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Abstract: Epithelial-to-mesenchymal transition (EMT) recapitulates metastasis and can be induced
in vitro through transforming growth factor (TGF)-β signaling. A role for MMP activity in glioblas-
toma multiforme has been ascribed to EMT, but the molecular crosstalk between TGF-β signaling and
membrane type 1 MMP (MT1-MMP) remains poorly understood. Here, the expression of common
EMT biomarkers, induced through TGF-β and the MT1-MMP inducer concanavalin A (ConA), was
explored using RNA-seq analysis and differential gene arrays in human U87 glioblastoma cells.
TGF-β triggered SNAIL and fibronectin expressions in 2D-adherent and 3D-spheroid U87 glioblas-
toma cell models. Those inductions were antagonized by the TGF-β receptor kinase inhibitor
galunisertib, the JAK/STAT inhibitors AG490 and tofacitinib, and by the diet-derived epigallocat-
echin gallate (EGCG). Transient gene silencing of MT1-MMP prevented the induction of SNAIL
by ConA and abrogated TGF-β-induced cell chemotaxis. Moreover, ConA induced STAT3 and Src
phosphorylation, suggesting these pathways to be involved in the MT1-MMP-mediated signaling
axis that led to SNAIL induction. Our findings highlight a new signaling axis linking MT1-MMP to
TGF-β-mediated EMT-like induction in glioblastoma cells, the process of which can be prevented by
the diet-derived EGCG.

Keywords: glioblastoma; MT1-MMP; EGCG; EMT; concanavalin A; SNAIL; STAT3

1. Introduction

One of the compelling reasons that makes it difficult to foresee brain cancer therapy
response relates to the adaptive metabolic mechanisms that regulate their chemoresis-
tance phenotype [1,2]. Among the therapy resistance mechanisms that regulate cancer
cell death/survival balance, the fundamental importance of epithelial-to-mesenchymal
transition (EMT) in metastasis and progression of cancer has been recognized [3]. Inter-
estingly, transforming growth factor (TGF)-β is a well-known contributor to EMT, and
TGF-β downstream signaling was found to be highly active in high-grade glioblastomas,
the most fatal tumor of the central nervous system, where elevated TGF-β activity was
associated with poor clinical outcome [4]. The tumor-promoting function of TGF-β is there-
fore a promising potential therapeutic target in high-grade gliomas, including glioblastoma
multiforme (GBM) [5].

Recent analysis of transcriptomic datasets about mesenchymal shift in GBM show
that, in terms of epithelial and mesenchymal phenotype, the majority of GBM appear to
have a transcriptomic profile that is more mesenchymal than epithelial [6]. If induced, this
phenotype can be shifted toward an even more mesenchymal phenotype in an EMT-like
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process in glioma cells [7]. A better understanding of the molecular regulation of the EMT
during tumor spreading will therefore help design better therapeutics to target this pro-
gram when treating GBM. Among the various signaling pathways associated with glioma
malignancy, TGF-β signaling is hypothesized to be directly involved in such molecular
mechanisms [8,9]. A comparative proteome mapping of the U87 human glioblastoma cell
line, with and without TGF-β treatment, identified numerous proteins involved in the
molecular mechanisms of GBM oncogenesis and TGF-β signaling [10]—among which, in-
creases in 512 proteins upon TGF-β treatment were associated with survival, proliferation,
cell migration, and DNA repair. Moreover, studies have reported that TGF-β is able to
induce metastatic processes and tumor progression via autocrine mechanisms [11,12].

TGF-β is a multifunctional cytokine that acts as a downstream signaling molecule
both in the early stages of tumorigenesis as a potential tumor suppressor [13] and then
as a tumor-promoting factor promoting EMT and tumor metastasis through Smad and
Smad-independent signaling pathways [14]. The activation of the classical Smad signaling
pathway occurs when TGF-β first binds to the extracellular segment of TGF receptor-type II
that leads to the phosphorylation of TGF receptor-type I. This then phosphorylates and
activates the downstream Smads for intracellular signaling [15]. Recently, dietary-derived
anthocyanidins have been shown to inhibit EMT through a TGFβ/Smad2 signaling path-
way in glioblastoma cells [16]. In addition, the suppressing effects of green tea extract
and epigallocatechin-3-gallate (EGCG) on TGF-β-induced EMT were reported in human
cervical cancer cells [17]. Whether the pleiotropic actions of dietary polyphenols also target
other EMT-mediated cues or downstream signaling pathways such as signal transducer
and activator of transcription 3 (STAT3) in EMT [18] remains unknown.

Among specific brain cancer biomarkers promoting invasion and metastasis and
characterized by both matrix metalloproteinase (MMP) catalytic functions and intracellu-
lar signaling properties, membrane type-1 matrix metalloproteinase (MT1-MMP), a key
membrane-bound MMP, is involved in extracellular matrix (ECM) degradation [19–21] and,
more recently, signal transducing functions leading to angiogenesis [22], autophagy [23,24],
inflammation [25,26], immune response [27], and cell death processes [28,29]. Interestingly,
type I collagen, a major MT1-MMP substrate in the ECM, is a powerful inducer of cell-
surface MT1-MMP expression through TGF-β–Smad signaling [26,30,31]. Moreover, EGCG
was found to inhibit MT1-MMP-mediated downstream signaling involving STAT3 [32,33].

In the current study, we investigated the possible crosstalk between TGF-β signaling
and MT1-MMP in the setting of EMT-like processes in an established U87 grade IV human
glioblastoma cell model. Our findings help better characterize the pleiotropic actions of
EGCG on processes regulating the invasive phenotype of brain cancer cells and on the
novel crosstalk between MT1-MMP and TGF-receptor-mediated signaling in EMT.

2. Results
2.1. SNAIL among the Common EMT Biomarkers Induced by Concanavalin A and TGF-β in U87
Glioblastoma Cells

Concanavalin A (ConA) has been demonstrated to trigger numerous signaling path-
ways in glioblastoma cells, which among other cellular processes, lead to pro-angiogenic and
pro-inflammatory events [34]. ConA has also been shown to require MT1-MMP-mediated
signaling to trigger U87 glioblastoma cell invasive phenotype [35]. Here, we wanted first
to assess whether ConA could also trigger epithelial-to-mesenchymal (EMT) biomarkers
expression and second to compare ConA to the classical EMT inducer TGF-β. We therefore
isolated total RNA from U87 glioblastoma cells treated with either vehicle, 10 nM TGF-β, or
30 µg/mL ConA, and performed RNA sequencing (RNA-seq) analysis to identify genes po-
tentially involved in ConA- and TGF-mediated response. A gene expression PCA plot map-
ping the distances between samples revealed major differences for two replicates (ConA3
and TGF4), which were then discarded from future analysis (Supplemental Figure S1).
Differentially expressed genes (DEGs) analysis between ConA-treated cells and untreated
cells and between TGF-treated cells and untreated cells was performed. Among the DEGs
identified in ConA-treated cells, SNAIL (ENSG00000124216) was found among the top
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10 most upregulated genes, with a ~10.5-fold change (p-value 8.03 × 10−13) (Figure 1A,
Supplemental Table S1). SNAIL was also upregulated in cells treated with TGF-β, with a
fold change of ~9.9 (p-value 4.45 × 10−10) (Figure 1B, Supplemental Table S2). Whereas
TGF-mediated transcriptional regulation of SNAIL in EMT is well recognized [36], the
mechanisms linking SNAIL regulation and ConA induction of EMT are less understood
and were further confirmed using a differential gene array approach. In agreement with
the RNA-seq analysis, SNAIL was also found among the most significantly upregulated
genes (Figure 1C).
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sentative experiment out of two. 

Figure 1. Concanavalin A- and TGF-β-mediated transcriptional control of SNAIL. Volcano plots of dif-
ferentially expressed genes (DEGs) between U87 glioblastoma cells treated or not with (A) 30 µg/mL
of concanavalin A (ConA) for 24 h and (B) U87 glioblastoma cells treated or not with 10 nM TGF-β.
The adjusted p-value is shown on the y-axis and log2 fold change is plotted in the x-axis. Colored
points indicate genes called as DEGs at adjusted p-value ≤ 0.05, and the different colors indicate the
top upregulated or downregulated genes, according to the legend. Three replicates for untreated
cells, two replicates for ConA-treated cells and two replicates for TGF-β-treated cells. (C) Total RNA
was extracted from U87 glioblastoma cells treated or not with ConA, and RT-qPCR was performed
using a RT2-Profiler gene array to assess EMT gene expression levels. Ratios of ConA-induced gene
expression on vehicle-treated cells gene expression are expressed from one representative experiment
out of two.

2.2. U87-Derived Neurospheres Response to TGF-β Can Be Inhibited by EGCG

2D monolayer U87 glioblastoma cells were cultured into 3D spheroid-forming condi-
tions (neurospheres, Figure 2A), as these are known to be much closer to the tumor than
adherent cells and to recapitulate some cancer stem cell phenotype as well as including
increased expression of CD133, Nanog, and Sox2 (Figure 2B). Response to TGF-β was next
assessed similarly as in the monolayers condition, and EMT markers SNAIL and fibronectin
were found to be significantly increased, whereas the ribosomal protein SA (RPSA) expres-
sion remained unaltered (Figure 2C, grey bars). Interestingly, TGF-β-mediated inductions
of SNAIL and fibronectin were reduced by 30 µM EGCG (Figure 2C, black bars).
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Figure 2. U87-derived neurospheres response to TGF-β can be inhibited by EGCG. (A) U87 glioblas-
toma neurospheres were cultured as described in the Materials and Methods section, and represen-
tative phase contrast pictures were taken. Spheroids were treated or not with 10 nM TGF-β or in
combination with 30 µM EGCG for 18 h; total RNA extracted and RT-qPCR analyses were performed
to assess (B) cancer stemness and (C) EMT gene expression levels. Probability values of less than 0.05
were considered significant and an asterisk identifies such significance.

2.3. Galunisertib and EGCG Inhibit TGF-β- and Concanavalin A-Mediated SNAIL Induction

Given the ConA-mediated induction of SNAIL, and that SNAIL is a strong down-
stream biomarker also induced upon TGF-β treatment, we next explored whether any
common signaling crosstalk was involved between TGF-β-mediated signaling and the
effects of ConA. Serum-starved U87 glioblastoma cells were treated with increasing concen-
trations of TGF-β in the presence or absence of either 30 µM EGCG or 10 µM galunisertib,
a selective TGF-β receptor type I (TGF-βRI) kinase inhibitor [37]. The protein expression
levels of SNAIL, fibronectin, and GAPDH were then assessed by immunoblotting using cell
lysates. SNAIL was effectively induced upon TGF-β treatment and found to be inhibited
by EGCG and by galunisertib (Figure 3A, upper panel). While the expression of GAPDH
remained unaltered (Figure 3A, lower panel), that of fibronectin was also repressed by both
agents, suggesting the involvement of common signaling intermediates in the induction
of EMT biomarkers (Figure 3A, middle panel). In agreement with its increased transcript
levels (Figure 1), SNAIL was also found induced by ConA, but it was inhibited in the
presence of either EGCG or galunisertib (Figure 3B). Finally, total RNA was extracted from
treated cells, and RT-qPCR was performed as described in the Materials and Methods
section. SNAIL induction was again confirmed in TGF-β- and ConA-treated cells at the
transcript level, whereas it was inhibited in both cases by galunisertib (Figure 3C). On the
other hand, EGCG was unable to inhibit ConA-induced SNAIL gene expression, whereas
it inhibited SNAIL induction in TGF-β-treated cells (Figure 3C).
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Figure 3. SNAIL induction by concanavalin A involves a TGF-β receptor-mediated signaling axis
component. (A) Serum starved U87 glioblastoma cells were treated with increasing concentrations of
TGF-β in the presence or not of 30 µM EGCG, or 10 µM galunisertib for 24 h. SNAIL, fibronectin and
GAPDH protein expression were then assessed by immunoblotting using the respective cell lysates.
(B) Serum-starved U87 glioblastoma cells were treated with 30 µg/mL of concanavalin A (ConA)
for 24 h in the presence or not of 30 µM EGCG or 10 µM galunisertib (Galu) for 24 h. SNAIL and
GAPDH protein expression were then assessed by immunoblotting using the respective cell lysates.
(C) Total RNA was extracted from treated cells, and RT-qPCR was performed to assess SNAIL gene
expression as described in the Materials and Methods section. Data are means ± SD from three
independent experiments. Probability values of less than 0.05 were considered significant and an
asterisk identifies such significance.

2.4. MT1-MMP Silencing Represses TGF-β- and Concanavalin A-Mediated Induction of SNAIL

SiRNA-mediated gene silencing was performed in U87 glioblastoma cells transiently
transfected with siScrambled, siSNAIL, or siMT1-MMP, as described in the Materials and
Methods section. Serum-starved cells were next treated with 10 nM TGF-β or 30 µM
ConA for 24 h and conditioned media harvested to assess proMMP-2 activation status
by gelatin zymography. MT1-MMP silencing was confirmed, as both ConA-mediated
proMMP-2 activation and MT1-MMP proteolytic hinge domain formation were abrogated
(Figure 4A). SNAIL silencing efficacy was also confirmed, as neither TGF-β nor ConA
were able to upregulate its expression (Figure 4A). Total RNA was extracted from the
respective conditions and RT-qPCR was performed to monitor MT1-MMP and SNAIL gene
expression levels. We observed that, in cells where MT1-MMP was silenced, neither TGF-β
nor ConA were able to induce SNAIL (Figure 4B, right panel), whereas in cells that were
silenced for SNAIL, MT1-MMP transcript levels remained unaltered upon TGF-β or ConA
treatments (Figure 4B, left panel).
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Figure 4. MT1-MMP silencing represses TGF-β- and concanavalin A-mediated induction of SNAIL.
Transient siRNA-mediated gene silencing was performed in U87 glioblastoma cells transfected
with siScrambled, siSNAIL, and siMT1-MMP. Serum-starved cells were next treated with 10 nM
TGF-β or 30 µM ConA for 24 h. (A) The conditioned media were harvested and subjected to
gelatin zymography to assess proMMP-2 activation into MMP-2, whereas cell lysates were subjected
to immunoblotting of SNAIL and MT1-MMP catalytic and hinge forms for protein expression.
(B) Total RNA was also extracted from the respective above conditions, and RT-qPCR was performed
to monitor MT1-MMP and SNAIL gene expression. Data are means ± SD from three independent
experiments. Probability values of less than 0.05 were considered significant and an asterisk identifies
such significance.

2.5. Concanavalin A and TGF-β Trigger Common Signaling Pathways

As both TGF-β and ConA appear to upregulate SNAIL expression, we next investigated
whether TGF-β-mediated signaling pathways were also involved in ConA induction of
SNAIL. U87 glioblastoma cells were therefore treated with TGF-β or ConA for various time-
courses, and cell protein lysates were harvested. Long time-course (0–120 min) was per-
formed to monitor Smad2, Smad3, and STAT3 protein phosphorylation status (Figure 5A),
whereas a shorter time-course (0–10 min) was performed in order to monitor Src phos-
phorylation status (Figure 5B). Scanning densitometric analysis of representative Western
blots revealed transient increases in Smad2/3 and STAT3 phosphorylation upon TGF-β
treatment peaking between 15 and 30 min, whereas no increases in Src phosphorylation
were found (Figure 5C). On the other hand, in ConA-treated cells, no evidence of Smad2
phosphorylation was found, and only slight increases in Smad3 phosphorylation were
observed, whereas significant sustained phosphorylation of STAT3, as well as transient Src
phosphorylation, was found (Figure 5D).
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Figure 5. Concanavalin A and TGF-β share common signaling axis. U87 glioblastoma cells were treated with 10 nM TGF-β
or 30 µM ConA for the indicated times, and cell protein lysates were harvested. Long time-course was performed from 0 to
120 min in (A) to monitor Smad2, Smad3, and STAT3 protein status, whereas a short time-course was performed from 0 to
10 min in (B) to monitor Src phosphorylation status. Scanning densitometric analysis was performed of a representative
experiment for (C) TGF-β treatment and (D) concanavalin A treatment.

2.6. Evidence for MT1-MMP and SNAIL Involvement in the Chemotactic Response to TGF-β in
U87 Glioblastoma Cells

We next wished to elucidate the potential crosstalk between TGF-β receptor-mediated
signaling and that of ConA-induced MT1-MMP. Gene silencing was thus performed in U87
glioblastoma cells transiently transfected with siScrambled, siSNAIL, and siMT1-MMP
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siRNAs, and cell chemotaxis was assessed in unstimulated (vehicle) or in response to
TGF-β as described in the Materials and Methods section. Chemotaxis was significantly
induced in response to TGF-β in siScrambled-transfected cells (Figure 6A, left panel). In
contrast, silencing of either MT1-MMP or SNAIL abrogated the chemotactic response to
TGF-β (Figure 6A, middle and right panels). Whether MT1-MMP silencing abrogated
the phosphorylation status of those TGF-β-signaling intermediates examined above was
next explored. The global phosphorylation status of Smad2/3 and of STAT3 were signifi-
cantly reduced in cells where MT1-MMP was silenced (Figure 6B). This suggests that an
MT1-MMP-mediated signaling crosstalk exists with TGF-β-receptor-mediated signaling.
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Figure 6. Evidence for MT1-MMP and SNAIL involvement in the chemotactic response of U87 glioblastoma cells to TGF-β.
siRNA-mediated gene silencing was performed in U87 glioblastoma cells transiently transfected with siScrambled, siSNAIL,
and siMT1-MMP. (A) Cell chemotaxis was next assessed in unstimulated (vehicle, open circles) or in response to TGF-β
(closed circles) as described in the Materials and Methods section. (B) Cells where MT1-MMP was silenced (siMT1-MMP)
were treated with 10 nM TGF-β for 30 min, and cell protein lysates were harvested to monitor Smad2, Smad3, and STAT3
phosphorylation status.

2.7. Pharmacological Inhibition of the STAT3 Signaling Pathway Abrogates the Chemotactic
Response to TGF-β

Given the above evidence that STAT3 may link MT1-MMP signaling to that of TGF-β,
and that SNAIL appeared to be a common intermediate in ConA and TGF-β responses, we
next assessed the impact of AG490 and of tofacitinib, two JAK/STAT3 inhibitors [38,39],
as well as of EGCG [32,40] on the TGF-β-induced chemotactic response. U87 glioblastoma



Int. J. Mol. Sci. 2021, 22, 13006 9 of 17

cells migration was found induced with TGF-β (Figure 7A; vehicle condition), whereas
pharmacological inhibitors of STAT3, including AG490, tofacitinib, and EGCG, collectively
prevented that increase. Such reduced chemotactic response is in part explained through
the reduced phosphorylation status of STAT3 in both TGF-β- and ConA-stimulated cells
(Figure 7B), as well as of Src in ConA-stimulated cells (Figure 7C). Furthermore, alternative
cell migration (wound healing) assay was performed and confirmed that both galunisertib
and EGCG abrogated TGF-β-mediated healing (data not shown).
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Figure 7. Pharmacological inhibition of the STAT3 signaling pathway abrogates the chemotactic
response to TGF-β. (A) U87 glioblastoma cell chemotaxis was assessed in the presence of 10 nM
TGF-β, in the presence or not of 30 µM EGCG (left panel, vehicle ethanol), or tofacitinib, AG490
(right panel, vehicle DMSO). (B) Cells were treated for 30 min with 10 nM TGF-β or 30 µM ConA,
and cell protein lysates were harvested to monitor Smad2, Smad3, and STAT3 phosphorylated status.
(C) Cells were treated for 5 min with 30 µM ConA, and cell protein lysates were harvested to monitor
Src phosphorylated status.

3. Discussion

Epithelial-to-mesenchymal transition (EMT) is a mechanism associated with tumor
progression, invasion, and metastasis, in which polar epithelial cells eventually transfer
to mesenchymal phenotype cells [41]. Accordingly, sustained elevation of SNAIL was
found to promote glial–mesenchymal transition after irradiation in malignant glioma [42].
However, although EMT may be a common pattern in glioma progression, the therapeutic
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interventions affecting the occurrence and magnitude of EMT during the clinical course
of GBM still remains a constant challenge [43,44], as the microenvironment that induces
EMT in gliomas is characterized by hypoxia and the enrichment of myeloid cells following
stimulation by TGF-β [45]. Meanwhile, there is a transformation process similar to EMT
during the progress of GBM, which is called EMT-like process [6,7]. EMT-like process
mainly represents the decrease in epithelial markers such as E-cadherin and the increase in
interstitial markers such as N-cadherin and vimentin. Studies thus far demonstrate that
the overexpression of a “mesenchymal” gene expression signature is related to the poor
prognosis of glioma patients, indicating that the EMT-like process is closely related to the
invasive phenotype of GBM [6].

It has been previously reported that TGF-β levels are high in the blood serum and
tumor tissue of patients with malignant glioma and that this level was correlated with
the type of malignancy, the tumor developmental stage, and the patient prognosis [10].
Here, we show that a crosstalk between MT1-MMP and TGF-β-receptor signaling regulates
TGF-β-mediated EMT-like induction of SNAIL expression and chemotactic response in
a model of GBM through, in part, STAT3. Moreover, the oncogenic contribution of MT1-
MMP in GBM invasion is not only strictly controlled through the extent of its expression
levels but also controlled through its signal transducing capacity [46–48]. In addition to
initiating carcinoma cell invasion, TGF-β-induced EMT-like process can also guide cancer
cells to then de-differentiate and gain cancer stem cell-like properties. EMT also allows
the generation of stromal cells that support and instruct cancer progression. As such, it
is inferred that EMT, cancer stem cells (CSCs), and drug resistance form the lethal “three
combinations” and become the main barrier for glioma to be cured. Here, we show that 3D
neurospheres exhibited the CSC phenotype and were responsive to TGF-β-induced EMT
signaling, and that this was inhibited by EGCG (Figure 2). The inhibition of EMT may thus
prevent invasion and metastasis of tumor cells, reduce CSCs, and overcome drug resistance.
Accordingly, acquisition of EMT has been documented in CSC, and phytochemicals; in
particular curcumin, EGCG, sulforaphane, resveratrol, and genistein have been shown to
interfere with intrinsic CSC pathways in vitro and in human xenograft mice, leading to
elimination of CSC [49].

During the EMT process, malignant cells start to intravasate into the surrounding
blood vessels in order to migrate to other parts of the body. To accomplish this process,
the ECM and basement membrane of blood vessels have to be degraded by MMPs [50].
Whereas the most relevant MMPs in this invasive process are MMP-2 and MMP-9 [51],
SNAIL was found to induce MMP-9 expression, and EMT was found to be necessary for
intravasation of lymph vessels in GBM and other cancers [52]. EMT has been shown to
cooperate with MMP activity in GBM, allowing cells to gain access to lymph vessels. Prelim-
inary data suggest this new EMT-associated drug target, in combination with stereotactic
radiosurgery, may provide a potential rationale for future treatments [53]. Moreover, recent
evidence supports such crosstalk, as TGF-β facilitated MT1-MMP-mediated proMMP-9
activation and invasion in an oral squamous cell carcinoma cell model [54]. Moreover,
MT1-MMP-mediated proprotein maturation of TGF-β1, accelerating the release of free
TGF-β1 in type II airway epithelial cells A549, and was found to induce EMT [55].

TGF-β activates the JAK/STAT pathway via the induction of leukemia inhibitory
factor (LIF) secretion acting through an autocrine/paracrine loop [56]. After binding of
LIF to its cell surface receptor LIFR, heterodimerization with another transmembrane
protein, glycoprotein-130 (gp130), occurs, followed by recruitment of JAK and STAT3
via Src-homology-2 (SH2) domains in the LIFR-gp130 heterodimer. STAT3 can induce
the expression of Sox2 stimulating self-renewal capacity and stemness in glioma-derived
CSCs [4]. JAK/STAT3 signaling was also found to be required for TGF-β-induced EMT in
lung cancer cells [57]. Intriguingly, and although TGF-β-mediated signaling was found
active in our U87 glioblastoma cell model, no significant phosphorylation of Src was
observed in our hands, which contrasts with other reports and suggests cell type-specific
signaling [58].
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4. Materials and Methods
4.1. Materials

Sodium dodecylsulfate (SDS), epigallocatechin-3-gallate (EGCG), tofacitinib, AG490, and
bovine serum albumin (BSA) were purchased from Sigma (Oakville, ON, Canada). Elec-
trophoresis reagents were from Bio-Rad (Mississauga, ON, Canada). The enhanced chemilumi-
nescence (ECL) reagents were from Amersham Pharmacia Biotech (Baie d’Urfé, QC, Canada).
Micro bicinchoninic acid protein assay reagents were purchased from Pierce (Rockford, IL, USA).
Galunisertib (LY2157299) was from MedChemExpress (Monmouth Junction, NJ, USA). The
polyclonal antibody against the MT1-MMP hinge domain was from Chemicon
(Temecula, CA, USA). The polyclonal antibodies against SNAIL, fibronectin, Smad2/3,
phosphorylated Smad2/3, Src, phosphorylated Src, STAT3, and phosphorylated STAT3
were obtained from Cell Signaling Technology Inc. (Danvers, MA, USA). Horseradish
peroxidase-conjugated donkey anti-rabbit and anti-mouse IgG secondary antibodies were
obtained from Jackson ImmunoResearch Laboratories (West Grove, PA, USA). The mon-
oclonal antibody against glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was
from Advanced Immunochemical Inc. (Long Beach, CA, USA). Horseradish peroxidase-
conjugated donkey anti-rabbit and anti-mouse IgG secondary antibodies were from Jackson
ImmunoResearch Laboratories (West Grove, PA, USA).

4.2. Cell Culture

Human U87 glioblastoma cells were purchased from American Type Culture Collec-
tion (ATCC; Manassas, VA, USA). Serum starvation was performed by culturing the cells
in Eagle’s minimal essential medium (EMEM; Gibco BRL, Grand Island, NY, USA) and
100 units/mL penicillin/streptomycin, and from which the 10% inactivated fetal bovine
serum (Hyclone Laboratories, Logan, UT, USA) was removed. Spheroids formation was
carried out in low adhesion 24-well plates (Corning Costar, Corning, NY, USA) and incu-
bated for 3 days before quantification. Spheroids were defined as rounded aggregates of
cells with a smooth surface and poor cell-to-cell definition.

4.3. Immunoblotting Procedures

Human U87 glioblastoma cells were lysed, and proteins were separated by SDS–
polyacrylamide gel electrophoresis (PAGE). In order to detect MT1-MMP proteolytic pro-
cessing, samples were subjected to SDS-PAGE gels under reducing conditions.
After electrophoresis, proteins (30 µg) were electrotransferred to polyvinylidene difluoride
membranes, which were then blocked for one hour at room temperature with 5% non-fat
dry milk in Tris-buffered saline (150 mM NaCl, 20 mM Tris-HCl, pH 7.5) containing 0.3%
Tween-20 (TBST; Bioshop, TWN510-500, Burlington, ON, Canada). Membranes were fur-
ther washed in TBST and incubated with the primary antibodies (1/1000 dilution) in TBST
containing 3% BSA and 0.1% sodium azide (Sigma-Aldrich, Oakville, ON, Canada, S2002), fol-
lowed by a one-hour incubation with horseradish peroxidase-conjugated donkey anti-rabbit
IgG at 1/2500 dilutions in TBST containing 5% nonfat dry milk. Immunoreactive material
was visualized by enhanced chemiluminescence (Amersham Pharmacia Biotech, RPN3004).

4.4. Gelatin Zymography

Gelatin zymography was used to assess the extracellular levels and activation states
of secreted proMMP-2 and MMP-2 activities. Briefly, an aliquot (20 µL) of the culture
medium was subjected to SDS-PAGE in a gel containing 0.1 mg/mL gelatin (Sigma-Aldrich,
Oakville, ON, Canada, G2625). The gels were then incubated in 2.5% Triton X-100 (Bioshop,
TRX506.500) and rinsed in nanopure distilled water. Gels were further incubated at 37 ◦C
for 20 h in 20 mM NaCl, 5 mM CaCl2, 0.02% Brij-35, and 50 mM Tris–HCl buffer, pH 7.6, and
then stained with 0.1% Coomassie Brilliant blue R-250 (Bioshop, CBB250) and destained in
10% acetic acid, 30% methanol in water. Gelatinolytic activity was detected as unstained
bands on a blue background.
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4.5. Total RNA Isolation, cDNA Synthesis, and Real-Time Quantitative PCR

Total RNA was extracted from 107 human U87 glioblastoma cell monolayers in 1 mL
TRIzol™ as recommended by the manufacturer (Life Technologies, Gaithersburg, MD,
USA). For cDNA synthesis, one µg of total RNA was reverse-transcribed into cDNA
using a high-capacity cDNA reverse transcription kit (Applied Biosystems, Foster City,
CA, USA). Gene expression was quantified by real-time quantitative PCR using iQ SYBR
Green Supermix (BIO-RAD, Hercules, CA, USA). DNA amplification was carried out
using an Icycler iQ5 (BIO-RAD, Hercules, CA, USA), and product detection was per-
formed by measuring binding of the fluorescent dye SYBR Green I to double-stranded
DNA. The following primer sets were provided by QIAGEN (Valencia, CA, USA): MT1-
MMP (HS_MMP14_1_SG, QT00001533), SNAIL (Hs_SNAI1_1_SG, QT00010010), RPSA
(Hs_RPSA_1_SG, QT00044310), CD133 (Hs_PROM1_1_SG, QT00075586), NANOG
(Hs_NANOG_2_SG, QT01844808), SOX2 (Hs_SOX2_1_SG, QT00237601), PPIA (Hs_PPIA_4_SG,
QT01866137), GAPDH (Hs_GAPDH_1_SG, QT00079247), and β-Actin (Hs_Actb_2_SG,
QT01680476). The relative quantities of target gene mRNA were normalized against in-
ternal PPIA, GAPDH, and β-actin RNA and were measured by following a ∆CT method
employing an amplification plot (fluorescence signal vs. cycle number). The difference
(∆CT) between the mean values in the triplicate samples of target gene and those of β-actin
RNA was calculated by CFX manager Software version 2.1 (Bio-Rad) and the relative
quantified value (RQV) was expressed as 2−∆CT .

4.6. Total RNA Library Preparation and Sequencing

Total RNA (500 ng) was used for library preparation. RNA quality control was
assessed with the Bioanalyzer RNA 6000 Nano assay on the 2100 Bioanalyzer system
(Agilent technologies), and all samples had a RIN above 8. Library preparation was carried
out with the KAPA mRNAseq Hyperprep kit (KAPA, Cat no. KK8581). Ligation was made
with Illumina dual-index UMI (IDT), and 10 PCR cycles were required to amplify cDNA
libraries. Libraries were quantified by QuBit and BioAnalyzer DNA1000. All libraries were
diluted to 10 nM and normalized by qPCR using the KAPA library quantification kit (KAPA;
Cat no. KK4973). Libraries were pooled to equimolar concentrations. Three biological
replicates were generated. Sequencing was performed with the Illumina Nextseq500
using the Nextseq High Output 75 (1 × 75 bp) cycles kit. Around 15–20 M single-end PF
reads were generated per sample. Library preparation and sequencing was performed
at the Genomic Platform of the Institute for Research in Immunology and Cancer (IRIC)
(Montreal, QC, Canada).

4.7. Reads Alignment and Differential Expression Analysis

Reads were 3′ trimmed for quality and adapter sequences using Trimmomatic version
0.35, and only reads with at least 50 bp in length were kept for further analyses. Trimmed
reads were aligned to the reference human genome version GRCh38 (gene annotation
from Gencode version 37, based on Ensembl 103) using STAR version 2.7.1a [59]. Gene
expressions were obtained both as read count directly from STAR as well as computed
using RNA-Seq by Expectation Maximization (RSEM) [60] in order to obtain normalized
gene and transcript-level expression, in TPM values, for these stranded RNA libraries.
Differential expression analysis was performed using DESeq2 version 1.22.2 [61]. The
Package limma [62] was used to normalize expression data, and read counts data were ana-
lyzed using DESeq2. Principal component analysis (PCA) for the first two most significant
components was conducted with R packages [63] found in iDEP (integrated Differential
Expression and Pathway) analysis [64]. iDEP was also used to determine significant dif-
ferentially expressed genes (DEGs) with DESeq2 with FDR adjusted p-value of 0.05 and
fold-change with a cutoff of two.
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4.8. Human EMT PCR Array

The RT2 ProfilerTM PCR Array for human epithelial-to-mesenchymal transition (EMT)
(PAHS-090Z) was used according to the manufacturer’s protocol (QIAGEN). The detailed list
of the key genes assessed can be found on the manufacturer’s website (https://geneglobe.
qiagen.com/us/product-groups/rt2-profiler-pcr-arrays (accessed on 14 October 2021)).
Using real-time quantitative PCR, we reliably analyzed expression of a focused panel
of genes related to EMT biomarkers. Relative gene expressions were calculated using
the 2−∆∆CT method, in which CT indicates the fractional cycle number where the fluo-
rescent signal reaches detection threshold. The “delta–delta” method uses the normal-
ized ∆CT value of each sample, calculated using five endogenous control genes (B2M,
HPRT1, RPL13A, GAPDH, and ACTB). Fold change values are then presented as aver-
age fold change = 2 (average ∆∆CT ) for genes in differentiated adipocytes relative to pre-
adipocytes. Detectable PCR products were obtained and defined as requiring <35 cycles.
The resulting raw data were then analyzed using the PCR Array Data Analysis Template
(http://www.sabiosciences.com/pcrarraydataanalysis.php (accessed on 14 October 2021)).
This integrated web-based software package automatically performs all ∆∆CT based fold-
change calculations from the uploaded raw threshold cycle data.

4.9. RNA Interference

U87 glioblastoma cells were transiently transfected with siRNA sequences using
Lipofectamine-2000 transfection reagent (Thermo Fisher Scientific, Waltham, MA, USA).
Gene silencing was performed using 20 nM siRNA against MT1-MMP (HS_Mmp14_6 HP
siRNA, S103648841), SNAIL (Hs_SNAI1_5 HP siRNA, SI02636424), or scrambled sequences
(AllStar Negative Control siRNA, 1027281). The above small interfering RNA and mismatch
siRNA were all synthesized by QIAGEN and annealed to form duplexes.

4.10. Statistical Data Analysis

Data are representative of three or more independent experiments. Statistical signif-
icance was assessed using Student’s unpaired t-test. Probability values of less than 0.05
were considered significant and an asterisk identifies such significance in the figures.

5. Conclusions

In summary, a cooperative signal transducing role for MT1-MMP was previously
documented to take part in the transcriptional control of inflammasome-related genes [25],
autophagy [24], and COX-2 induction [35]. Here, we now provide the first evidence for a
cooperative crosstalk linking TGF-β receptor-mediated signaling to that of MT1-MMP, both
activities of which have also been occurring in CSC [65–67]. It becomes tempting to suggest
that TGF-β signaling may connect with some CSC phenotype in GBM, as CSCs represent a
subset of GBM cells thought to be responsible for tumor initiation, progression, and relapse
of disease [68]. Following the current crosstalk of TGF-β signaling and the underlying
mechanisms identified here linking MT1-MMP, the promise of TGF-β targeted therapy or
chemopreventive approaches, such as through diet-derived EGCG in malignant gliomas,
is appealing (Figure 8). Several drugs targeting TGF-β signaling have been developed
that have shown potent antitumor activity in preclinical models. A number of agents are
currently being evaluated in early clinical studies in glioma patients, with the promise of
TGF-β-targeted therapy. Here, we further provide evidence for such a chemopreventive
diet-derived intervention that could be achieved through EGCG.

https://geneglobe.qiagen.com/us/product-groups/rt2-profiler-pcr-arrays
https://geneglobe.qiagen.com/us/product-groups/rt2-profiler-pcr-arrays
http://www.sabiosciences.com/pcrarraydataanalysis.php
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ConA Concanavalin A
CSC Cancer stem cells
DEG Differentially expressed genes
EMT Epithelial-to-mesenchymal transition
ECM Extracellular matrix
EGCG Epigallocatechin gallate
GBM Glioblastoma multiforme
LIF Leukemia inhibitory factor
MMP Matrix metalloproteinase
MT1-MMP Membrane type-1 matrix metalloproteinase
STAT3 Signal transducer and activator of transcription 3
TGF Transforming growth factor
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