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Abstract

Background: Brain morphometry is extensively used in cross-sectional studies. However, the difference in the
estimated values of the morphometric measures between patients and healthy subjects may be small and hence
overshadowed by the scanner-related variability, especially with multicentre and longitudinal studies. It is important
therefore to investigate the variability and reliability of morphometric measurements between different scanners
and different sessions of the same scanner.

Methods: We assessed the variability and reliability for the grey matter, white matter, cerebrospinal fluid and
cerebral hemisphere volumes as well as the global sulcal index, sulcal surface and mean geodesic depth using
Brainvisa. We used datasets obtained across multiple MR scanners at 1.5 T and 3 T from the same groups of 13
and 11 healthy volunteers, respectively. For each morphometric measure, we conducted ANOVA analysis and
verified whether the estimated values were significantly different across different scanners or different sessions of
the same scanner. The between-centre and between-visit reliabilities were estimated from their contribution to the
total variance, using a random-effects ANOVA model. To estimate the main processes responsible for low reliability,
the results of brain segmentation were compared to those obtained using FAST within FSL.

Results: In a considerable number of cases, the main effects of both centre and visit factors were found to be
significant. Moreover, both between-centre and between-visit reliabilities ranged from poor to excellent for most
morphometric measures. A comparison between segmentation using Brainvisa and FAST revealed that FAST
improved the reliabilities for most cases, suggesting that morphometry could benefit from improving the bias
correction. However, the results were still significantly different across different scanners or different visits.

Conclusions: Our results confirm that for morphometry analysis with the current version of Brainvisa using data
from multicentre or longitudinal studies, the scanner-related variability must be taken into account and where
possible should be corrected for. We also suggest providing some flexibility to Brainvisa for a step-by-step analysis
of the robustness of this package in terms of reproducibility of the results by allowing the bias corrected images to
be imported from other packages and bias correction step be skipped, for example.
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Background
Brain morphometry has proven to be a powerful tool in
identifying biomarkers of many neurological and psychia-
tric disorders. Several studies have investigated the link
between the changes in the brain morphology and certain
diseases or disorders such as Alzheimer’s disease, schizo-
phrenia, Autism, Epilepsy, and Bipolar disorder [1-6].
One of the popular software packages for brain mor-

phometry is Brainvisa [7]. In addition to the most com-
mon morphometry metrics, this program allows a
sulcus-based morphometry. This is possible using the
automatic sulci recognition feature of the program
which automatically identifies the sulci of each indivi-
dual brain. Sulcal parameters such as volume, depth,
location, and pattern can then be computed for each
sulcus. Exploring the sulcal parameters provides valuable
information as it has been shown that changes in such
parameters can be associated with pathology [5,8].
Brainvisa has been used for cortical morphometry and

the abnormality-related changes in parameters such as
sulcal mean depth and surface for patients with cerebral
autosomal dominant arteriolopathy with subcortical
infarcts and leukoencephalopathy (CADASIL) [9]. It has
also been used to show the decrease in average cortical
thickness and sulcal span with normal aging [10]. More-
over, decreased global sulcal index (GSI), the ratio
between the folded surface and the unfolded surface of
the cortex, has been reported for schizophrenic patients
with auditory hallucinations as well as patients with
bipolar disorder and unipolar depression [11-13].
Nonetheless, the reliability of the brain morphometry

is a major issue in cross-sectional studies (evaluation of
the differences between normal and abnormal brains),
where the abnormality-related variation may be small
and dominated by the low measurement reliabilities.
Scanner-related factors can complicate the cross-sec-

tional studies where both between-group variability and
within-group variability (due to inter-individual variabil-
ity in brain anatomy) already exist. Scanner instability
and variations over time may result in bias in the
derived morphometric measures as already shown for
functional MRI and should be taken into account espe-
cially in longitudinal studies such as normal brain aging
[14]. Furthermore, there has been a growing interest in
multicentre studies as they provide the researchers with
larger datasets by pooling data from different sites and
hence improve the statistical power [15,16]. Neverthe-
less, multicentre studies may introduce a between-centre
variance component which can overshadow small
between-group (patients vs. normal subjects) variances.
Consequently it is essential to verify the effect of scan-
ner-related factors (either within-centre or between-cen-
tre) on the estimated values for the morphological
parameters.

While a considerable amount of studies on the scan-
ner-related variability have focused on functional MRI
[17-19], a number of similar studies concerning struc-
tural MRI have also been reported. Using their pre-
viously developed algorithm, Schnack et al. studied the
variability of brain tissue segmentation for data acquired
from multiple centres, different manufacturers and
under different acquisition protocols [20,21]. Han et al.
looked into the effects of scanner-related factors such as
field strength, scanner manufacturer, upgrade, and pulse
sequence as well as data processing factors on the corti-
cal thickness measurement using FreeSurfer [22,23].
Moorhead et al. investigated both within-scanner and
between-scanner variability in the segmentation of grey
and white matters using SPM5 [24,25]. Suckling et al.
studied both within-centre and between-centre variabil-
ity in the distribution of grey matter using FSL with the
aim of power calculation for two-group, cross-sectional
study designs [26,27]. The above studies have considered
some of the currently used morphometric measures,
however there has been no similar reports for the auto-
matically computed sulcal attributes despite being used
in morphometry analysis. More research regarding such
measures still needs to be carried out.
In addition, the measurement process introduces

another source of variance which may vary among dif-
ferent packages. Thus, the reliability also depends on
the measurement method and the package used for the
analysis. Nonetheless, a study on the assessment of mor-
phometry with Brainvisa has not been reported yet. This
paper presents a comprehensive study on the assessment
of reliability and robustness of morphometry using
Brainvisa against the scanner-related variability, whilst
also investigating the possible causes which reduce the
reliability. Our aim in this study has been twofold: 1)
assessment of viability of multicentre and longitudinal
studies using Brainvisa and 2) investigating the robust-
ness and reproducibility of morphometry with Brainvisa
using repeated scans (both between- and within-centre)
of the same subjects.
To cover the most commonly used morphological para-

meters, we estimated brain tissue volumes and GSI as well
as the sulcal attributes. For sulcal attributes, the assess-
ments were performed independently with each of the
four recognition algorithms provided in Brainvisa, as they
produce slightly different results. The above-mentioned
choice of parameters is also useful in the assessment of
the reliability associated with each particular pre-proces-
sing step within Brainvisa. To further investigate the possi-
ble causes which could have an impact on the reliability,
brain segmentation was repeated using FSL and the results
were compared to those obtained with Brainvisa.
Moreover, to verify the performance of Brainvisa in

different field strengths (and hence various degrees of
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signal to noise ratio) we used two separate groups of
data acquired with 1.5 T and 3 T scanners and investi-
gated the variability and the reliability within each
group.

Methods
Data
The retrospective data we used in this study included
two sets of 3D T1-weighted MR scans, pooled from 1.5
T and 3 T scanners of CaliBrain (funded by a Chief
Scientist Office -Scotland Project Grant: CZB/4/427)
and Neuro/Psygrid projects, respectively [28,29]. Both
datasets had been obtained from healthy individuals
with no history of head injury, psychiatric or neurologi-
cal disorder. Two subjects (one from the CaliBrain data-
set and one from the Neuro/Psygrid dataset) with
incomplete data (i.e. repeated scans at all centres) were
excluded from the study. The study was approved and
the permission to use the retrospective data was granted
by the West of Scotland Research Ethics Committee.
The CaliBrain project included MR scans from thirteen

healthy participants (ten male, mean age 36.3, age range
22-51 years). The subjects had been scanned twice at
three different sites: The Department of Radiology, Uni-
versity of Aberdeen; The Division of Psychiatry and The
SFC Brain Imaging Research Centre within The Centre
for Clinical Brain Sciences (CCBS) at The University of
Edinburgh; and The Institute of Neurological Sciences,
NHS Greater Glasgow South University Hospitals Divi-
sion. The T1-weighted scans were acquired using a 3D
inversion recovery-prepared fast gradient echo volume
sequence. All three 1.5 T scanners were manufactured by
General Electric (GE Healthcare, Milwaukee, Wisconsin).
For the Neuro/Psygrid project, eleven male, healthy

volunteers (mean age 25, range 20-35 years) were
scanned twice at five centres: The Wolfson Brain Imaging
Centre (University of Cambridge), Magnetic Resonance
Imaging Facility (University of Manchester), the Institute
of Psychiatry (Kings College, London), the Department of

Clinical Neurosciences at the University of Edinburgh
and the Institute of Neurological Sciences in Glasgow,
and the Centre for Clinical Magnetic Resonance
Research, (University of Oxford). Of all the MR scanners,
two were manufactured by GE, two by Siemens, and one
by Philips. The 3D T1-weighted images were acquired
using the Magnetization Prepared Rapid Gradient Echo
(MP-RAGE) sequence [30]. Briefly, our whole dataset
consisted of two groups: the first group included thirteen
subjects scanned twice at three centres with 1.5 T scan-
ners (presented here as A, B, and C) and the second
group consisted of eleven subjects scanned twice at five
centres using 3 T scanners (presented here as D, E, F, G,
and H). The scanner type and manufacturer as well as
imaging parameters for the two groups of datasets are
given in tables 1 and 2. In all cases, the first and second
visits were performed using the same scanner. Only one
volume was acquired at each scanning session.

Data pre-processing
Pre-processing of the 3D T1 images was carried out
using the segmentation pipeline of Brainvisa (version
4.0) and included the following steps (also illustrated by
Figure 1): The 3D T1 image was corrected for the field
inhomogeneity (bias correction) so as to obtain more
uniform grey levels for all voxels with the same tissue
type [31]. Figure 1a shows a colour-coded representation
of the T1 image before (left) and following (right) the
bias correction. After this step, the image is ready for
histogram analysis which finds the peaks corresponding
to grey matter (GM), white matter (WM), and cere-
brospinal fluid (CSF) in the image histogram [32]. Then
a mask of brain was created using the information
derived from histogram analysis and by applying mor-
phological operations which removed skull and non-
brain tissues (Figure 1b). The two hemispheres and the
cerebellum were then separated (Figure 1c) and further
segmented into GM, WM, and CSF as pictured by
Figure 1d [33]. The union of GM and CSF (GM/CSF

Table 1 The scanners specifications and imaging parameters for the 1.5 T group

Centre A B C

MR scanner GE Signa NVi/CVi 1.5 T GE Signa LX 1.5 T GE Signa 1.5 T

Head coil 8-channel 8-channel 8-channel

Acceleration factor No No No

TR (ms) 5.9 8.9 5.9

TE (ms) 1.9 3.3 1.4

TI (ms) 600 600 600

Flip angle (°) 15 15 15

Image size (voxels) 256 × 256 × 124 256 × 256 × 124 256 × 256 × 125

Voxel size (mm3) 0.86 × 0.86 × 1.7 0.86 × 0.86 × 1.7 0.86 × 0.86 × 1.8

TR, TE, and TI represent Repetition Time, Echo Time, and Inversion Time, respectively.
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union) was found (Figure 1e) and then skeletonised (Fig-
ure 1f). The skeleton points connected to the outside
representing the brain hull were then removed. Figure
1g shows the remaining points of the skeleton on the
T1 image. Afterwards the skeleton was divided into sim-
ple surfaces, i.e. pieces of surfaces that do not contain
any junctions. Each simple surface represents a cortical
fold. Each simple surface was then split further to repre-
sent situations where a gyrus has been buried in the
bottom of the fold. The folds and their mutual relation-
ships were finally gathered in a graph [34]. Figure 1h

shows a schematic explanation of the possible relation-
ships between the related folds and how this informa-
tion is summarized in the graph. Three kinds of
relations exist: topological junction (rT), split induced
by a buried gyrus, called a “pli de passage”, (rP), and
neighbour geodesic to the brain hull (rC). Each node of
the graph (fold) is specified by certain attributes includ-
ing the links with other nodes. Figure 1h also exempli-
fies how the graph nodes (shown as SS for Simple
Surface) can be linked through any of the three possible
relationships. Several folds were then grouped to form

Table 2 The scanners specifications and imaging parameters for the 3 T group

Centre D E F G H

MR scanner GE 3 T HD GE 3 T HDx Siemens 3 T Tim Trio Siemens 3 T Tim Trio Philips 3 T Intera-Achieva

Head coil 8-channel 8-channel 8-channel 12-channel 8-channel

Acceleration factor No ASSET factor 2 No No SENSE factor 2

TR (ms) 6.5 7.0 9.0 9.4 8.2

TE (ms) 1.50 2.85 2.98 4.66 3.80

TI (ms) 500 650 900 900 885

Flip angle (°) 12 8 9 8 8

Image size (voxels) 260 × 260 × 160 260 × 260 × 160 256 × 256 × 160 256 × 256 × 160 256 × 256 × 160

Voxel size (mm3) 1.1 × 1.1 × 1 1.1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1

TR, TE, and TI represent Repetition Time, Echo Time, and Inversion Time, respectively.

Figure 1 Different steps of data pre-processing in Brainvisa. a) a colour-coded presentation of the raw (left) and bias corrected (right) T1-
weighted images b) the extracted brain overlaid on the T1 image c) the brain split into the right and left hemispheres as well as the
cerebellum d) each hemisphere segmented into GM, WM and CSF e) the union of GM and CSF f) the GM/CSF union following skeletonization g)
the skeleton surface on the T1-weighted image after removing the brain hull h) the three possible relations between neighbouring folds (top)
and a graph symbolizing the folds and their mutual relations (bottom) i) colour-coded presentation of the identified sulci. The figure does not
correspond to the data used in this study and is presented only for illustration purposes.
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each sulcus using prior information from the probabilis-
tic location of that sulcus. The process of sulci recogni-
tion is discussed in more detail in the next section.
Figure 1i displays a colour-coded presentation of the
recognized sulci on the reconstructed mesh of the brain
where each colour corresponds to a sulcus.
The outputs of bias correction, brain extraction and

split, and segmentation steps were visually examined and
were corrected by tuning the parameters and repeating
the process where necessary. In one or two cases, manual
corrections were used to produce reasonable results.

Sulci recognition
The folds gathered in the relational graph structure were
grouped together to form the sulci. The sulci recogni-
tion algorithm uses prior knowledge about the location
of each sulcus for labelling the folds. Sulci labelling with
Brainvisa is based on the sulcal root theory and returns
59 sulcal labels for each hemisphere [35].
For sulci recognition we used the Statistical Para-

metric Anatomy Map (SPAM) algorithm which uses a
probabilistic model as the a priori information for sulci
recognition. This probabilistic model returns the prob-
ability of presence of each sulcus at a given 3D position
[36,37]. There are four variations of the SPAM algo-
rithms: Talairach, Global, Local, and Markovian. The
Talairach method uses the probabilities of sulci loca-
tions in the Talairach space. However, as the sulci align-
ment of different subjects is not accurately achieved by
registering the brain to the Talairach atlas, the other
three algorithms use three approaches to improve
between-individual sulcal alignment. The Global
approach is based on iterative registration and labelling
of the cortical folds to the SPAM maps where the same
registration parameters are applied to the whole cortical
surface. The Local method which is performed following
a Global registration locally optimizes the registration
on a sulcus-by-sulcus basis; hence each sulcus has its
unique registration parameters. The Markovian algo-
rithm also follows the Global registration and uses the
information about the relations and distances between
neighbouring sulcal segments for labelling the sulci. It
should be noted that sulci recognition involves a virtual
registration to a template and the final results (including
sulcal parameters) are expressed in the native space.
For this study we employed all four algorithms inde-

pendently. This allowed us to estimate the sulcus-speci-
fic morphometric measures for each method and
compare the reliability obtained by each method.

Morphometry analysis
Using Brainvisa, the morphometric measures were cal-
culated for every scan of each subject. The measure-
ments were performed for each cerebral hemisphere

independently (Figure 1d). The morphometric measures
were either global (brain tissue volumes, and global sul-
cal index) or sulcal (parameters that were calculated for
each sulcus independently; i.e. sulcus surface and sulcus
mean geodesic depth).

Global parameters
Brain tissues volumes: Brain segmentation (Figure 1d)
was used to estimate the volumes of WM, GM, and CSF
for each hemisphere.
Global Sulcal Index (GSI): This is an estimation of the

cortex gyrification and is defined as the ratio between
the total area of all the cortical folds and the area of the
outer cortical surface (unfolded cortex).

Sulcal parameters
The following sulcal parameters were calculated for each
of the four SPAM algorithms separately:
Sulcus surface: Since the sulci are formed from the

skeleton segments (Figure 1g) which are only one voxel
thick, their volumes depend on the voxel size and orien-
tation. Instead, the surface area of the sulcus which is
not affected by voxel size provides a better estimate of
sulcus size. Therefore we used sulcus surface area as the
proxy for its volume.
Sulcus mean geodesic depth: The geodesic depth of

sulcus is defined as the geodesic distance (along the cor-
tical mesh) between the external line of the fold (on the
brain hull), and the bottom line of the sulcus.

Statistical analysis
For each morphometric measure, Analysis of Variance
(ANOVA) was conducted using Minitab 16 at the signif-
icance level of 0.05 to investigate whether the values
corresponding to different centres or different visits
were significantly different. Thus an effect was consid-
ered significant if the observed p-value under the null
hypothesis that the effect is non-significant was smaller
than 0.05. P-values were not adjusted for multiple test-
ing and therefore have to be considered as descriptive.
In order to take the between-subject difference into
account, a “subject” factor was included in the ANOVA
model. For the analysis of GM, WM, and CSF volumes
as well as GSI, the brain volume was also included as
covariate. For sulcal parameters, both brain volume and
GSI were included as covariates.
In addition to the significance of centre and visit fac-

tors, we evaluated the scanner-related reliability to
assess the influence of the variability on the ability to
distinguish between individuals. In other words, the
reliability gives an estimate of how close the values cal-
culated from different scans of the same subject are and
whether the between-centre or between-visit variability
is the dominant source of variation which overshadows
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the between-individual variability. For this purpose we
used a random effects ANOVA model and computed
the variance components from all sources of variability
across different centres and visits of each field strength
group. The reliability associated with each factor was
then calculated as the ratio of the variance excluding
the contribution from that factor to the total variance.

between − centre reliability =
Vtotal − Vcentre

Vtotal

between − visit reliability =
Vtotal − Vvisit

Vtotal

(1)

Where Vtotal is the total variance corresponding to all
sources of variability and is obtained from the sum of all
variance components, and Vcentre (or Vvisit) is the sum of
the variances associated with the centre (or visit) factor
and its interactions with other factors. The reliability
ranges from zero to one, representing cases where the
variance associated with the centre (or visit) factor is the
only source of variance or is negligible, respectively.

Segmentation with FSL vs. Brainvisa
In order to further explore the factors limiting the relia-
bility of Brainvisa morphometry we used FSL (version
4.1.4) and compared the results of the two packages.
Since bias correction and histogram analysis are the fun-
damental steps with great influence on the final results,
a comparison between the two packages in brain seg-
mentation (which is a direct result of these two steps)
can be helpful in the assessment of robustness of each
of these processes.
While it is usually suggested to use SIENA/SIENAX

tools within FSL for longitudinal or cross-sectional stu-
dies, these tools may introduce bias since they involve a
registration step. Consequently, we chose the FAST
algorithm (version 4.1) of FSL which employs a Hidden
Markovian Random Field model that for voxel classifica-
tion, takes the tissue type of its neighbouring voxels into
account, whilst also correcting for the bias field [38]. To
ensure that the comparison between the two packages
only concerns the segmentation process and not the
brain extraction, the same skull-stripped brain created
with Brainvisa was used and segmented using FAST.
Two metrics were used to compare the bias correction

of FAST and Brainvisa: the coefficient of variation within
each tissue type, and the WM/GM contrast. More robust
bias correction should result in smaller values for the
coefficient of variation (due to narrower histogram
peaks) and higher WM/GM contrast. Masks of all three
tissue types were applied to each bias corrected T1 image
(bias corrected with Brainvisa or FAST) and the coeffi-
cient of variation was calculated within each mask. To
avoid bias towards either of the two programs, each

tissue mask was defined as the intersection of the masks
obtained with FAST and Brainvisa. To estimate the WM/
GM contrast, the WM and GM peaks were computed
from the distribution of grey levels within the WM and
GM masks. The WM/GM contrast was then calculated
as the ratio between the WM and GM peaks. It should
be noted that this method of peak detection is different
and independent from peak detection with the histogram
analysis in Brainvisa.

Results
The distribution of the global parameters across all sub-
jects, visits, and centres are displayed in Figure 2. The
volumes of GM, WM, and CSF calculated by Brainvisa
and FAST have been shown. This figure also demon-
strates the GSI values. The values have been calculated
for each hemisphere independently and thus each value
corresponds to only one hemisphere. The numerical
presentation of segmentation results with Brainvisa and
FAST are also given in tables 3 and 4 for the 1.5 T and
3 T groups, respectively.
As Figure 2 and table 3 suggest, for the 1.5 T group

the distribution and the mean values are relatively con-
sistent between the two visits with both Brainvisa and
FAST. However, there is less consistency between cen-
tres and this inconsistency is more pronounced with
Brainvisa. More specifically, the values estimated for
centre B seem to considerably vary from those of the
other two centres.
For the 3 T group with both methods, the between-

visit consistency is less compared to the 1.5 T group
(compare to the statistical results given in table 5).
For both groups, on average, Brainvisa seems to be

classifying more voxels as WM compared to FAST. Fig-
ure 2 also shows that within the 1.5 T group, the GSI
values corresponding to the two visits to centre B are
less consistent compared to those for centres A or C.
This observation can also be confirmed from table 5
which shows that the interaction of centre and visit is
significant (p = 0.024), indicating that the between-visit
variability for centre B is significantly different for those
for centres A and C. The mean GSI was equal to 1.44
and 1.66 for the 1.5 T and 3 T groups, respectively. As
GSI presents the ratio of the buried to unburied cortex,
the fraction of the whole cortex that is buried in sulci is
equal to GSI/(1+GSI). Thus on average, it has been esti-
mated that for the 1.5 T group 59% and for the 3 T
group 62% of the cortex is buried in sulci.
Figures 3 gives an overview of the mean values and

the 95% intervals for the sulcal surface and mean geode-
sic depth with all four sulci recognition algorithms. This
figure shows qualitatively that all algorithms are very
consistent in predicting the mean and the 95% confi-
dence interval for the sulcus surface at each centre.
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Figure 2 Plots of the distribution of global parameters across subjects. The volumes of CSF, GM, and WM are calculated using FAST and
Brainvisa for the two visits to all centres of the 1.5 T group (top) and the 3 T group (middle). The plots of GSI for the 1.5 T groups (bottom left)
and the 3 T group (bottom right) are also shown. The values corresponding to both hemispheres are presented (each value corresponds to one
hemisphere). The mean values have also been shown in each individual plot. Labels 1 and 2 refer to the first and second visits, respectively. The
statistical results of this figure can be found in tables 5 and 8.
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Table 3 The mean and standard deviation of GM, WM, and CSF volumes across subjects for the 1.5 T group

Centre/Visit GM volume (cm3) WM volume (cm3) CSF volume (cm3)

Brainvisa FAST Brainvisa FAST Brainvisa FAST

A/1 259 ± 35 275 ± 36 296 ± 45 253 ± 44 87 ± 18 132 ± 20

A/2 259 ± 34 270 ± 32 293 ± 47 249 ± 39 89 ± 20 127 ± 16

B/1 322 ± 65 286 ± 34 274 ± 29 234 ± 33 62 ± 21 153 ± 18

B/2 321 ± 68 285 ± 35 274 ± 24 236 ± 34 64 ± 19 151 ± 21

C/1 249 ± 31 274 ± 38 288 ± 48 243 ± 41 96 ± 28 131 ± 23

C/2 247 ± 34 270 ± 32 293 ± 51 239 ± 38 96 ± 26 128 ± 15

The results of segmentation using Brainvisa and FAST are given (mean ± standard deviation) for each visit to each centre

Table 4 The mean and standard deviation of GM, WM, and CSF volumes across subjects for the 3 T group

Centre/Visit GM volume (cm3) WM volume (cm3) CSF volume (cm3)

Brainvisa FAST Brainvisa FAST Brainvisa FAST

D/1 308 ± 31 298 ± 20 249 ± 29 228 ± 20 93 ± 17 112 ± 12

D/2 294 ± 25 293 ± 19 264 ± 28 227 ± 18 91 ± 14 116 ± 15

E/1 324 ± 28 282 ± 17 250 ± 42 211 ± 19 111 ± 21 111 ± 15

E/2 310 ± 27 271 ± 20 268 ± 31 202 ± 17 105 ± 11 130 ± 16

F/1 328 ± 36 309 ± 22 241 ± 23 245 ± 21 105 ± 11 122 ± 15

F/2 311 ± 32 312 ± 21 278 ± 43 246 ± 22 94 ± 13 129 ± 14

G/1 332 ± 39 298 ± 18 247 ± 28 232 ± 16 87 ± 18 144 ± 13

G/2 314 ± 37 295 ± 19 261 ± 28 232 ± 18 88 ± 18 143 ± 18

H/1 321 ± 30 301 ± 17 267 ± 34 245 ± 20 87 ± 26 136 ± 13

H/2 346 ± 38 299 ± 18 237 ± 34 244 ± 19 87 ± 17 133 ± 14

The results of segmentation using Brainvisa and FAST are given (mean ± standard deviation) for each visit to each centre

Table 5 The p-values for centre and visit effects

Parameter 1.5 T Group 3 T Group

Centre Visit Centre*visit Centre Visit Centre*visit

GM volume < 0.001 0.272 0.875 < 0.001 0.015 < 0.001

WM volume < 0.001 0.624 0.642 0.036 < 0.001 < 0.001

CSF volume 0.013 0.311 0.993 < 0.001 0.003 0.535

Cerebral < 0.001 0.739 0.285 < 0.001 0.599 0.109

Hemisphere

Volume

GSI 0.017 0.011 0.024 0.203 0.088 0.094

Sulcal surface

Global 0.827 0.895 0.885 < 0.001 0.777 0.843

Local 0.821 0.909 0.808 < 0.001 0.673 0.807

Markovian 0.778 0.855 0.944 < 0.001 0.486 0.865

Talairach 0.847 0.792 0.925 < 0.001 0.847 0.863

Sulcal mean

geodesic depth

Global 0.887 0.754 0.547 0.028 0.937 0.649

Local 0.573 0.820 0.574 0.002 0.121 0.943

Markovian 0.742 0.422 0.603 0.001 0.182 0.381

Talairach 0.574 0.427 0.857 0.006 0.956 0.711

P-values for the main effect of centre and visit as well as their interaction for all Brainvisa metrics are given for the 1.5 T and 3 T groups. For sulcal parameters,
p-values are given for all sulci recognition algorithms.
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However, the mean geodesic depth is estimated differ-
ently and on average, Local and Markovian algorithms
predict higher values for the mean geodesic depths com-
pared to Global and Talairach algorithms.

Visit and centre effects
The p-values of the main effects for centre and visit as
well as their interaction are given in table 5 for all mor-
phometric measures. For sulcal parameters, the p-values
were computed for all recognition algorithms.
The volume of cerebral hemisphere was calculated

from the sum of GM, WM, and CSF for each hemi-
sphere of each subject’s brain. The comparison between
the results for the hemisphere volume and those for the

GM, WM, and CSF volumes allows for the assessment
of robustness of the segmentation process.
As shown in table 5, with the exception of GSI for the

1.5 T group and GM and WM volumes for the 3 T
group, for all other parameters the interaction between
the visit and centre factors was non-significant. The sig-
nificance of the interaction term is indicative of incon-
sistency in the between-visit variability across different
scanners. There are two possible situations which can
lead to such inconsistency and therefore significance of
the interaction between centre and visit factors: 1) com-
pared to the first visit to each centre, the values esti-
mated with the second visit are higher for some
scanners but lower for others, or 2) for some scanners,

Figure 3 The mean and 95% confidence interval of the sulcal parameters. The mean (the average of all subjects, visits, and sulci) and the
95% confidence interval of the sulcal surface (top) and mean geodesic depth (bottom), calculated for each centre using all sulci recognition
algorithms are shown for the 1.5 T group (left) and the 3 T group (right). Mean geodesic depth refers to the average geodesic depth across a
given sulcal label (note that the depth a sulcus is usually non-uniform throughout its length and hence the mean value is used). The values are
calculated for each hemisphere independently and the plots show the values associated with both hemispheres. The statistical results
corresponding to this figure can be found in table 5.
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the two visits produce similar results whereas for other
scanners the estimations for the two visits are signifi-
cantly different. As visits don’t follow any logical order,
the significance of the interaction term in the first case
may not necessarily be indicative of real inconsistency
between scanners. This seems to be the case for GM
and WM volumes of the 3 T group. In this case, as can
be inferred from Figure 2, the direction of change from
the first to the second visit varies across scanners. Con-
versely, for GSI of the 1.5 T group the second explana-
tion applies as the significance of the interaction terms
arises from higher between-visit variability for centre B
compared to those for centres A and C.
Table 5 also indicates that for the 1.5 T group, the

two visits to the same centre did not produce signifi-
cantly different values for GM, WM, CSF, and hemi-
sphere volumes, however these values were significantly
different across centres.
In the 3 T group, although the two visits produced

similar results for hemisphere volume, the GM, WM,
and CSF volumes varied significantly between the two
visits. In addition, all volumes significantly vary across
scanners. Nonetheless, both visits to all five centres pro-
duced similar results for GSI.
For sulcal parameters, the centre and visit factors as

well as their interaction were non-significant for the 1.5
T group, however for the 3 T group, the centre factor
was significant for both surface and depth and with all
four algorithms.

Between-visit and between-centre reliabilities
The between-visit and between-centre reliabilities were
computed for all parameters according to equation 1.
As a rule of thumb, the reliability values smaller than
0.50, between 0.50 and 0.70, between 0.70 and 0.90, and
greater than 0.90 were considered poor, moderate, good,
and excellent, respectively.
Table 6 shows the results for global parameters. In the

1.5 T group, the between-visit reliability was excellent for
the GM, WM, CSF and hemisphere volumes. Between-
centre reliabilities were excellent for hemisphere volume,
moderate for WM and CSF volumes, and poor for GM

volume. For GSI, the between-visit reliability was good
whereas between-centre reliability was poor.
For the 3 T group, the between-centre and between-

visit reliabilities of the hemisphere volume were almost
excellent. However following segmentation, the reliabil-
ities of the resulting segmented volumes were mostly
poor. It can be therefore concluded that segmentation
has led to a significant reduction in the reliability. The
between-visit and between-centre reliabilities of GSI for
the 3 T group were moderate and poor, respectively.
The reliabilities for sulcal parameters were calculated

for each sulcal piece independently due to huge variabil-
ity in sulcal parameters (especially the sulcal surface) for
different sulci. Figure 4 depicts the distribution of reli-
abilities across 59 sulcal pieces using all sulci recogni-
tion algorithms indicating that the reliabilities range
from poor to excellent. The figure suggests that in all
cases the average between-visit reliability was greater
than the average between-centre reliability. Moreover
among the four algorithms, Markovian and Global
resulted in the highest reliabilities, whereas Talairach
led to the lowest reliabilities. For a quantitative compari-
son between the four algorithms, the average reliabilities
(across all sulci) are presented in table 7 for both 1.5 T
and 3 T groups.

Segmentation with FAST vs. Brainvisa
The p-values of the centre and visit factors as well as
their interaction for GM, WM, and CSF volumes esti-
mated using FAST are given in table 8. For the 1.5 T
group, each segmented volume was significantly differ-
ent across centres but similar for the two visits to the
same scanner. The interaction term was significant for
WM volume which was mainly due the various direc-
tions of changes from first to second visit (as can be
concluded from Figure 2).
For the 3 T group, the centre and visit factors as well

as their interaction were significant for all volumes
which suggests that some scanners produce less consis-
tent results between the two visits. Figure 2 shows that
this inconsistency mainly arises from centre E.
Table 9 summarizes the between-visit and between-

centre reliabilities of brain segmentation using FAST.

Table 6 The between-visit and between-centre reliabilities for global parameters calculated using Brainvisa

Parameter 1.5 T Group 3 T Group

Between-visit Between-centre Between-visit Between-centre

GM volume 0.92 0.36 0.29 0.25

WM volume 0.95 0.67 0.13 0.15

CSF volume 0.90 0.50 0.55 0.34

Cerebral hemisphere volume 0.99 0.97 0.96 0.88

GSI 0.75 0.13 0.62 0.43

The results are given for both 1.5 T and 3 T groups.
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Figure 4 Distribution of between-centre and between-visit reliabilities for sulcal parameters. The distribution of the reliability of sulcal
surface (top) and mean geodesic depth (bottom) is displayed for different sulci using all sulci recognition algorithms. The results correspond to
the 1.5 T group (left) and the 3 T group (right).

Table 7 The average between-visit and between-centre reliabilities of sulcal parameters

Parameter 1.5 T 3 T

Between- visit Between- centre Between- visit Between- centre

Surface

Global 0.54 0.44 0.66 0.56

Local 0.51 0.42 0.62 0.52

Markovian 0.60 0.52 0.73 0.64

Talairach 0.41 0.35 0.47 0.39

Mean geodesic depth

Global 0.51 0.43 0.65 0.57

Local 0.47 0.41 0.61 0.51

Markovian 0.52 0.46 0.66 0.58

Talairach 0.40 0.34 0.48 0.40

The results are given as the average across all sulci and are computed for the 1.5 T and 3 T groups using all four algorithms.
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The table suggests that except for CSF, the reliabilities
of GM and WM volumes have significantly improved
with FAST.
Figure 5 demonstrates the effect of bias correction with

Brainvisa and FAST in terms of the coefficient of varia-
tion within each tissue type as well as the WM/GM con-
trast for the 1.5 T and 3 T groups. As can be seen, the
calculated coefficients of variation with FAST and Brain-
visa were very similar. According to the figure, the coeffi-
cient of variation was lowest within WM and slightly
higher within GM which is mainly due to the partial
volume effect and considerably higher for CSF [31]. Fig-
ure 5 suggests that with FAST there’s significant increase
in WM/GM contrast compared to Brainvisa (p-value of
smaller than 0.001 for 1.5 T group and 0.032 for 3 T
group). This is also confirmed by Figure 6 which shows
the plots of the main effects for method (Brainvisa vs.
FAST) and centre for the WM/GM contrast. The figure
shows that for the 1.5 T group, centre B had higher WM/
GM contrasts compared to centres A and C. For the 3 T
group, centres F and G had highest values and centre H
had the lowest values of WM/GM contrasts.

Discussion
We have assessed the robustness of Brainvisa in brain
morphometry and estimation of the most widely used
morphometric measures in terms of scanner-related
variability and reliability. For this purpose we used two
groups of retrospective datasets from two multicentre
studies which included repeated scans acquired at 1.5 T
and 3 T from healthy volunteers.
In some cases the morphometry results were signifi-

cantly different across different scanners or across the

two visits to the same scanner. It should be noted how-
ever, that the results of this study correspond to small
groups of subjects and therefore for a larger dataset,
even the non-significant cases may become significant.
In addition, both between-centre and within-centre reli-
abilities ranged from poor to excellent for most para-
meters which also emphasizes the impact of scanner-
related factors. However the within-centre reliability was
found to be better than the between-centre reliability
for almost all morphometric measures.
A comparison between the reliability values for the

cerebral hemisphere volume and the segmented tissues
(GM, WM, and CSF) revealed that while hemisphere
volumes were very consistent both between- and within-
scanners, the segmented volumes showed considerably
different result in most cases. This implies that the
inconsistency between the brain tissue volumes had
arisen from the segmentation process. When the seg-
mentation was carried out using the FAST algorithm
within FSL, the reliabilities were mostly improved.
Further investigation indicated that despite comparable
values for the coefficients of variation within each tissue
obtained with the two methods, FAST resulted in signif-
icantly higher WM/GM contrasts compared to Brain-
visa. A comparison between WM/GM contrast obtained
for different scanners, revealed that scanner B of the 1.5
T group had significantly higher values compared to the
other two scanners of the same group (A and C). This
might be one reason for the disparity between the esti-
mated volumes and GSI for centre B and those for cen-
tres A and C. However for the 3 T group, an association
between GM/WM contrasts and the estimated morpho-
metric parameters was not observed. For example,
despite significantly higher GM/WM contrasts for cen-
tres F and G compared to centre H, the estimations for
the three centres were mostly consistent. It should be
noted however that the average WM/GM contrasts were
higher in the 3 T group relative to the 1.5 T group. This
therefore raises the possibility of existence of a threshold
for the WM/GM contrast in order to have an effect on
the morphometry results using Brainvisa.
It should be noted that the image acquisition para-

meters were slightly different across scanners within
each group. Such disparities may add to the variability
in the morphometric parameters across scanners.

Table 8 The p-values for segmentation with FAST

Parameter 1.5 T Group 3 T Group

Centre Visit Centre*visit Centre Visit Centre*visit

GM volume 0.054 0.868 0.651 < 0.001 < 0.001 < 0.001

WM volume < 0.001 0.230 0.028 < 0.001 < 0.001 < 0.001

CSF volume 0.018 0.312 0.311 < 0.001 < 0.001 < 0.001

P-values for the main effect of centre and visit as well as their interaction are given for the 1.5 T and 3 T groups.

Table 9 The between-visit and between-centre
reliabilities for segmentation with FAST

Parameter 1.5 T Group 3 T Group

Between-
visit

Between-
centre

Between-
visit

Between-
centre

GM volume 0.88 0.84 0.72 0.47

WM
volume

0.93 0.89 0.77 0.41

CSF
volume

0.78 0.49 0.65 0.22

The results are given for both 1.5 T and 3 T groups.
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Figure 5 Comparison of bias correction using Brainvisa and FAST. The coefficient of variation within the CSF GM, and WM masks of the
bias corrected T1 images are presented for the 1.5 T (top) and the 3 T (middle) groups. The WM/GM contrasts are shown for the 1.5 T (bottom
left) and 3 T (bottom right) groups. Since the FAST algorithm does not split the cerebrum into two hemispheres, the values are calculated within
both hemispheres (and not individual hemispheres) for both Brainvisa and FAST algorithms.
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As the bias correction with FAST is more robust com-
pared to Brainvisa, it is suggested to perform the bias
correction using FAST and repeat all the following steps
to assess the reliabilities. This would allow the evalua-
tion of the robustness of the following analysis steps
using Brainvisa. The histogram-based approach of Brain-
visa can then be compared to the Hidden Markovian
Random Field model-based approach of FAST. Such a
step-by-step comparison can in turn help in identifying
the ways in which the program can be more robust.

Currently, it is not possible to skip the bias correction
step and import a bias corrected image. Instead, all
steps need to be performed subsequently within the
program.
Using both Brainvisa and FAST, the between-visit and

between-centre reliabilities for GM and WM volumes
were mostly smaller compared to the calibration study
of Schnack et al. which confirms the effectiveness of
using calibration factor for brain segmentation in multi-
centre studies.

Figure 6 Plots of main effect of Centre and Method for the WM/GM contrast. The main effect plots are shown for the 1.5 T (top) and 3 T
(bottom) groups.
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For sulcus-specific attributes, the evaluation was per-
formed with each of the four sulci identification algo-
rithms so that the different algorithms could be
compared. These algorithms vary in their approach in
registering the brain to a 3D probabilistic atlas of the
sulci (SPAM). On average, Local and Markovian algo-
rithms predicted higher values for mean geodesic depths
compared to Global and Talairach algorithms, suggest-
ing that Local and Markovian tend to group deeper
folds with the same label. In terms of reliability, for all
sulcal parameters, Talairach showed lowest reliabilities
whereas Markovian and Global achieved highest reliabil-
ities. This confirms the fact that registration of different
brains to Talairach atlas entails poor sulci alignment
between individuals and that the other three algorithms
are more successful in sulci alignment.
Nevertheless, the average reliabilities with all algo-

rithms were mostly moderate. This clearly limits the suit-
ability of sulcal surface and mean geodesic depth for
multicentre or longitudinal studies. Further improvement
may be achieved by improving the primary steps (bias
correction and possibly histogram analysis) in order to
obtain more reproducible estimations.
Due to the various sources of variability between the

1.5 T and 3 T groups (e.g. subjects, age, gender, field
strength, number and types of scanners, and image
acquisition parameters), the contribution of each source
of variability to the total variance between the two
groups can not be estimated. Nonetheless, a qualitative
comparison suggests that while reliabilities of segmented
brain volumes are higher for the 1.5 T group compared
to the 3 T group (with both Brainvisa and FAST), for
sulcal parameters the reliabilities are higher for the 3 T
group. This suggests that fold detection and brain seg-
mentation are not equally affected by these factors. A
prospective study with various field strengths, scanner
types, and image acquisition parameters on the same
group of subjects would be useful for independently
investigating the effect of each factor on the reliability
of the results. Further investigation of the contribution
of each factor, may also be useful for correcting for
scanner-related variability in addition to providing infor-
mation about the required criteria (image resolution, for
example) for achieving more robust morphometry
results and higher reliabilities with Brainvisa.

Conclusions
In this paper we explored the consistency of brain mor-
phometry results using Brainvisa among different scan-
ners and different sessions of the same scanner. Our
results indicate that there is occasionally considerable
disparity between the values estimated for different
scanners and different sessions. However, different scans

of the same scanners produced more consistent results
compared to those obtained with different scanners.
These findings emphasize that for any kind of morpho-
metry analysis with Brainvisa using data from multicen-
tre or longitudinal studies, the scanner-related variability
must be taken into account and where possible the
resultant inconsistency should be corrected for. Further-
more, our findings provide a first step for investigation
of the possibilities for improvement of Brainvisa.

Acknowledgements
This study was supported by SINAPSE http://www.sinapse.ac.uk. AB is
supported by NARSAD Young Investigator Award. The CaliBrain study was
funded by a Chief Scientist Office (Scotland) Project Grant (CZB/4/427), Chief
Investigator Prof. S. Lawrie. Also part of the data came from the Psygrid
consortium http://www.psygrid.org/ and the NeuroPsyGrid collaborative
project http://www.neuropsygrid.org/. The authors thank Alex McConnachie
and Martina Messow from Robertson Centre for Biostatistics, University of
Glasgow, for their advice regarding the statistical analysis.

Author details
1Department of Clinical Physics and Psychological Medicine, College of
Medicine, Veterinary and Life Sciences, University of Glasgow, UK. 2Brain
Mapping Unit, Department of Psychiatry and Behavioural and Clinical
Neurosciences Institute, University of Cambridge, UK. 3Division of Psychiatry,
Centre for Clinical Brain Sciences, School of Molecular and Clinical Medicine,
University of Edinburgh, UK. 4Department of Clinical Physics and
Bioengineering, Institute of Neurological Science, Southern General Hospital,
Glasgow, UK. 5SFC Brain Imaging Research Centre, Division of Clinical
Neurosciences, University of Edinburgh, UK. 6Department of Psychosis
Studies, Institute of Psychiatry, Kings College London, UK. 7FMRIB Centre,
University of Oxford, Oxford, UK. 8Neuroscience and Psychiatry Unit,
University of Manchester, UK. 9Centre for Neuroimaging Sciences, Institute of
Psychiatry, Kings College London, UK. 10Imaging Science and Biomedical
Engineering, University of Manchester, UK.

Authors’ contributions
MS analysed and interpreted the data, drafted the manuscript and is the
principal author of the manuscript. AB participated in the design,
coordination, and data acquisition for the Neuro/Psygrid project and assisted
in the preparation of the manuscript. JS conceived of the Neuro/Psygrid
project, participated in its design and coordination of data and revised the
manuscript for intellectual content. TWJM participated in the design of the
CaliBrain project. DB participated in data acquisition for both Neuro/Psygrid
and CaliBrain projects. DJ participated in the design and coordination of
data for both Neuro/Psygrid and CaliBrain projects and revised the
manuscript for intellectual content. KL participated in data acquisition for
both Neuro/Psygrid and CaliBrain projects. PD participated in the design and
coordination of data for the Neuro/Psygrid project and revised the
manuscript for intellectual content. TRM participated in subjects’ recruitment
and data acquisition for the Neuro/Psygrid project. CM, SM, and SCRW
participated in data acquisition for the Neuro/Psygrid project. SML conceived
of both Neuro/Psygrid and CaliBrain projects, and participated in the design
and coordination of data and revised the manuscript for intellectual content.
BD conceived of the Neuro/Psygrid project, participated in its design and
coordination of data and revised the manuscript for intellectual content.
SRW participated in the design of the Neuro/Psygrid project and the
coordination of data. BC participated in the design and coordination of data,
revised the manuscript for intellectual content and is the senior author of
the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 28 April 2011 Accepted: 21 December 2011
Published: 21 December 2011

Shokouhi et al. BMC Medical Imaging 2011, 11:23
http://www.biomedcentral.com/1471-2342/11/23

Page 15 of 16

http://www.sinapse.ac.uk
http://www.psygrid.org/
http://www.neuropsygrid.org/


References
1. Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE,

Semple J, Herman D, Hong MS, Dittmer SS, Doddrell DM, Toga AW:
Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 2003,
23:994-1005.

2. Garcia-Marti G, Aguilar EJ, Lull JJ, Marti-Bonmati L, Escarti MJ, Manjon JV,
Moratal D, Robles M, Sanjuán J: Schizophrenia with auditory
hallucinations: A voxel-based morphometry study. Prog
Neuropsychopharmacol Biol Psychiatry 2008, 32:72-80.

3. Shenton ME, Dickey CC, Frumin M, McCarley RW: A review of MRI findings
in schizophrenia. Schizophr Res 2001, 49:1-52.

4. Bigler ED, Abildskov TJ, Petrie JA, Johnson M, Lange N, Chipman J, Lu J,
McMahon W, Lainhart JE: Volumetric and Voxel-Based Morphometry
Findings in Autism Subjects With and Without Macrocephaly. Dev
Neuropsychol 2010, 35:278-295.

5. Kim H, Bernasconi N, Bernhardt B, Colliot O, Bernasconi A: Basal temporal
sulcal morphology in healthy controls and patients with temporal lobe
epilepsy. Neurology 2008, 70:2159-2165.

6. Moorhead TWJ, McKirdy J, Sussmann JED, Hall J, Lawrie SM, Johnstone EC,
McIntosh AM: Progressive gray matter loss in patients with bipolar
disorder. Biol Psychiatry 2007, 62:894-900.

7. Brainvisa/Anatomist. [http://brainvisa.info].
8. Cykowski MD, Kochunov PV, Ingham RJ, Ingham JC, Mangin JF, Riviere D,

Lancaster JL, Fox PT: Perisylvian sulcal morphology and cerebral
asymmetry patterns in adults who stutter. Cereb Cortex 2008, 18:571-583.

9. Jouvent E, Mangin JF, Porcher R, Viswanathan A, O’Sullivan M, Guichard JP,
Dichgans M, Bousser MG, Chabriat H: Cortical changes in cerebral small
vessel diseases: a 3D MRI study of cortical morphology in CADASIL. Brain
2008, 131.

10. Kochunov P, Thompson PM, Coyle TR, Lancaster JL, Kochunov V, Royall D,
Mangin JF, Rivière D, Fox PT: Relationship among neuroimaging indices
of cerebral health during normal aging. Hum Brain Mapp 2008, 29:36-45.

11. Cachia A, Paillere-Martinot ML, Galinowski A, Januel D, de Beaurepaire R,
Bellivier F, Artiges E, Andoh J, Bartrés-Faz D, Duchesnay E, Rivière D,
Plaze M, Mangin JF, Martinot JL: Cortical folding abnormalities in
schizophrenia patients with resistant auditory hallucinations. Neuroimage
2008, 39:927-935.

12. Penttila J, Cachia A, Martinot JL, Ringuenet D, Wessa M, Houenou J,
Galinowski A, Bellivier F, Gallarda T, Duchesnay E, Artiges E, Leboyer M,
Olié JP, Mangin JF, Paillère-Martinot ML: Cortical folding difference
between patients with early-onset and patients with intermediate-onset
bipolar disorder. Bipolar Disord 2009, 11:361-370.

13. Penttilae J, Paillere-Martinot ML, Martinot JL, Ringuenet D, Wessa M,
Houenou J, Gallarda T, Bellivier F, Galinowski A, Bruguière P, Pinabel F,
Leboyer M, Olié JP, Duchesnay E, Artiges E, Mangin JF, Cachia A: Cortical
folding in patients with bipolar disorder or unipolar depression.
J Psychiatry Neurosci 2009, 34:127-135.

14. Yoo SS, Wei XC, Dickey CC, Guttmann CRG, Panych LP: Long-term
reproducibility analysis of fMRI using hand motor task. Int J Neurosci
2005, 115:55-77.

15. O’Sullivan M, Jouvent E, Saernann PG, Mangin JF, Viswanathan A,
Gschwendtner A, Bracoud L, Pachai C, Chabriat H, Dichgans M:
Measurement of brain atrophy in subcortical vascular disease: A
comparison of different approaches and the impact of ischaemic
lesions. Neuroimage 2008, 43:312-320.

16. Friedman L, Glover GH, FBIRN Consortium: Reducing interscanner
variability of activation in a multicenter fMRI study: Controlling for
signal-to-fluctuation-noise-ratio (SFNR) differences. Neuroimage 2006,
33:471-481.

17. Friedman L, Stern H, Brown GG, Mathalon DH, Turner J, Glover GH,
Gollub RL, Lauriello J, Lim KO, Cannon T, Greve DN, Bockholt HJ, Belger A,
Mueller B, Doty MJ, He J, Wells W, Smyth P, Pieper S, Kim S, Kubicki M,
Vangel M, Potkin SG: Test-retest and between-site reliability in a
multicenter fMRI study. Hum Brain Mapp 2008, 29:958-972.

18. Yendiki A, Greve DN, Wallace S, Vangel M, Bockholt J, Mueller BA,
Magnotta V, Andreasen N, Manoach DS, Gollub RL: Multi-site
characterization of an fMRI working memory paradigm: Reliability of
activation indices. Neuroimage 2010, 53:119-131.

19. Gountouna VE, Job DE, McIntosh AM, Moorhead TWJ, Lymer GKL,
Whalley HC, Hall J, Waiter GD, Brennan D, McGonigle DJ, Ahearn TS,
Cavanagh J, Condon B, Hadley DM, Marshall I, Murray AD, Steele JD,

Wardlaw JM, Lawrie SM: Functional Magnetic Resonance Imaging (fMRI)
reproducibility and variance components across visits and scanning sites
with a finger tapping task. Neuroimage 2010, 49:552-560.

20. Schnack HG, Hulshoff Pol HE, Baare WFC, Viergever MA, Kahn RS:
Automatic Segmentation of the Ventricular System from MR Images of
the Human Brain. Neuroimage 2001, 14:95-104.

21. Schnack HG, van Haren NEM, Pol HEH, Picchioni M, Weisbrod M, Sauer H,
Cannon T, Huttunen M, Murray R, Kahn RS: Reliability of brain volumes
from multicenter MRI acquisition: A calibration study. Hum Brain Mapp
2004, 22:312-320.

22. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E,
Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A,
Dickerson B, Fischl B: Reliability of MRI-derived measurements of human
cerebral cortical thickness: The effects of field strength, scanner upgrade
and manufacturer. Neuroimage 2006, 32:180-194.

23. FreeSurfer. [http://surfer.nmr.mgh.harvard.edu].
24. SPM - Statistical Parametric Mapping. [http://www.fil.ion.ucl.ac.uk/spm].
25. Moorhead TW, Gountouna VE, Job DE, McIntosh AM, Romaniuk L,

Lymer GK, Whalley HC, Waiter GD, Brennan D, Ahearn TS, Cavanagh J,
Condon B, Steele JD, Wardlaw JM, Lawrie SM: Prospective multi-centre
Voxel Based Morphometry study employing scanner specific
segmentations: procedure development using CaliBrain structural MRI
data. BMC Med Imaging 2009, 9:8.

26. FSL. [http://www.fmrib.ox.ac.uk/fsl].
27. Suckling J, Barnes A, Job D, Brenan D, Lymer K, Dazzan P, Marques TR,

MacKay C, McKie S, Williams SR, Williams SC, Lawrie S, Deakin B: Power
Calculations for Multicenter Imaging Studies Controlled by the False
Discovery Rate. Hum Brain Mapp 2010, 31:1183-1195.

28. PsyGrid. [http://www.psygrid.org].
29. Neuropsygrid.org: The Leading Neuro PSY Grid Site on the Net. [http://

www.neuropsygrid.org].
30. Magnetic Resonance TIP - MRI Database: mprage. [http://www.mr-tip.

com/serv1.php?type=db1&dbs=mprage].
31. Mangin JF: Entropy minimization for automatic correction of intensity

nonuniformity. Proceedings of the IEEE Workshop on Mathematical Methods
in Biomedical Image Analysis 2000, 162-169.

32. Mangin JF, Coulon O, Frouin V: Robust brain segmentation using
histogram scale-space analysis and mathematical morphology. In
Proceedings of Medical Image Computing and Computer-Assisted Intervention
- Miccai’98. Volume 1496. Edited by: William M. Wells III, Alan C. F.
Colchester, Scott L. Delp. Springer; 1998:1230-1241.

33. Mangin JF, Regis J, Frouin V: Shape bottlenecks and conservative flow
systems. Proceedings of the IEEE Workshop on Mathematical Methods in
Biomedical Image Analysis 1996, 319-328.

34. Mangin JF, Frouin V, Bloch I, Regis J, Lopez-Krahe J: From 3D magnetic
resonance images to structural representations of the cortex
topography using topology preserving deformations. J Math Imaging Vis
1995, 5:297-318.

35. Regis J, Mangin JF, Ochiai T, Frouin V, Riviere D, Cachia A, Tamura M,
Samson Y: “Sulcal root” generic model: a hypothesis to overcome the
variability of the human cortex folding patterns. Neurol Med Chir (Tokyo)
2005, 45:1-17.

36. Perrot M, Riviere D, Mangin JF: Identifying cortical sulci from localization,
shape and local organization. Proceedings of the IEEE International
Symposium on Biomedical Imaging: from Nano to Macro 2008, 1-4:420-423.

37. Perrot M, Riviere D, Tucholka A, Mangin JF: Joint Bayesian Cortical Sulci
Recognition and Spatial Normalization. Proceedings of Inf Process Med
Imaging 2009, 5636:176-187.

38. Zhang YY, Brady M, Smith S: Segmentation of brain MR images through a
hidden Markov random field model and the expectation-maximization
algorithm. IEEE Trans Med Imaging 2001, 20:45-57.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2342/11/23/prepub

doi:10.1186/1471-2342-11-23
Cite this article as: Shokouhi et al.: Assessment of the impact of the
scanner-related factors on brain morphometry analysis with Brainvisa.
BMC Medical Imaging 2011 11:23.

Shokouhi et al. BMC Medical Imaging 2011, 11:23
http://www.biomedcentral.com/1471-2342/11/23

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/12574429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17716795?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17716795?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11444221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11444221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20446133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20446133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18505994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18505994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18505994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17617385?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17617385?dopt=Abstract
http://brainvisa.info
http://www.ncbi.nlm.nih.gov/pubmed/17584852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17584852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17290369?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17290369?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17988891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17988891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19500089?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19500089?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19500089?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19270763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19270763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15768852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15768852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18722537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18722537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18722537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16952468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16952468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16952468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17636563?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17636563?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20451631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20451631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20451631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19631757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19631757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19631757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11525342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11525342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15202109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15202109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16651008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16651008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16651008?dopt=Abstract
http://surfer.nmr.mgh.harvard.edu
http://www.fil.ion.ucl.ac.uk/spm
http://www.ncbi.nlm.nih.gov/pubmed/19445668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19445668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19445668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19445668?dopt=Abstract
http://www.fmrib.ox.ac.uk/fsl
http://www.ncbi.nlm.nih.gov/pubmed/20063303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20063303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20063303?dopt=Abstract
http://www.psygrid.org
http://www.neuropsygrid.org
http://www.neuropsygrid.org
http://www.mr-tip.com/serv1.php?type=db1&dbs=mprage
http://www.mr-tip.com/serv1.php?type=db1&dbs=mprage
http://www.ncbi.nlm.nih.gov/pubmed/18982582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18982582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11293691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11293691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11293691?dopt=Abstract
http://www.biomedcentral.com/1471-2342/11/23/prepub

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data
	Data pre-processing
	Sulci recognition
	Morphometry analysis
	Global parameters
	Sulcal parameters
	Statistical analysis
	Segmentation with FSL vs. Brainvisa

	Results
	Visit and centre effects
	Between-visit and between-centre reliabilities
	Segmentation with FAST vs. Brainvisa

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References
	Pre-publication history


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


