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Gossypol and related sesquiterpene aldehydes in cotton function
as defense compounds but are antinutritional in cottonseed
products. By transcriptome comparison and coexpression analyses,
we identified 146 candidates linked to gossypol biosynthesis.
Analysis of metabolites accumulated in plants subjected to virus-
induced gene silencing (VIGS) led to the identification of four
enzymes and their supposed substrates. In vitro enzymatic assay
and reconstitution in tobacco leaves elucidated a series of oxida-
tive reactions of the gossypol biosynthesis pathway. The four
functionally characterized enzymes, together with (+)-δ-cadinene
synthase and the P450 involved in 7-hydroxy-(+)-δ-cadinene for-
mation, convert farnesyl diphosphate (FPP) to hemigossypol, with
two gaps left that each involves aromatization. Of six intermedi-
ates identified from the VIGS-treated leaves, 8-hydroxy-7-keto-
δ-cadinene exerted a deleterious effect in dampening plant dis-
ease resistance if accumulated. Notably, CYP71BE79, the enzyme
responsible for converting this phytotoxic intermediate, exhibited
the highest catalytic activity among the five enzymes of the path-
way assayed. In addition, despite their dispersed distribution in
the cotton genome, all of the enzyme genes identified show a
tight correlation of expression. Our data suggest that the enzy-
matic steps in the gossypol pathway are highly coordinated to
ensure efficient substrate conversion.
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Humans have domesticated wild plants to develop them as a
safe food source. Most plants produce specialized (second-

ary) metabolites that confer resistance to pathogens (1) and
herbivores (2) (including insects and mammals). In addition to
their toxicity, specialized metabolites possess undesirable anti-
nutritional properties that have been reduced or removed from
human and domestic-animal foods during domestication. For
example, potato (Solanum tuberosum) (3) and tomato (S. lyco-
persicum) (4, 5) have been bred for low levels of toxic steroidal
glycoalkaloids, and cucumber (Cucumis sativus) cultivars contain
low levels of bitter cucurbitacins (6, 7).
In the case of cotton species that have been cultivated mainly

for spinnable fiber to produce clothing, their specialized me-
tabolites may not have been under the negative selection pres-
sure in the course of domestication, compared with food crops.
Plants of cotton synthesize a group of cadinene-type sesquiter-
pene aldehydes as defense compounds (phytoalexins), repre-
sented by gossypol (8–10). Cottonseeds are valuable since they
are good sources of protein (∼23%) and oil (∼21%). Cottonseed
meal is widely used as animal feed, and cotton oil is still the
major cooking oil in some developing countries, such as Pakistan
(11, 12). As a result, high gossypol content in cottonseeds poses a
health concern (13) for both domestic-animal and human uses.
Elucidation of the gossypol biosynthetic pathway started decades

ago. Early 14C tracing experiments proved that (+)-δ-cadinene is a
precursor to all cadinene-type sesquiterpenoids in cotton, including
both 7- and 8-hydroxylated derivatives (14, 15). Sesquiterpene syn-
thases convert farnesyl diphosphate (FPP) into differently structured
products. The (+)-δ-cadinene synthase (CDN) activity in cotton

(15, 16) and the cDNAs encoding two subfamilies of CDNs (CDNA
and CDNC) were then reported (17, 18). Later, a cytochrome P450
monooxygenase (CYP706B1) was demonstrated to catalyze the
hydroxylation of (+)-δ-cadinene, presumably at the 8- position
(19). In addition, a desoxyhemigossypol methyltransferase was
characterized (20). Gossypol is formed through dimerization of
hemigossypol (21–23). Comparison of (+)-δ-cadinene and hemi-
gossypol structures suggests several hydroxylation, desaturation,
and cyclic ether formation steps in the pathway. However, until
now, neither the enzymes nor the reactions downstream of
(+)-δ-cadinene have been characterized, except a tentative identi-
fication of CYP706B1, and even the biosynthetic intermediates re-
main largely unknown.
All cotton species bear the lysigenous glands located in the

subepidermal layer of aerial organs, in which sesquiterpene al-
dehydes (such as gossypol and hemigossypolone) are stored.
There are also glandless cultivars which do not produce these
phytoalexins in aerial parts (17, 24, 25) (Fig. 1 A and B). Re-
cently, the gene responsible for gland formation, GoPGF, was
cloned, which encodes a basic helix–loop–helix transcription
factor (25). By transcriptome-based comparison of the glandular
and the glandless cultivars and coexpression analyses, in com-
bination with virus-induced gene silencing (VIGS) and partial
reconstitutions of the pathway in heterologous system, we isolated
four enzymes and identified five steps of the pathway, covering the
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first four consecutive steps and most of the hydroxylation reac-
tions of gossypol biosynthesis.

Results
Isolation of Gossypol Pathway Genes. Upland cotton, Gossypium
hirsutum, is an allotetraploid species widely cultivated around the
world (26). Analyses by HPLC detected a high level of sesqui-
terpene aldehydes in the leaf, seed (cotyledon), and floral organs
of G. hirsutum cv. CCRI12, but not the glandless mutant
CCRI12gl (SI Appendix, Fig. S1A). Although the sesquiterpenes
are widely distributed throughout the glandular cotton plant,
their level and composition in different organs vary: while gos-
sypol is predominant in seed and root, hemigossypolone is
abundant in leaf (SI Appendix, Fig. S1A).
In cotton CDN, a sesquiterpene cyclase and the cytochrome

P450 monooxygenase CYP706B1 catalyze the first two steps
of gossypol biosynthesis (17, 19). To further characterize the
pathway, we adopted an integrative approach combining two-
stage transcriptome analyses and VIGS to isolate genes encod-
ing the downstream enzymes. Comparison of the transcript
abundances in the leaves of glandular and glandless cotton un-
covered 902 genes significantly down-regulated in the latter (Fig.
1C). Next, correlation analysis using the correlation value

of ≥0.5 grouped 5,912 transcripts with the bait CDNC of the
CDN family (Fig. 1C). Combination of these two datasets dis-
closed 146 genes in total that were potentially linked to gossypol
biosynthesis, among which 82 encode enzymes, including the
previously reported CDNC and CYP706B1, and the mevalonate
(MVA) pathway genes (Fig. 1D). Subsequent analysis of spatial
expression patterns using the R pheatmap package identified
seven enzymes that form the most likely gene expression cluster
related to gossypol biosynthesis (Fig. 1E and SI Appendix, Table
S1), of which four have not been investigated before.
Real-time quantitative PCR confirmed the RNA-sequencing

data: the four enzyme genes were tightly coexpressed with
CDNC and CYP706B1, with their transcript levels high in glan-
dular leaves but low or undetectable in glandless leaves (Fig. 2A).
During development, young ovules (seeds) do not produce gos-
sypol until 20 d postanthesis (SI Appendix, Fig. S1B), when
CDNC and CYP706B1 as well as the four candidate genes were
coordinately activated, concomitant with gossypol accumulation
(Fig. 2B).
Previous investigations demonstrated that biosynthesis of

sesquiterpene phytoalexins in cotton cells can be induced by the
pathogenic fungus Verticillium dahliae (17, 20). HPLC analysis
showed that treatment of cotton cotyledons by the V. dahliae
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elicitor VdNEP (27) led to increased production of gossypol and
hemigossypolone, whereas in glandless cotyledons, in which the
sesquiterpene aldehydes were undetectable before elicitation,
hemigossypolone was induced to accumulate (SI Appendix, Fig.
S2). Consistently, the six enzyme genes were all up-regulated by
elicitation (Fig. 2 C and D).
Selected candidate genes were submitted to VIGS, and si-

lenced genes were then monitored by metabolite analysis of
cotton leaves (28). Silencing of CDNC decreased hemigossypolone
and gossypol levels by 95.1% and 96.7%, respectively, and silencing
of CYP706B1 decreased the sesquiterpene levels by 59.4% and
61.2%, respectively, compared with empty vector controls (Fig.
2E). An extended assay showed that silencing of four enzymes,
including two cytochromes P450 (CYP82D113 and CYP71BE79),
one alcohol dehydrogenase (DH1), and one 2-oxoglutarate/
Fe(II)-dependent dioxygenase (2-ODD-1), each reduced the level
of gossypol and hemigossypolone by more than 50% (Fig. 2E).
These data strongly suggested the involvement of the candidate
genes in gossypol biosynthesis.

Identification of Biosynthetic Intermediates.As silencing of CYP706B1
resulted in an accumulation of its substrate (+)-δ-cadinene in
cotton leaves (Fig. 3A), we further analyzed the leaf extracts of the
VIGS-treated plant by GC-MS and LC-MS to explore clues to the
enzyme activity. We found that the CYP706B1 product, which has
an m/z of 220, accumulated in the VIGS-DH1, but not the control
leaves, suggesting that DH1 may be functional in reducing the
CYP706B1 product (Fig. 3B). Silencing of CYP82D113 led to the
accumulation of a compound that has an m/z of 218 (Fig. 3C);
thus, this P450 may act immediately after DH1.
By LC-MS, we found that a peak with m/z (+) 257 [M + Na]+

appeared in the extract of the CYP71BE79-silenced leaves,
which could be the substrate of CYP71BE79 (Fig. 3D). In ad-
dition, GC-MS identified that silencing of 2-ODD-1 resulted in

accumulation of an upstream intermediate with an m/z of 228
(Fig. 3E).
We also noted that the VIGS-CYP71BE79 plants grown in the

greenhouse frequently developed disease phenotypes (brown
sunken lesions covering the hypocotyl–root junction) (SI Ap-
pendix, Fig. S3 A and B), similar to the symptoms caused by the
soilborne necrotrophic fungus Rhizoctonia solani (29), whereas
the control and other VIGS-treated plants did not. As PGF si-
lencing blocked the whole gossypol biosynthesis pathway (25),
the decreased amount of sesquiterpene phytoalexins in VIGS-
CYP71BE79 plants was unlikely responsible for the enhanced
susceptibility. Determination by LC-MS revealed that the sub-
strate of CYP71BE79 accumulated in the hypocotyl–root junc-
tion after the gene silencing (SI Appendix, Fig. S3C).

Functional Characterization of Enzymes. To obtain intermediate
standards for structure elucidation and to perform enzyme assays
in vitro, we expressed the three cytochromes P450 in Saccharo-
myces cerevisiae and other enzymes in Escherichia coli. As de-
termined by GC-MS, incubation of the starting substrate FPP
with CDNC produced (+)-δ-cadinene, and further reaction with
CYP706B1 gave rise to a hydroxylated product (Fig. 4) that was
previously proposed to be 8-hydroxy-(+)-δ-cadinene (19). Sub-
sequent incubation revealed that DH1 converted the CYP706B1
product into a compound of Mr 218 (Fig. 4), suggesting a dehy-
drogenation reaction. NMR spectroscopy detected a ketonic group
at the C-7 position; thus, the product is 7-keto-δ-cadinene (Fig. 4).
Formation of 7-keto-δ-cadinene cast doubt on the previous

identification of the CYP706B1 product as 8-hydroxy-(+)-δ-cadinene
based on 1H-NMR spectroscopy (19). Indeed, both 13C NMR
and heteronuclear multiple-bond correlation spectra revealed
the compound as 7-hydroxy-(+)-δ-cadinene (SI Appendix, Figs. S4–
S6). Thus, CYP706B1 is reassigned as (+)-δ-cadinene-7-hydroxylase,
and DH1 is 7-keto-δ-cadinene synthase (Fig. 4).
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The compound 7-keto-δ-cadinene was first identified from G.
hirsutum plants engineered to express an RNAi construct tar-
geting CYP82D109, which was named (4aR, 5S)-δ-cadinen-2-one
(24), but the activity of CYP82D109 has remained unknown.
CYP82D113 is 92% identical to CYP82D109. To determine the
enzyme activity of CYP82D113, yeast microsomes enriched with
CYP82D113 were incubated with 7-keto-δ-cadinene. LC-MS
identified an expected peak of the product having an m/z of
(+) 257. MS and NMR analyses indicated that, in the presence of
NADPH, CYP82D113 transferred a hydroxyl group to C-8 of 7-
keto-δ-cadinene, generating 8-hydroxy-7-keto-δ-cadinene (Fig. 4
and SI Appendix, Figs. S7–S9).
The CYP82D113 product has an MS spectrum identical to that

of the proposed substrate of CYP71BE79 (Fig. 3D). To test
whether CYP71BE79 is involved in further decoration of the
(+)-δ-cadinene backbone, we incubated it with 8-hydroxy-7-keto-
δ-cadinene, which was then efficiently converted into a product
with anm/z of (+) 273 [M +Na]+ (Fig. 4). NMR analysis identified

that CYP71BE79 transferred a new hydroxyl group to C-11 to form
8,11-dihydroxy-7-keto-δ-cadinene (SI Appendix, Figs. S10–S12).
Lastly, the metabolite accumulated in the 2-ODD-1–silenced

leaves (Fig. 3E) was identified to be furocalamen-2-one (SI
Appendix, Figs. S13–S14). As expected, incubation with 2-ODD-
1 converted it to a new compound, 3-hydroxy-furocalamen-2-one
(Fig. 4 and SI Appendix, Figs. S15–S16).
We next measured the kinetic parameters of the five enzymes

(Table 1). Notably, CYP71BE79 exhibited a much higher maxi-
mum activity (Vmax) than other enzymes tested, including two
upstream cytochromes P450 (CYP706B1 and CYP82D113), and
its catalytic efficiency (Vmax/Km) was also clearly higher. To test
substrate specificity, the five enzymes were assayed with available
intermediates possessing similar structures. Most enzymes showed
little activity toward alternative substrates under identical assay
conditions (SI Appendix, Fig. S17). However, in addition to 7-
hydroxy-(+)-δ-cadinene, DH1 also accepted 8-hydroxy-7-keto-
δ-cadinene and 8,11-dihydroxy-7-keto-δ-cadinene as substrates,
although with lower efficiency (SI Appendix, Fig. S17). Thus, DH1 is,
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to some extent, promiscuous in dehydrogenation of the hydroxyl
group-containing metabolites.

Partial Reconstitution of Gossypol Pathway in Tobacco Leaf. Along
with in vitro assays of enzyme activities, we utilized the Agro-
bacterium-mediated transient expression system to reconstitute
the gossypol pathway reactions in Nicotiana benthamiana leaves.
The 35S promoter was used to express each of the six enzymes,
including an FPP synthase (AtFPS2) from Arabidopsis thaliana

(AT4G17190), as well as CDNC, CYP706B1, DH1, CYP82D113,
and CYP71BE79 from cotton, which catalyze the six consecu-
tive steps of gossypol biosynthesis starting from isopentenyl
diphosphate/dimethylallyl diphosphate. Four metabolic inter-
mediates, (+)-δ-cadinene, 7-hydroxy-(+)-δ-cadinene, 7-keto-
δ-cadinene, and 8-hydroxy-7-keto-δ-cadinene, were detected
in the leaves expressing the respective enzymes (SI Appen-
dix, Fig. S18 A–D). Following CYP71BE79 expression with
the upstream enzymes, a glycosylated product, rather than
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8,11-dihydroxy-7-keto-δ-cadinene itself, was formed (SI Appendix,
Fig. S18 E–G).
Together, data from VIGS and in vitro and tobacco leaf transient

expression assays suggest that CYP706B1, DH1, CYP82D113,
and CYP71BE79 catalyze four consecutive oxidative reactions
on (+)-δ-cadinene, and 2-ODD-1 is responsible for a later hy-
droxylation step in the biosynthetic pathway leading to sesqui-
terpene aldehydes (Fig. 5).

Gossypol Pathway Genes Are Dispersed in the Cotton Genome. Sev-
eral examples exist where genes encoding biosynthetic pathway
enzymes of specialized metabolites, including terpenoids and
alkaloids, tend to be clustered together in the plant genome (3, 6,
30, 31). In cotton, however, the gossypol pathway genes are
dispersed among different chromosomes (Fig. 5 and SI Appendix,
Fig. S19). On the other hand, the gene families of the gossypol as
well as the core MVA pathways are often extensively expanded
with tandem duplications (Fig. 5 and SI Appendix, Fig. S19).
Most of the gossypol pathway enzymes identified, including
CDN, DH1, CYP82D113, and 2-ODD-1, appear to have arisen
from local duplications in the cotton genome. For example, in
the allotetraploid genome of G. hirsutum, there are 11 genes
encoding the alcohol dehydrogenase DH1 and homologs, all of
which are tandemly arranged, with four genes (Gh_A01G1736,
Gh_A01G1737, Gh_A01G1739, and Gh_A01G1740) on chro-
mosome A1 (chromosome 1 of A subgenome) and seven
(Gh_D01G1983 to Gh_D01G1989) on chromosome D1 (Fig. 5
and SI Appendix, Fig. S19).
Among the five enzymes catalyzing oxidative steps in the

gossypol biosynthetic pathway, three are cytochromes P450 of
different families. Members of CYP71 and CYP82 families are
commonly involved in biosynthesis of specialized metabolites
such as noscapine (32), podophyllotoxin (33), and artemisinin
(34). As cotton CYP71BE79 is distinct in its high activity (Table
1), we analyzed it further.
Using CYP71BE79 as query, we performed a bioinformatic blast

search of CYP71 family proteins from publicly available genomes
of nine plant species, including three species from the family
Malvaceae: G. hirsutum, Durio zibethinus, and Theobroma cacao.
In total, 312 CYP71 proteins were retrieved (SI Appendix, Fig.
S20). We found that the CYP71BE proteins form a Malvaceae-
specific subfamily (green in Fig. 6A), which contained 37 mem-
bers clustered into five clades. Clade II was composed of six
CYP71BEs, including the two CYP71BE79 homologs of G. hir-
sutum (Gh_A13G1133 and Gh_D13G1407). Notably, CYP71BE
genes have been maintained as a truly single copy in diploid
genomes or subgenomes (Fig. 6B).
The nonsynonymous (Ka) and synonymous substitution rates

(Ks) of three gossypol pathway cytochromes P450 (CYP706B1,
CYP82D113, and CYP71BE79) in G. hirsutum were compared
with their homologs in D. zibethinus (Table 2). The higher Ks
values and the lower Ka/Ks ratios of CYP71BE79 indicate that
this P450 has undergone less relaxed selection. Moreover,
CYP71BE79 has a high Vmax value compared with other, iden-
tified cytochromes P450 of the gossypol pathway (Table 1),
which supports an efficient transformation of its substrate (8-

hydroxy-7-keto-δ-cadinene) that affects plant resistance to
pathogens if accumulated (SI Appendix, Fig. S3). We propose
that CYP71BE79 is functionally more conserved in Gossypium
and in closely related genera in order to catalyze a highly con-
trolled step to prevent the accumulation of the phytotoxic me-
tabolite, along with gossypol pathway evolution.

Discussion
Recent achievements in sequencing cotton genomes (26, 35–37)
have facilitated the isolation and characterization of gossypol
pathway enzymes through transcriptome mining. It is striking
that the first oxidation reaction of (+)-δ-cadinene catalyzed by
CYP706B1 toward gossypol biosynthesis occurs at the C-7 posi-
tion, instead of C-8 as proposed previously. Besides gossypol and
related sesquiterpene aldehydes that have a characteristic 8-hydroxyl
group, there are other cadinene derivatives featuring oxidation at
C-7 in cotton, such as 2-hydroxy-7-methoxycadalene (24). An earlier
study showing that the tritiated CYP706B1 product was incorpo-
rated into gossypol (38) supported the involvement of this cyto-
chrome P450 in gossypol biosynthesis. Here, we provide evidence
that CYP706B1 produces 7-hydroxy-(+)-δ-cadinene, which is an
upstream intermediate in the gossypol pathway.
Interestingly, 7-hydroxy-(+)-δ-cadinene is subjected to C-8 ox-

idation following C-7 carbonylation, and the C-7 carbonyl group
seems indispensable for C-8 hydroxylation. The cadinene-type
sesquiterpenes oxidized at both C-7 and C-8 have not been
found before; subsequent oxidation at C-11 by CYP71BE79 pre-
sumes to react with a C-8 hydroxyl group to form a C-8–C-
11 ether bridge in the structure of gossypol (Fig. 4). The fate of
the C-7 carbonyl group awaits determination but could be de-
duced from structural comparison of 8,11-dihydroxy-7-keto-
δ-cadinene and furocalamen-2-one, because the two intermedi-
ates leave a biosynthesis gap that may involve isomerization of
carbonyl functionality to an enol group and the successive de-
hydration to form a benzene ring (ring B). Isomerization and
dehydration are not uncommon in aromatization, such as the
shikimate pathway rearrangement of chorismate to prephenate
by chorismate mutase and the dehydration of arogenate to
phenylalanine by arogenate dehydratase (39). Furthermore, ring
B is also aromatized during desoxyhemigossypol formation from
3-hydroxy-furocalamen-2-one (Fig. 4). The present investigation
resolves most of the oxidation reactions involved, leaving
two remaining gaps that each involves similar aromatization
reactions.
Notably, the reaction steps of gossypol formation are not

randomly cascaded but rather accurately cascaded, from an en-
ergy point of view. The oxidation always occurs in the position
much easier to take place, and the introduced oxidized group
reduces the energy barrier of the next oxidation. For example,
the first hydroxylation proceeds in the active C-7 allylic position,
and then the newly formed carbonylation leaves its α position
more active for subsequent hydroxylation; such is also the case of
hydroxylations at positions 3 and 8, where there are preexisting
carbonyl groups. Lastly, aromatizing provides the most stable
napthalene ring. Thus, the gossypol pathway has evolved and
been optimized through several low-energy intermediates.

Table 1. Kinetic analyses of the enzymes determined in vitro

Enzyme Substrate Km, μM Vmax, nmol·min−1·mg−1

CYP706B1 (+)-δ-Cadinene 7.57 ± 1.14 31.26 ± 1.56
DH1 7-Hydroxy-(+)-δ-cadinene 0.48 ± 0.04 10.42 ± 0.21
CYP82D113 7-Keto-δ-cadinene 1.02 ± 0.13 22.00 ± 0.73
CYP71BE79 8-Hydroxy-7-keto-δ-cadinene 9.67 ± 1.34 304.90 ± 10.88
2-ODD-1 Furocalamen-2-one 1.81 ± 0.21 49.54 ± 1.11

Each dataset represents means ± SD (n = 3 independent experiments).
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The clear order and the strict substrate specificity of these
biosynthetic reactions imply that the gossypol biosynthetic
pathway may have evolved step by step, which might be a reason
for discrete distributions of enzyme genes in the genome. We an-

ticipate that in some plants of Malvaceae, such as cacao, okra, and
roselle, the biosynthetic pathways of cadinene-type sesquiter-
penes are not necessarily destined to be gossypol; the short-cut or
diversified routes may result in a rich array of specialized
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metabolites. Comparative analyses of these pathways will en-
rich our knowledge on evolution of sesquiterpene biosynthetic
pathways and provide valuable data for safe use and further
exploration of food, oil, and vegetable crops in the Malvaceae
and related families.
There are two lines of evidence that support a tight regulation

of the gossypol biosynthetic pathway. First, although not clus-
tered in the genome as frequently observed with other special-
ized pathways (3, 6, 18, 30), genes of all six enzymes characterized
show highly similar expression patterns. This raises the possibility
that all these genes are regulated by a common transcription
factor complex, as seen from the MYB-bHLH-WD40 complex in
the anthocyanin biosynthetic pathway (40, 41). Second, products
of these gossypol pathway enzymes are mostly undetectable in

plant tissues unless the downstream enzyme genes are silenced,
suggesting a highly efficient conversion, which could be a result
of substrate channeling (42). For example, the monoterpene
indole alkaloid pathway in Catharanthus roseus involves a com-
plex and highly regulated biosynthesis in which the upstream
pathway enzymes are separated in different cellular compart-
ments to prevent inappropriate accumulation of highly reactive
strictosidine aglycone (43).
In addition to their function as phytoalexins in plants, gossypol

and related sesquiterpene aldehydes also show anticancer (44,
45), antimicrobial (46, 47), and spermicidal (48) activities. We
wonder whether the six intermediates identified here have sim-
ilar or novel biological activities. In particular, the structure of 8-
hydroxy-7-keto-δ-cadinene features an α, β-unsaturated ketone

Table 2. The evolution rates and Ka/Ks values of three homologous P450 gene pairs between G.
hirsutum and D. zibethinus

Gene name Genes in G. hirsutum Homologs in D. zibethinus Ka Ks Ka/Ks

CYP706B1_D Gh_D03G1513 XM_022882367.1 0.1271 0.4514 0.2816
CYP706B1_A Gh_A03G2006 XM_022882367.1 0.1253 0.4342 0.2886
CYP82D113_D Gh_D05G1894 XM_022910758.1 0.1093 0.5405 0.2022
CYP82D113_A Gh_A05G1705 XM_022910758.1 0.105 0.5382 0.1951
CYP71BE79_D Gh_D13G1407 XM_022861030.1 0.1201 0.9599 0.1251
CYP71BE79_A Gh_A13G1133 XM_022861030.1 0.1165 0.9398 0.124
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and an α-hydroxyl group next to the carbonyl, which may act as a
Michael acceptor for biological nucleophiles; the similar enone
group has been suggested as a general structural requirement for
optimal cytotoxicity of quassinoids, a group of degraded tri-
terpenes with promising antitumor and cytotoxic activity (49, 50),
suggesting that this intermediate may harbor interesting bi-
ological activities. Cloning of the enzymes makes it possible to
obtain these hidden natural products in large quantity for drug or
agrochemical screening.

Methods
Details about plant materials and growth conditions are described in SI Ap-
pendix, SI Materials and Methods. Gene expression, elicitation, plant trans-

formation, heterologous expression and purification of proteins, pathway
reconstitution in N. benthamiana leaves, pathogen infection, enzymes assays,
metabolites detection, and analysis were carried out according to protocols
described in SI Appendix, SI Materials and Methods.
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