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Abstract: Chronic kidney disease (CKD) is a global epidemic with an increasing prevalence worldwide.
Effective preventive strategies are urgently needed. This study aimed to investigate the effect of
nutraceutical components, a fermented soybean product (ImmuBalance, IMB) and an oligo-lactic
acid product (LAP), on the prevention of adenine-induced CKD in mice. Female C57BL/6 mice
were randomly assigned into following experimental groups: negative control; model control;
and models treated with IMB at 250 or 1000 mg/kg body weight (BW), LAP at 1000 or 2000 mg/kg BW,
and IMB/LAP combinations. The CKD model was established by intraperitoneal injection of adenine
daily for 4 weeks, and treatments started 2 weeks before adenine injection and ended after 10 weeks.
Compared with the model control, the treatments did not significantly alter the body weight or food
intake. Both IMB and LAP, especially their combination, significantly inhibited tubular dilation,
tubulointerstitial degeneration or atrophy, interstitial chronic inflammation and acute inflammation
in the kidneys of CKD mice, and significantly decreased serum cystatin C levels. IMB or LAP
significantly reversed CKD-associated increases of circulating and kidney levels of inflammatory
cytokines, circulating levels of kidney injury biomarkers, and kidney levels of stem cell biomarkers,
and significantly reversed CKD-associated reduction of cecum Clostridium leptum group. Our results
suggest that dietary supplementation of IMB or LAP may significantly delay the development and/or
progression of CKD.

Keywords: chronic kidney disease; inflammation; fermented soybean; oligo-lactic acid; gut microbiota;
stem cells

1. Introduction

Chronic kidney disease (CKD) is a slow and progressive loss of kidney function, and poses serious
health problems. It is estimated that about 15% of the U.S. population, or 37 million U.S. adults,
would have had CKD in 2019 [1]. CKD is an important contributor to morbidity and mortality from
noncommunicable diseases, and this disease should be actively addressed to meet the United Nation’s
(UN) Sustainable Development Goal target to reduce premature mortality from non-communicable
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diseases by one-third by 2030 [2]. CKD is a syndrome with different etiologies. While inflammation
is one of core pathological features of CKD, research data indicate that CKD itself “is recognized as
a proinflammatory state” [3] and uremic environment induces inflammation [4] in diverse tissues,
generating other diseases, mainly cardiovascular diseases. There are many factors that lead to the setting
of the inflammatory status in CKD, including increased production of proinflammatory cytokines
and oxidative stress, chronic and recurrent infections, altered metabolism of adipose tissue, and gut
microbiota dysbiosis, an underestimated source of microinflammation [5].

Although genetic factors play a role in the incidence and progression of CKD, it is recognized that
nutritional factors play an essential role in the cause, progression, and prevention of the disease. It is
estimated that more than 24% of CKD cases in industrialized countries can be attributed to nutritional
factors [6]. More than 70% of kidney failure cases are associated with diabetes and hypertension,
the major nutrition-related metabolic diseases. Although the treatment of diabetes and hypertension
can postpone the development of CKD, a large fraction of affected patients proceed to CKD despite
medical interventions. More effective dietary and nutritional approaches are urgently needed to
prevention the development and progression of CKD.

The potential renal benefits of soybean products have considerable public health significance
because of the increasing worldwide prevalence of renal disease [7]. The previous research evidence
showed that replacing animal protein with soy protein contributed to a reduction in hyperfiltration
and glomerular hypertension, with resultant protection from diabetic nephropathy [8,9]. Nevertheless,
a meta-analysis of 12 clinical studies involving 280 patients with chronic renal disease found that
dietary soy protein did not affect the glomerular filtration rate, although it significantly decreased
serum creatinine, serum phosphorus, inflammation, and proteinuria in predialysis patients [10].

It has been demonstrated that lactic acid plays important roles in multiple conditions of health
and disease, including energy regulation, anti-inflammation, immune modulation, wound repair,
and cancer progression [11]. However, very few studies have reached its molecule fundamentals and
associated pathways. Further investigation and a better understanding of lactic acid will be beneficial
for medical practice and benefit patient care.

Our overall hypothesis is that dietary or nutritional interventions that inhibit inflammation
may provide an effective strategy for the prevention and/or delay the progression of CKD. In this
study, we proposed to examine the effects of two novel nutritional components, a specially prepared
soybean fermentation product ImmuBalance (IMB) and a unique oligo-lactic acid product (LAP),
on inhibiting inflammation and alleviating inflammation-induced kidney damage in a mouse model
of adenine-induced CKD [12,13]. We also studied the quantity of common bacteria in mice cecum to
examine potential influences of our nutritional interventions in gut microbiome and the prevention
of CKD.

2. Materials and Methods

2.1. Materials

A soy extract, IMB, was prepared by a koji fermentation of defatted soybeans with Aspergillu soryzae
and lactic acid bacteria (Pediococcus parvulus and Enterococcus faecium) according to a proprietary
fermentation technology, followed by water extraction and purification of Koji polysaccharides®.
Hydrolysis analysis showed that this polysaccharide mainly consisted of arabinose (41.4%), galactose
(23.7%), and xylose (10.4%). IMB was provided by Nichimo Biotics Co., Ltd., Tokyo, Japan. Oligo-lactic
acid product (LAP) was a condensate of about nine ester-linked molecules of L-lactic acid that was
purified from fermentation products of sugar beet and corn with Lactobacilli according to a proprietary
process. LAP was provided by LifeTrade Co., Ltd., Tokyo, Japan.
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2.2. Animal Study

Female C57BL/6 mice (6–8 weeks of age) were purchased from Taconic (Germantown, NY, USA).
After one week of acclimation, mice consuming the AIN-93M diet were randomly assigned into
one of the following experimental groups (n = 8/group): (1) negative control (NC); (2) CKD model
control (MC); (3–4) CKD models with oral gavage of IMB at 250 (IMB-L) and 1000 mg/kg BW (IMB-H),
respectively; (5–6) CKD models with oral gavage of LAP at 1000 (LAP-L) and 2000 mg/kg BW (LAP-H),
respectively; and (7–8) CKD models with oral gavage of IMB-L/LAP-L combination and IMB-H/LAP-H
combination, respectively. The CKD model was established by intraperitoneal injection of adenine at
100 mg/kg BW daily for 4 weeks. The treatments started 2 weeks before adenine injection to evaluate
the preventive effect, and ended 4 weeks after the last adenine injection. The animal experiment
was performed in accordance with National Institutes of Health guidelines and approved by the
Institutional Animal Care and Use Committee of Beth Israel Deaconess Medical Center (approval
number: 028-2018).

Food intake and body weight were measured weekly. At the end of the experiment, the mice
were sacrificed, blood samples were collected, and the resulting serum samples were saved at −80 ◦C
for further analysis. One kidney (left) was dissected and fixed in 10% buffer-neutralized formalin,
paraffin-embedded, and sectioned at 4 µm thickness for histopathology and immunohistochemistry
analyses. Another kidney and cecum containing feces were harvested, snap-frozen in liquid nitrogen,
and then saved at −80 ◦C for further analysis.

2.3. Histopathology Analysis

Kidney tissue slides were processed with hematoxylin and eosin (H & E) stain, periodic acid-Schiff
(PAS), and Masson’s trichrome stain for histopathological evaluation by scoring for tubular dilation,
tubulointerstitium degeneration, interstitial chronic inflammation, and acute inflammation. For the
acute process, interstitial acute inflammation and tubular dilation without tubular epithelial thinning
or basement membranes thickening were evaluated. For the chronic process, tubulo-interstitial
degeneration including tubular atrophy and interstitial fibrosis, as well as chronic inflammation
were evaluated. Features of tubular epithelial thinning and basement membrane thickening were
evaluated with reviewing the PAS special stains. A semi-quantitative score system was implemented.
A score of 0–3, denoting increasingly severe abnormality, was assigned by a pathologist blinded to the
experimental design and identity of the samples. In each mouse tissue, the tubular dilation was graded
as 0 (no pathology), 1 (<25%), 2 (25–50%), or 3 (>50%); the tubular atrophy and fibrosis was graded
as 0 (no pathology), 1 (focal, small patchy), 2 (cortical/circumferential), or 3 (global); the interstitial
chronic inflammation was graded as 0 (none), 1 (scant 1–2 foci, mild), 2 (2–4 foci, mild), or 3 (>5 foci,
dense); and the acute inflammation was graded as 0 (none), 1 (focal), 2 (patchy), or 3 (diffused).

2.4. Multiplex Sandwich Immunoassays for Measurement of Blood Levels of Cytokines and Kidney
Toxicity Biomarkers

Multiplex sandwich immunoassays were performed in Luminax Magpix System (Millipore Sigma,
Burlington, MA, USA) to determine the levels of cytokines (ProcartaPlex Mouse 11 Cytokine Premixed
Kit, ThermoFisher, Carlsbad, CA, USA) and kidney toxicity biomarkers (Milliplex Mouse 3 and
5-KidneyInjuryPremixed Kits, Millipore, Billerica, MA, USA) in serum samples following the established
protocols in accordance with the manufacturer’s instructions. The 11 cytokines panel included interferon
(IFN)-γ, interleukin (IL)-1α, IL-1β, IL-6, IL-10, IL-12p70, IFN-γ-inducible protein 10 (IP-10, CXCL10),
keratinocyte-derived chemokine (KC), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor
(TNF)-α, and vascular endothelial growth factor A (VEGF-A). The three kidney injury factors comprised
kidney injury molecule-1 (KIM-1), renin, and tissue inhibitor of metalloproteinases 1 (TIMP-1); and the
five kidney injury factors comprised clusterin, cystatin C, epidermal growth factor (EGF), lipocalin-2
(LCN2)/neutrophil gelatinase-associated lipocalin (NGAL), and osteopontin (OPN).
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A five-parameter model was used to calculate final concentrations and values were expressed in
pg/mL. Final analyses of Luminex data for cytokines took consideration of data that fell within the
detection limits of the Luminex assay. Concentrations obtained below the sensitivity limit of detection
(LOD) of the method were calculated as LOD/2 for statistical comparisons.

2.5. Quantitative Polymerase Chain Reaction (qPCR) for Determination of Gut Microbiota

The mouse cecum was collected and microbial genomic DNA was extracted from 200 mg of cecal
sample using the E.Z.N.A. ®Stool DNA Kit (D4015, Omega Bio-Tek, Inc., Norcross, GA, USA)/QIAamp
DNA Stool mini kit (Qiagen) according to the manufacturer’s instructions. Total DNA was quantified
and its purity was assessed using NanoDrop™ 2000 spectrophotometers (ThermoFisher, Carlsbad, CA,
USA). Nuclease-free water was used as a blank.

The amount of total microbiota was estimated using the universal primers, Uni331F and Uni797R,
which amplified a conserved region of the 16S rRNA for most of the common microbiota [14].
The following representative dominant/subdominant groups from four major phyla of gut microbiota
were chosen: Atopobium cluster, Bifidobacterium genus, Bacteroides fragilis group, Clostridium coccoides
group, Clostridium perfringens group, Desulfovibrio genus, Enterobacteriaceae family, Lactobacillus genus,
Clostridium leptum group, and Prevotella genus. qPCR assays were performed using SYBR Green qPCR
Master Mix on a CFX384 Touch™ Real-Time PCR Detection System (BioRad Laboratories, Hercules,
CA, USA). The amplification protocol consisted of 1 cycle of 95 ◦C for 20 s, followed by 40 cycles
of 95 ◦C for 15 s, appropriate annealing temperature for 30 s and 72 ◦C for 35 s, and finally 1 cycle
of 60–94 ◦C with 0.5 ◦C increments, 15 s dwell time. The results were normalized to 16S ribosomal
(universal) DNA sequences and expressed as the relative difference using the 2∆∆Ct method.

2.6. Quantitative Real-Time PCR (qRT-PCR) for Analysis of Inflammation- and Stem Cells-Related Genes in
Kidney Tissues

Quantitative analysis of inflammatory cytokine (IL-1, IL-6, TNF-α, F4/80, transforming growth
factor (TGF)-β1, MCP-1, toll-like receptor (TLR)-4, and IL-1β) and stem cell-related biomarkers (CD133,
Pax-2, Six2, CD11β, Oct-4, CD29, CD44, NANOG, vimentin, Wnt-4, WT-1, and nestin) was performed
by qRT-PCR. Total RNA was isolated from kidney samples and reverse transcribed into cDNA using
iScript Reverse Transcription Supermix for PCR. Synthesized cDNA was subjected to qRT-PCR assay
with specific primers (Table 1) and ScoAdvanced Universal SYBR SuperMix (BioRad). The thermal
cycling conditions used were as follows: 1 cycle of 95 ◦C for 20 s, followed by 40 cycles of 95 ◦C for
15 s, appropriate annealing temperature for 30 s and 72 ◦C for 35 s, and finally 1 cycle of 60–94 ◦C
with 0.5 ◦C increments, 15s dwell time. All mRNA quantification data were calculated using the 2∆∆Ct

method and normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH), presented as fold
changes compared with the controls.

2.7. Statistical Analysis

Data were expressed as the group mean ± standard deviation and analyzed by one-way analysis of
variance (ANOVA) test, followed by multiple comparison of least-significant difference (equal variances
assumed) or Dunnett’s T3-test (equal variances not assumed) to evaluate the difference of parametric
samples among groups. When raw data or log-transformed data did not meet the statistical criteria
for the assumption of normality showing equal variance, the nonparametric Kruskal–Wallis or
Mann–Whitney test was used to determine statistical differences, and Bonferroni correction was used
to correct the p-value. Differences were considered to be statistically significant at p < 0.05. A Spearman
correlation analysis was used to investigate the relationship between histopathology and biomarkers.
All analyses were carried out using IBM SPSS Statistics version 20.0 and GraphPad Prism 5 Software.
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Table 1. The primer sequences for quantitative real-time (qRT)-PCR. IL, interleukin; TNF, tumor
necrosis factor; MCP, monocyte chemotactic protein.

Genes Forward Reverse

IL-6 GAGGATACCACTCCCAACAGACC AAGTGCATCATCGTTGTTCATACA

TNF-α CATGAGCACAGAAAGCATGATCCG AAGCAGGAATGAGAAGAGGCTGAG

TGF-β1 TACCATGCCAACTTCTGTCTGGGA TGTGTTGGTTGTAGAGGGCAAGGA

F4/80 AAGCATCCGAGACACACACAGTCT TGACTGTACCCACATGGCTGATGA

MCP-1 CTGGTCCGAGTGAGACAAAG AGATCAGGCTCTGATGGAGAA

TLR-4 CTGCAATGGACAAGGACCA TCCCACTCCAGGTAAGTG

IL-1β TAATACGACTCACTATAGGG ATTTAGGTGACACTATAG

IL-1 CATCCGCAAAGTGGTACGA AGAAAGACTCCACCAGCCCAGT

CD133 GCCCAAGCTGGAAGAATATG CAGCAGAAAGCAGACAATCAA

Six2 TCAATGGCAGTGGCAAGTCG TCAAGCACGGAAAGCAAGCG

Pax-2 TCCCAGTGTCTCATCCATCA GTTAGAGGCGCTGGAAACAG

Oct-4 CACGAGTGGAAAGCAACTCA AGATGGTGGTCTGGCTGAAC

CD11b GACTCAGTGAGCCCCATCAT AGATCGTCTTGGCAGATGCT

Wnt-4 AGAACTGGAGAAGTGTGGCTGTGACC TGTATGTGGCTTGAACTGTGCATTCCG

WT-1 ACATCCGACTTCCAAGACAGCACAC TTGCAGCCAGACCTCTGAAATTCTG

CD29 TGGTCAGCAACGCATATCTGG GATCCACAAACCGCAACCT

CD44 TCGATTTGAATGTAACCTGCCG CAGTCCGGGAGATACTGTAGC

Vimentin CGGCTGCGAGAGAAATTGC CCACTTTCCGTTCAAGGTCAAG

NANOG TCTTCCTGGTCCCCACAGTTT GCAAGAATAGTTCTCGGGATGAA

Nestin CCCTGAAGTCGAGGAGCTG CTGCTGCACCTCTAAGCGA

3. Results

3.1. Effects of IMB and LAP Treatments on Body Weight

There was no significant difference in initial body weight among all groups (p > 0.05) (Figure 1A).
Induction of CKD significantly reduced final body weights and food intake in all model groups
(p < 0.05) (Figure 1B,C). Compared with the model control, dietary treatments did not significantly
alter final body weights (Figure 1B) or food intake (Figure 1C) (p > 0.05).
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Figure 1. Effects of IMB and LAP treatments on body weight of CKD mice. (A), initial body weight;
(B), final body weight; (C), food intake. Data was presented as Mean ± SD, and analyzed by ANOVA.
Within the panel, values with a superscript * are significantly different from that of the NC, p < 0.05.
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3.2. Effects of IMB and LAP Treatments on Kidney Inflammation and Damage

The effects of treatments on kidney inflammation and damage were evaluated histopathologically
by H & E, PAS, and trichrome staining. The statistical analysis results of histopathological scores
of kidney tissues are presented in Table 2, and the representative results are shown in Figure 2.
Tubular dilation without basement membrane thickening was considered as an acute process and
was used to evaluate the acute change. Tubular dilation along with other features were evaluated
under the tubular atrophy. Tubular atrophy, interstitial fibrosis, and chronic inflammation were
evaluated as chronic changes. The kidney tissues in the adenine-treated mice showed tubular
dilation (Figure 2A), acute inflammation (Figure 2A), tubulointerstitial degradation (Figure 2B),
interstitial chronic inflammation (Figure 2B), capillary widening (Figure 2C), thickened glomeruli
basement membrane (Figure 2C), and tubulointerstitial fibrosis (Figure 2D), whereas the kidney tissues
from normal control mice did not show histopathological lesions (Figure 2E–G). These histopathological
parameters were improved by IMB and/or LAP treatments (Figure 2H–J, images were from one mouse
treated with the IMB-H/LAP-H combination group).
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Figure 2. Histopathological evaluation of kidney lesions. Representative histopathology slides from
the adenine-induced CKD mice showing tubular dilation and acute inflammation (A), tubulointerstitial
degeneration/atrophy and chronic inflammation (B), thickened glomeruli basement membrane and
capillary widening (C), and tubulointerstitial fibrosis (D). The representative histology slides from
the normal mice showing no lesions (E–G), and the representative histology slides from the effective
treatment mice showing reduced lesions (H–J).

Compared with the NC, the MC showed significantly higher levels of tubular dilation,
tubulointerstitial degeneration/atrophy, chronic inflammation, and acute inflammation (p < 0.05 in all
histopathological lesions). The administration of LAP-L significantly alleviated the kidney inflammation
and damage, and inhibited tubular dilation (p < 0.05), tubulointerstitial degeneration/atrophy
(p < 0.05), and chronic inflammation (p < 0.05), and IMB-H significantly inhibited tubulointerstitial
degeneration/atrophy (p < 0.05). In particular, the IMB-H/LAP-H combination significantly inhibited
all measured histopathological parameters (p < 0.05), and the IMB-L/LAP-L combination significantly
alleviated tubular dilation and interstitial chronic inflammation (p < 0.05). These results suggest that
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the combination of IMB and LAP, especially at the high doses, may further enhance the protective effect
on kidney damage/inflammation, although the apparent combination effect (additive or synergistic)
was not obvious. While IMB and LAP treatment alone showed some beneficial effects, no clear
dose-dependent effect was determined.

Table 2. Statistical Analysis Results of Histopathology Scores in Kidneys.

Histopathology Grade NC MC IMB-L IMB-H LAP-L LAP-H IMB-L/LAP-L IMB-H/LAP-H

Tubular dilation

0 8 0 0 0 0 0 0 2
1 0 0 0 1 4 1 3 4
2 0 2 3 3 2 2 4 2
3 0 6 3 4 2 5 1 0

p value (vs. MC) <0.05 <0.05 <0.05 <0.05

Tubulointerstitium
degeneration/atrophy

0 8 0 1 1 0 0 0 2
1 0 1 1 3 4 0 3 3
2 0 1 2 3 3 3 3 2
3 0 6 4 1 1 5 2 1

p value (vs. MC) <0.05 <0.05 <0.05 <0.05

Interstitial chronic
inflammation

0 8 0 1 1 3 1 3 3
1 0 2 1 3 3 5 2 5
2 0 2 4 3 1 0 3 0
3 0 4 2 1 1 2 0 0

p value (vs. MC) <0.05 <0.05 <0.05 <0.05

Acute
inflammation

0 8 0 0 0 0 0 1 2
1 0 0 1 3 4 3 3 3
2 0 2 5 1 1 0 1 2
3 0 6 2 4 3 5 3 1

p value (vs. MC) <0.05 <0.05

Data were presented as the number of mice that had the damage/inflammation in each group, and were transferred
to frequency, followed by the analysis of Kruskal-Wallis test among all groups and then Mann-Whitney test between
two groups.

3.3. Effects of IMB and LAP Treatments on Circulating Levels of Cytokines and Kidney Injury Biomarkers

Figure 3 (Figure 3A–F) shows that the serum levels of cytokines IP-10, VEGF, MCP-1, IL-6,
and IFN-γ in the MC were significantly increased compared with the NC (p < 0.05), whereas the serum
level of IL-12p70 in the MC was non-significantly increased (p > 0.05) (Figure 3E). Compared with that
of the MC, MCP-1 levels were significantly reduced in all treatment groups except the IMB-L group
(p < 0.05, Figure 3C), IL-6 levels were significantly reduced in the LAP-L and the IMB-H/LAP-H groups
(p < 0.05, Figure 3D), IL-12p70 levels were significantly reduced in the LAP-H and the IMB-L/LAP-L
groups (p < 0.05, Figure 3E), and IFN-γ level was significantly reduced in the IMB-H/LAP-H group
(p < 0.05, Figure 3F).

Compared with that of the NC, the serum levels of kidney injury biomarkers TIMP-1, cystatin C,
lipocalin-2, and clusterin in the MC were significantly increased (p < 0.05, Figure 3G–J, respectively).
Compared with that of the MC, cystatin C levels were significantly decreased in all treatment groups
except the LAP-H group (p < 0.05, Figure 3H), TIMP-1 levels were significantly reduced in the IMB-H,
LAP-L, IMB-L/LAP-L, and IMB-H/LAP-H groups (p < 0.05, Figure 3G), and lipocalin-2 levels were
significantly reduced in the LAP-L group (p < 0.05, Figure 3I). On the other hand, clusterin levels were
not significantly altered by the treatments (Figure 3J).
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Figure 3. Effects of IMB and LAP supplements on circulating levels of cytokines and kidney injury
biomarkers. The circulating cytokines levels of IP-10 (A), VEGF (B), MCP-1 (C), IL-6 (D), IL-12p70
(E) and IFN-γ (F); the circulating levels of kidney injury markers TIMP-1 (G), cystatin (H), lipocalin-2
(I) and clusterin (J). Values are expressed as Mean ± SD, n = 8. Within each panel, values with the
superscript symbols “*” and “#” are significantly different from the NC and MC, respectively, p at
least <0.05.

3.4. Effects of IMB and LAP Treatments on the Expression Levels of Inflammatory Cytokines in Kidney

As shown in Figure 4, when compared with the NC group, the MC group showed significantly
increased expression levels of MCP-1, IL-1, IL-6, TLR-4, TNF-α, F4/80, TGF-β1, and IL-1β genes in
kidney (p < 0.05). When compared with the MC, the experimental treatments of IMB or LAP significantly
reduced the expression levels of IL-1 (Figure 4B, except IMB-L, LAP-L, LAP-H, and IMB-L/LAP-L), IL-6
(Figure 4C), TLR-4 (Figure 4D), TNF-α (Figure 4E, except IMB-L, LAP-L, and LAP-H), F4/80 (Figure 4F,
except LAP-H), TGF-β1 (Figure 4G, except IMB-H, LAP-L, and LAP-H), and IL-1β (Figure 4H).
The IMB-H/LAP-H treatment also reduced the expression level of MCP-1 (Figure 4A). It is also
important to note that the IMB or LAP treatments reduced adenine-induced expression of MCP-1, IL-1,
TLR-4, F4/80, TGF-β1, and IL-1β genes in kidney to the levels that were comparable to the NC (p > 0.05).
These results further supported that IBM or LAP could significantly reduce kidney inflammation levels
in kidney.

3.5. Effects of IMB and LAP Treatments on the Expression Levels of Stem Cell-Related Genes in Kidney

Compared with the NC, the MC showed significantly elevated CD44, CD133, CD11β, Pax-2,
vimentin, Wnt-4, Wt-1, and nestin mRNA levels in kidney (Figure 5, p < 0.05). The treatments
with LAP-H and the two combinations ameliorated the imbalance changes of CD44, CD133, CD11β,
and Pax-2 mRNA levels compared with the positive control (p < 0.05), and the treatments with IMB
(low or high dose) and the combination of IMB-H/LAP-H reduced Wt-1 and nestin mRNA levels
(p < 0.05).
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Figure 4. Effects of IMB and LAP supplements on the gene expression levels of inflammatory cytokines
in kidney. MCP-1 (A), IL-1 (B), IL-6 (C), TLR-4 (D), TNF-α (E), F4/80 (F), TGF- β 1 (G), and IL-1 β (H).
Values are expressed as Mean±SD, n=8. Within each panel, values with the superscript symbols “*”
and “#” are significantly different from the NC and MC, respectively, p at least <0.05.
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Figure 5. Effects of IMB and LAP on the gene expression levels of stem cells markers in kidney. CD44
(A), CD133 (B), CD11β (C), Pax-2 (D), vimentin (E), Wnt-4 (F), WT-1 (G), and nestin (H). Values are
expressed as Mean±SD, n=8. Within each panel, values with the superscript symbols “*” and “#” are
significantly different from the NC and MC, respectively, p at least <0.05.
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3.6. Effects of IMB and LAP Treatments on Gut Microbiota

We also determined the effect of treatments on alteration of gut microbiota community in the
mouse model. Compared with that in the NC, gut Clostridium leptum group level was significantly
decreased in the MC, whereas this decrease was significantly reversed by the treatments (Figure 6D, p at
least <0.05, except the IMB-L/LAP-L group owing to high variation). Compared with the NC, the MC
group had a non-significant decrease of Clostridium coccoides group level, whereas the treatments
of IMB-L and LAP-H significantly increased Clostridium coccoides group levels (Figure 6C, p at least
<0.05). Compared with the MC, the treatment of 250 mg/kg of IMB significantly increased levels of
Bifidobacterium genus, Bacteroides fragilis group, and Clostridium leptum group (p < 0.05). The levels of
other gut microbiota groups were not significantly altered by the treatments (Supplement Figure S1).
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Figure 6. Effects of IMB and LAP supplements on gut microbiota levels. Bifidobacterium genus (A),
Bacteroides fragilis group (B), Clostridium coccoides group (C), and Clostridium leptum group (D).
Values are expressed as Mean ± SD, n = 8. Within each panel, values with the superscript symbols “*”
and “#” are significantly different from the NC and MC, respectively, p at least <0.05.

3.7. Correlation Analysis between Histopathological and Metabolic Parameters

Spearman correlation analysis was applied to determine the association between histopathological
parameters and molecular biomarkers in blood or kidney tissues. As shown in Table 3 serum levels of
kidney injury markers KIM-1, TIMP-1, cystatin C, lipocalin 2, clusterin, and OPN were significantly
positively correlated with all histopathological parameters of kidney lesions (except no significant
correlation between interstitial chronic inflammation and KIM-1, or clusterin). Serum levels of
cytokines IP-10, VEGF, IL-6, and IFN-γwere significantly positively correlated with all histopathological
parameters of kidney lesions. Kidney gene expression levels of inflammatory cytokines IL-6, TNF-α,
TGF-β1, and TLR-4 were significant positively correlated with all histopathological parameters of
kidney lesions (except no significant correlation between TLR-4 and interstitial chronic inflammation).
Kidney gene expression levels of stem cell markers CD133, Pax-2, CD11β, CD44, vimentin, and nestin
were also significantly positively correlated with all histopathological parameters of kidney lesions.

The correlation analysis also showed that Desulfovibrio genus was negatively correlated with
all histopathology inflammation and damage parameters (p < 0.05), and that Prevotella genus was
negatively correlated with tubular dilation and interstitial acute inflammation (p < 0.05).
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Table 3. Significant correlation coefficients between histopathology and hemodynamic parameters, and kidney and gut microbiota gene expression *. KIM, kidney
injury molecule; TIMP, tissue inhibitor of metalloproteinases; VEGF, vascular endothelial growth factor; OPN, osteopontin; IFN, interferon; IP, inducible protein.

Indices
Tubular Dilation Tubulointerstitial Degeneration/Atrophy Interstitial Chronic Inflammation Acute Inflammation

R p Value R p Value R p Value R p Value

Coefficient

KIM-1 0.517 0.000 0.341 0.007 0.565 0.000
TIMP-1 0.708 0.000 0.631 0.000 0.493 0.000 0.759 0.000

Cystatin C 0.807 0.000 0.811 0.000 0.687 0.000 0.780 0.000
Lipocalin 2 0.654 0.000 0.606 0.000 0.497 0.000 0.674 0.000
Clusterin 0.290 0.041 0.242 0.090 0.293 0.039

OPN 0.659 0.000 0.634 0.000 0.467 0.000 0.735 0.000
IP-10 0.549 0.000 0.421 0.001 0.227 0.096 0.578 0.000
VEGF 0.595 0.000 0.541 0.000 0.456 0.001 0.580 0.000
IL-6 0.461 0.001 0.371 0.011 0.334 0.023 0.532 0.000

IFN-γ 0.477 0.000 0.398 0.003 0.498 0.000 0.391 0.004

Pathology

Tubular dilation 0.822 0.000 0.768 0.000 0.843 0.000
Tubulointerstitium

degeneration/atrophy 0.822 0.000 0.794 0.000 0.778 0.000

Interstitial chronic inflammation 0.768 0.000 0.794 0.000 0.697 0.000
Acute inflammation 0.843 0.000 0.778 0.000 0.697 0.000

Kidney gene expression

IL-6 0.553 0.000 0.420 0.004 0.414 0.004 0.416 0.004
TNF-α 0.386 0.002 0.468 0.000 0.306 0.014 0.365 0.003
TGF-β1 0.370 0.008 0.403 0.003 0.301 0.032 0.351 0.012
TLR-4 0.372 0.030 0.386 0.024 0.410 0.016
CD133 0.456 0.002 0.363 0.015 0.359 0.017 0.512 0.000
Pax-2 0.394 0.002 0.312 0.018 0.342 0.009 0.472 0.000
Six2 0.246 0.073 0.256 0.062 0.231 0.093

CD11 β 0.392 0.002 0.381 0.003 0.315 0.014 0.400 0.002
CD44 0.512 0.000 0.403 0.005 0.486 0.000 0.532 0.000

Vimentin 0.365 0.008 0.325 0.019 0.388 0.005 0.410 0.003
Nestin 0.352 0.005 0.481 0.000 0.351 0.005 0.330 0.009

Gut microbiota
Desulfovibrio genus −0.451 0.002 −0.375 0.012 −0.430 0.004 −0.410 0.006

Prevotella genus −0.321 0.034 −0.284 0.061

* The data of individual parameter from each animal in all experimental groups were used for correlation analysis.
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4. Discussion

In this study, we evaluated the effects of two novel nutritional components, IMB and LAP,
on inhibition of inflammation and kidney injury, and alteration of gut microbiota in the adenine-induced
CKD mouse model. With a few exceptions, both IMB and LAP, especially their combinations,
significantly inhibited tubular dilation, tubulointerstitial degeneration or atrophy, interstitial chronic
inflammation, and acute inflammation in kidneys of the CKD mice. Molecular biomarkers
determination showed that IMB or LAP significantly reversed CKD-associated increases of circulating
and kidney levels of inflammatory cytokines, circulating levels of kidney injury biomarkers, and kidney
levels of stem cell biomarkers. The correlation analysis further indicated significant positive correlations
of histopathological markers of kidney lesions to measured molecular markers, with a few exceptions.
Gut microbiota analysis also showed that IMB or LAP reversed CKD-associated reduction of
Clostridium leptum group and Clostridium coccoides group; the correlation analysis showed significantly
negative correlation between histopathology parameters of kidney lesions and gut Desulfovibrio genus
or Prevotella genus species.

CKD is associated with an increased acute and chronic pro-inflammatory state [3,15].
While inflammation is one of the core pathological features of CKD, it may play a causal role
in the development of kidney injury, and contribute to the progression of CKD by inducing release
of pro-inflammatory cytokines [15]. The adenine-induced CKD mouse model has been reported
to recapitulate several key characteristics of kidney injury and CKD, especially those related to
inflammation [12,13], and it has been applied for evaluating the effects of natural products on
prevention and treatment of CKD [16,17].

In this study, we found significant reductions in most of the pro-inflammatory markers.
The circulating levels of TNF-α, IFN-γ, IL-1, IL-6, and TLR-4 were increased by adenine, but were
attenuated by LAP and/or IMB treatment (Figures 3 and 4). Similarly, adenine significantly induced
expression levels of MCP-1, IL-1, IL-6, TLR-4, TNF-α, F4/80, TGF-β1, and IL-1β genes in kidney,
and most of these increases were attenuated by IMB and/or LAP treatments (Figure 4), which is
consistent with the histopathological confirmation of inflammation. Altogether, these findings support
that IMB and/or LAP alleviate the kidney injury in CKD at least in part via inhibition of inflammation.

Our results showed that serum levels of TIMP-1, cystatin C, and lipocalin2, markers of kidney
injury [18], were high in the adenine-induced CKD mice, but TIMP-1 and cystatin C was significantly
reduced by the treatments. The serum level of TIMP-1, which promotes cell proliferation and has
anti-apoptotic functions, was increased at the highest level in the adenine-induced CKD mice, and was
significantly reduced by these nutritional compounds. To further understand the kidney injury
repair mechanism, we determined the gene expression levels of kidney stem cell-related markers.
We observed increased expression of key stem cell markers CD44, CD133, Pax-2, CD11β, vimentin,
and nestin in the kidney tissues of affected mice, which were all attenuated in the treatment groups
(Figure 5). In the human kidney, the expression of CD133 characterizes a population of resident
scattered cells with resistance to damage and the ability to proliferate [19,20]. CD133 itself appears to
play a functional role in renal tubular repair through maintenance of proliferative responses and the
control of senescence [21]. Pax2 [22] is a marker of mature podocytes and is essential for the phenotypic
conversion from mesenchymal stem cells to tubular epithelial cells during kidney development.
Nestin and CD44 are also involved in cellular proliferation and migration [23–25]. Vimentin [26],
as a kidney stem cell marker, maintains cells shape and integrity of the cytoplasm, and stabilizes
cytoskeletal interactions. WT-1 is now known to have an important role in kidney progenitor cells
during development [27]. As kidney injury and kidney stem cell-related markers were increased owing
to the CKD, and were significantly or non-significantly reduced by the IMB and/or LAP treatments,
the results suggest that, while kidney stem cells related repair is needed in kidney injury, and the
effective treatments with IMB and/or LAP reduced the requirement of kidney stem cells for repair.

Microbiota metabolism is emerging as a modifiable risk factor in nephrology, and nutritional
manipulation of gut microbiota may play an important role in the prevention and management of
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CKD [28]. The gut microbiota alterations in CKD was reported by others [29–33], and appear to be the
result of metabolic changes. Specifically, CKD patients were reported to have reduced Bifidobacteriaceae
and Lactobactria levels and increased Bacteroides levels [34,35]. Interestingly, kidney functions and
systemic inflammation were improved by Lactobactria treatment in the rat and dog models of
CKD [35,36]. Our gut microbiome analysis exhibited alterations in a number of microbial species in
the adenine-induced CKD mice model group that were reversed in the treatment groups (Figure 6 and
Supplementary Figure S1). However, our data indicate that LAP and IMB do not exert their effects in
CKD through altering those bacteria mentioned in other studies. We observed a significant decrease in
Clostridium leptum levels in the model control mice, which was significantly increased in most of the
treatment groups. Some nutritional components such as partially hydrolyzed guar gum could increase
Clostridium leptum levels and decrease inflammation in a mouse model of colitis [37]. A decrease in
Clostridium leptum group was also reported in inflammatory bowel diseases and inflamed mucosa of
patients with ulcerative colitis [38]. Therefore, more studies in this arena may unravel the link between
the decrease in Clostridium leptum levels and increased inflammation in CKD. Further correlation
analysis also found significantly negative correlation of histopathology inflammation and damage
parameters to Desulfovibrio genus (Table 3). Inflammatory bowel diseases and inflamed mucosa of
patients with ulcerative colitis had a decreased Desulfovibrio group level [39]. However, Desulfovibrio is
also considered as a proinflammatory bacteria [40]. Therefore, the functional role of Desulfovibrio in
CKD needs further investigation.

5. Conclusions

In conclusion, our animal study demonstrated that novel bioactive components, IMB and LAP,
significantly inhibited the development and progression of CKD associated with the inhibition of
inflammation in kidney tissues and in circulation, improvement of stem cell-based kidney repair,
and modulation of gut microbiota. Our results provide essential preclinical evidence to support further
investigation on applying IMB and/or LAP for the prevention and alleviation of CKD and associated
kidney injury.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/8/2376/s1.
Figure S1. Effects of IMB and LAP supplements on gut microbiota levels. Atopobium cluster(A), Clostridium
perfringens group (B), Desulfovibrio genus(C), Enterobacteriaceae family (D), Lactobacillus genus (E) and
Prevotella genus (D). Values are expressed as MeanSD, n = 8. Within each panel, values with the superscript
symbols “*” and “#” are significantly different from the NC and MC, respectively, p at least <0.05.
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