and enjoyment for walking and running with step-based and stride-based pacing. On the scale, a low
rating means low perceived difficulty/performance/comfort/enjoyment.

4. Discussion

In this study, we compared, in sixteen experienced runners, the effectiveness of step-based pacing
and stride-based pacing for modulating and internalizing cadence in walking and running, for pacing
frequencies slower than, equal to, and faster than the preferred cadence of the participants. We expected
synchronization to be achieved more often with step-based (stronger coupling) than with stride-based
pacing. However, no evidence was found for this expectation. If synchronization was achieved,
we further expected auditory-motor coordination to be more stable for step-based pacing than for
stride-based pacing for both walking and running. Auditory-motor coordination was indeed more
stable with step-based pacing, as evidenced by significantly lower variability in the relative phase
between steps and cues. Furthermore, fewer steps were needed to correct for a perturbation with
step-based pacing than stride-based pacing, but only with preferred pacing frequency in walking;
no significant main effect of pacing type was found. These findings indicate that stronger coupling
(i.e., pacing steps) leads to more stable auditory-motor coordination, as was found in a previous study
reporting superior auditory-motor synchronization for step-based pacing in walking [4]. With regard
to the participants’ preference, ratings suggested that step-based pacing was perceived to be more
comfortable for both walking and running and led to a higher perceived performance than stride-based
pacing. These subjective ratings in favor of step-based pacing are consistent with the objective findings
showing superior coordinative stability of step-based pacing. In view of the superior auditory-motor
coordination and better subjective ratings by the participants, we would advise walkers and runners
(and their therapists and trainers) to opt for step-based pacing rather than stride-based pacing for the
purpose of cadence modulation.
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In the present study, we also systematically manipulated detuning, and expected that participants
would achieve synchronization more often with pacing matching one’s preferred frequency (no
detuning) than with slower-than-preferred and faster-than-preferred pacing frequencies (detuning).
More participants were excluded in conditions with detuning due to the absence of synchronization, and
there were less typical responses to perturbations, but only for conditions with a slower-than-preferred
pacing frequency. This suggests that synchronizing to a slower-than-preferred pacing signal is more
difficult than synchronizing to a pacing signal that matches one’s preferred cadence, but synchronizing
to a faster-than-preferred pacing frequency is not. If synchronization was achieved, we expected
auditory-motor coordination to be most stable for the preferred pacing frequency conditions (no
detuning). Coordination was indeed more stable (lower variability of the relative phase) without
detuning, which is consistent with the literature [13]. Furthermore, the correction after perturbations
was slower with slow than fast pacing frequency, but neither was significantly different from the
preferred frequency. These combined results suggest that the negative effects of detuning on the stability
of the auditory-motor coordination are more pronounced for slow than for fast pacing. The goal of
the present study was to modulate cadence with the practical application of reducing injury. The
increase in cadence of 10% recommended for that purpose [6,7] seems to be feasible with auditory
pacing, with little loss of stability of auditory-motor coordination and, as will be discussed below, with
internalization of this faster cadence after a relatively brief period of pacing.

We expected a detuning-related change of the cadence in the direction of the preferred cadence.
During the synchronization phase, the constant error was indeed positive for the slow pacing frequency,
indicating that the cadence tended to be somewhat faster than the slow pacing frequency, but it was also
positive with fast pacing. In addition, detuning did have the expected effect on the lead-lag relationship
between steps and pacing cues, with a larger phase lead with slow and a smaller phase lead (in some
cases a phase lag) for fast pacing [13], as evidenced respectively by a significantly higher and lower
mean relative phase compared to the preferred pacing frequency, confirming that the inherently faster
oscillator tends to lead [12,13]. Furthermore, the participants who achieved synchronization did remain
at the target cadence after the removal of the pacing signal. We expected the constant error during
continuation to be larger (positive) for the slow and smaller (negative) for the fast pacing frequency
than for the preferred pacing frequency, but constant error, albeit low, was only significantly larger for
the slow compared to the preferred pacing frequency, indicating a slightly worse internalization of the
slower-than-preferred target frequency; no significant difference in constant error between the fast and
preferred pacing was found. Participants were able to continue at the target cadence for 100 steps after
removal of the pacing signal, provided that footfalls were synchronized to the pacing signal in the
synchronization phase, since unsynchronized participants were excluded from this analysis.

We did not expect synchronization and stability of auditory-motor coordination to be different
for walking and running. However, there were more conditions in which synchronization was not
achieved, and more invalid responses to perturbations for running compared to walking, suggesting
that synchronization was more difficult to achieve for running, especially at slow pacing frequencies.
A plausible explanation for this difference is not readily apparent, but it may be the case that running,
in particular on a treadmill, is a less automated activity than walking, and therefore more susceptible
when combined with another attention-demanding task like synchronizing footfalls to an auditory
metronome. Previous studies have shown that paced walking is more attention demanding than
unpaced walking [38,39], and the same probably holds for running, but perhaps in a stronger manner.
Note, however, that if synchronization was achieved, auditory-motor coordination was not significantly
different for walking and running.

As already intimated, our findings may have practical implications for applying auditory pacing
for modulating and internalizing cadence in the fields of rehabilitation and sports. However, before
generalizing the current results to practice, a couple of limitations should be taken into account.
Firstly, three of the participants did not achieve synchronization in (more than) half of the conditions.
This could indicate that these participants had difficulty with auditory-motor synchronization in
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general [40]. For such poor synchronizers, auditory pacing will not be an effective method for
modulating cadence. Furthermore, in this study participants walked and ran on a treadmill. Treadmill
locomotion differs somewhat from over-ground locomotion since the speed must be kept constant to
avoid falling off the treadmill, implying that participants needed to tightly control their speed in light
of this constraint [41]. Consequently, modulating cadence through pacing also implied modulating
step lengths (e.g., an increase in cadence is accompanied by a decrease in step length to maintain
the same speed). In over-ground locomotion, in contrast, speed and step length may be adjusted
independently of one another when modulating cadence. Increasing cadence over-ground through
pacing may thus result in increased step lengths (and hence speed), which may be problematic in that
greater step lengths are associated with injury risk in running [8].

Given the aforementioned limitations, our recommendations for future research are to use a poor
ability to synchronize as an exclusion criterion, as the poor synchronizers were excluded from most
analyses in this study. In addition, we recommend future studies designed to extend our findings to
over-ground running to pace cadence in relation to the actual speed in over-ground running, that is,
if the use of auditory pacing is intended for modulating cadence with the aim of reducing injury risk.
In relation to the latter recommendation, it is important to note that the energetically optimal cadence
is faster than the preferred cadence in both treadmill [42,43] and over-ground [44] running, and can
be determined as the cadence corresponding to the lowest heart rate for each speed [42–44]. We thus
recommend future research to modulate cadence towards this energetically optimal cadence, as it may
reduce both energy cost and injury risk.

Supplementary Materials: The following is available online at https://zenodo.org/record/3861849#.Xs8d48B5uUk,
The dataset for this study, comprising preprocessed series, calculated series and event streams per participant
and condition.
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