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Abstract

Understanding models which represent the invasion of network-based systems by infectious agents can give important
insights into many real-world situations, including the prevention and control of infectious diseases and computer viruses.
Here we consider Markovian susceptible-infectious-susceptible (SIS) dynamics on finite strongly connected networks,
applicable to several sexually transmitted diseases and computer viruses. In this context, a theoretical definition of endemic
prevalence is easily obtained via the quasi-stationary distribution (QSD). By representing the model as a percolation process
and utilising the property of duality, we also provide a theoretical definition of invasion probability. We then show that, for
undirected networks, the probability of invasion from any given individual is equal to the (probabilistic) endemic
prevalence, following successful invasion, at the individual (we also provide a relationship for the directed case). The total
(fractional) endemic prevalence in the population is thus equal to the average invasion probability (across all individuals).
Consequently, for such systems, the regions or individuals already supporting a high level of infection are likely to be the
source of a successful invasion by another infectious agent. This could be used to inform targeted interventions when there
is a threat from an emerging infectious disease.
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Introduction

‘Compartmental’ models [1]–[4], in which interacting individ-

uals exist in discrete states, for example: susceptible, infectious or

recovered, capture the essence of real-world host-to-host infection

dynamics. Transition between states is often represented as a time-

homogeneous Poisson process [2], [3], which can depend on the

states of other individuals. Assuming a large and evenly-mixed

population, in which every individual interacts equally with every

other individual, many important results have been derived by

using a mean-field approximation. For example, the deterministic

susceptible-infectious-recovered/removed (SIR) model exhibits an

invasion threshold whereby, depending on the combined effect of

the rate at which individuals make infection-causing contacts and

the rate at which infected individuals recover, a small number of

initial infecteds will either cause a significant outbreak, the size of

which can be calculated and is often referred to as the ‘final size’,

or the infection rapidly dies out [1]. Likewise, the deterministic

susceptible-infectious-susceptible (SIS) model also exhibits an

invasion threshold such that, depending on the same factors, the

infection either persists at some constant endemic level or rapidly

dies out [5]. The way in which these thresholds, and the final size

and endemic prevalence, are affected when an immunisation

process is included has been investigated. By comparing these and

similar models with real statistical data it has also been possible to

quantify the invasion threshold, and expected impact on the

population, for various diseases [6], [7]. Therefore, we have some

way of determining optimum vaccination policies for the

eradication or control of specific diseases.

To reflect the probabilistic nature of the real-world process of

invasion, and disease transmission in general, stochastic descrip-

tions are required. Moreover, the probability of invasion from a

single infectious individual clearly depends on that individual’s

particular relationships with others, e.g. some individuals may be

better connected than others. In order to capture such heteroge-

neity, the population can be represented as a contact network [8]

which defines, for each individual, the subset of the population

with which it has direct contact. If the population is then assumed

to be infinite such that the number of neighbours with which an

individual has contact is described by a probability distribution, it

is sometimes possible to compute the invasion probability and

(fractional) final size for the stochastic SIR model by utilising

percolation theory [8]–[10]. For finite populations, there are many

numerical methods by which to measure the final size distribution

[11]. However, finite contact networks do pose conceptual

difficulties; indeed, endemic behaviour is often associated with

non-trivial stationary distributions which for many finite systems

do not exist, while the theoretical definition of invasion probability

depends on a framework which posits an infinite population such

that invasion corresponds to indefinite persistence.

In the next section we will introduce the network-based SIS

stochastic model and explain, following Harris [12], how it can be

represented graphically. We will also show how such a graphical

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e69028



representation can be used to prove an important equation, which

we state, and which expresses the property known as ‘duality’. This

property was discovered by Holley and Liggett [13], and Harris

[14], but it is usually discussed in relation to undirected non-

weighted networks. We find that it is also relevant in the context of

directed weighted networks. In ‘Theoretical Results’ we will define

and justify, for an arbitrary strongly connected network, exact

mathematical quantifiers for both endemic prevalence and

invasion probability. We also prove an exact relationship between

them (see Pastor-Satorras and Vespignani [15] for a discussion of

endemicity in random scale-free networks, and Gilligan and van

den Bosch [16] for an overview of ‘invasion and persistence’ in

epidemiological models). In ‘Numerical Simulation’ we will discuss

how these quantifiers are to be measured through stochastic

simulation and provide some examples. Notably, we will illustrate

our theoretical results on the largest strongly connected (5,119

node) component Tex (File S1) of a particular heterogeneous

transmission network. The full network comprises 11,480 nodes

and was generated from simulations on a complex model of the

spread of H5N1 avian influenza through the British poultry flock

[17], [18]. It exhibits extensive heterogeneity including complex

spatial structures, heterogeneous transmission strengths varying

over many orders of magnitude, clustering and directed links. It

therefore serves as a somewhat rare example of ‘realistic’ epidemic

contact structures.

Markovian SIS Dynamics on a Contact Network

In Markovian SIS dynamics, an individual is able to flip

repeatedly between two states: susceptible and infectious. This

happens via a locally influenced time-homogeneous Poisson

transmission process and an individual-specific time-homogeneous

Poisson recovery process (on recovery an individual returns to the

susceptible state). In the context of individuals interacting in this

way on a regular square lattice the SIS model is also known as the

contact process [19] (see Liggett [20] for theoretical results, and

Durrett and Levin [21] for an ecological perspective). We will

consider the dynamics of the Markovian SIS model on the full set

of networks which are finite and static (our theoretical results will

apply to the subset that are strongly connected). A generic

weighted network (that can also be directed) will be denoted by a

matrix T , where Tij indicates the rate parameter of the Poisson

process in which individual j infects individual i, assuming j is

infectious and i is susceptible (i,j[f1,2, . . . ,Ng where N is the

population size). Thus, T combines the rates at which the

individuals interact with the probability that infection occurs when

an infectious individual contacts a susceptible individual. In this

way, T captures features of the network and the infectious agent.

We will also refer to a vector C~(c1,c2, . . . ,cN ) where ci is the

rate parameter of the Poisson process in which i recovers when it is

infectious.

Assuming the system is in a specific stochastic state, let li be the

infectious pressure on individual i such that i is on course to be

infected via the ‘first arrival’ of a Poisson process with rate

parameter li. Similarly, let mi be the recovery pressure on

individual i such that i is on course to recover via the ‘first arrival’

of a Poisson process with rate parameter mi. We can now define

the stochastic model with the following equations:

li~
XN

j~1

TijIjSi

mi~ciIi ð1Þ

where Ii~1 if i is infectious and Si = 1 if i is susceptible, and both

are zero otherwise. Given an initial configuration, such that the

state of each individual is known, direct simulation can be

employed to produce statistically accurate realisations of the

stochastic model for any T and C.

This framework, which represents the dynamics of several

sexually transmitted diseases [22]–[25] and computer viruses [26]–

[29], exhibits the phenomena of both invasion and endemic

prevalence (See Durrett [30] for a discussion of methods and

results relating to SIS dynamics on random scale-free networks).

Graphical Representation
Harris [12] showed that the contact process, and equivalently

Markovian network-based SIS dynamics, can be fruitfully

represented as follows: Each member of the population is assigned

its own positive real number line or ‘time line’. Next, a Poisson

point process with intensity ci is placed on the time line

corresponding to each individual i[V where V~f1,2, . . . ,Ng.
Following Grimmett [31], such points are called ‘points of cure’.

Then, for each ordered pair of individuals (i,j), such that Tij=0,

we place arrows going from j’s time line to i’s time line according

to a Poisson point process with intensity Tij . These arrows are

called ‘arrows of infection’. Under such a representation, the

probability that there is at least one path from 0 on a time line

corresponding to an individual in subset A(V to t on the time

line corresponding to individual k is equal to the probability that k
will be infected at time t when only the members of A are initially

infected (paths take into account the direction of time and the

directions of the arrows of infection and are blocked by the points

of cure). An example of this kind of representation, for a fully

connected network of three individuals, is given in figure 1.

Notation
Assume that we have a network T , with an associated vector of

recovery parameters C. Now, graphically representing Markovian

SIS dynamics on this network, and adopting the notation of Harris

[19], let jA
t (with A(V ) be the set of individuals such that i[jA

t if

and only if there is at least one path from 0 on a time line

corresponding to an individual in A to t on i’s time line (see figure 1

for an example of a path). We will use PT ,C to denote the

appropriate probability measure. Thus, the probability that at least

one member of a subset B will be infected at time t, given that only

the members of subset A are initially infected, i.e. at t~0, can be

expressed as PT ,C(jA
t \B=1).

The Duality Property for General Networks
The property of ‘duality’ pertaining to Markovian SIS dynamics

(and the contact process) can be expressed as follows:

PT ,C(jA
t \B=1)~PTT ,C(jB

t \A=1) ð2Þ

where A,B(V , T is an arbitrary weighted contact network and

TT is the transpose of T . Note that for undirected networks

T~TT which simplifies the relationship and, in this case, the

process is said to be ‘self-dual’.

To understand equation 2, it is simplest to firstly consider the

case where T is undirected and where the subsets contain a single

individual; A~j and B~i. Then the probability of existence of a

path from j at time 0 to i at time t is expressed by the left hand side

An Exact Relationship
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of equation 2. With reference to figure 1, reversing the arrow of

time (turning the diagram upside down), we see that the

probability that a path exists from individual i at time 0 to j at

time t is the same calculation since the Poisson point processes are

the same in reverse. This is expressed by equation 2.

When the network T possesses an asymmetry, the reverse

process needs to be computed on the transposed network to be

equivalent since the direction of infection is reversed. More

generally, the probability that there exists at least one path from an

individual in set A at time 0 to an individual in set B at time t is

equal to the probability that there is at least one path from an

individual in set B at time 0 to an individual in set A at time t in

the transposed network, and this statement is represented by

equation 2.

Theoretical Results

The Quasi-Stationary Distribution as a Quantifier of
Endemic Prevalence

An immediate problem with finite systems is that there are no

genuine stationary distributions corresponding to endemic infec-

tion because the long-term behaviour is always guaranteed

extinction (of the infectious agent). However, from a practical

point of view, it is sometimes possible to obtain something like the

endemic stationary distribution; figure 2a illustrates this clearly for

our example network Tex (File S1) (figure 2b illustrates the

probabilistic nature of the invasion process which is discussed in

subsequent sections). While a genuine stationary distribution does

not exist, it is clear that we can still measure something similar to

endemic prevalence through stochastic simulation since ultimate

extinction is, in this case, very unlikely on short time scales.

From a theoretical perspective, the situation can be made

precise. Our system is finite and Markovian with a single

absorbing state (extinction of the infection). Also, if the network

under consideration is strongly connected such that infection can

be transmitted, via some route, from any individual to any other

individual, then the transient states form a single commuting class.

In this case, if we initiate the system in a transient state and

condition on the survival of the infection, then the system tends to

a unique distribution referred to as the quasi-stationary distribu-

tion (QSD) [32]–[][34]. Let us denote by A an arbitrary subset of

the population represented by a strongly connected network T ,

and let C be the vector of individual-specific recovery parameters.

We can now unambiguously define PA
T ,C(quasi{prevalence) to

be the probability that at least one individual in subset A of the

network is infectious in the QSD. In the notation of the graphical

representation introduced earlier, we can write:

PA
T ,C(quasi{prevalence)~ lim

t??
PT ,C(jV

t \A=1DjV
t \V=1)

~ lim
t??

PT ,C(jV
t \A=1)

PT ,C(jV
t \V=1)

ð3Þ

since jV
t \A=1[jV

t \V=1.

It can be argued that the quasi-stationary distribution has

practical relevance (i.e. is a good ‘representation’ of the endemic

situation [34]) if the rate of convergence to this distribution, when

conditioning on non-absorption, is rapid compared to the rate at

which the system decays to inevitable absorption when it is

‘initiated’ in the QSD [32]. This can often be the case for SIS

dynamics for which, according to Nåsell [34], ‘it is easy to find

examples where the expected time to extinction even for a rather

small population exceeds the age of the universe’. More

specifically, Simonis [35] has shown that the contact process on

large but finite multi-dimensional homogeneous square lattices,

where the initial state is all-infected, will be near to the upper

invariant measure of the corresponding infinite process, restricted

to the finite set, for most of its lifetime (assuming the corresponding

infinite process is supercritical).

Let us consider the following quantities for an arbitrary strongly

connected network T and arbitrary C:

1. PT ,C(jV
t \A=1)~The probability that at least one member

of subset A is infected at time t given that all individuals are

infected at t~0.

2. PT ,C(jV
t \V=1)~The probability that the infection survives

to time t given that all individuals are infected at t~0.

3. PT ,C(jV
t \A=1)=PT ,C(jV

t \V=1)~The probability that

at least one member of subset A is infected at time t given that

all individuals are infected at t~0 and given that the infection

survives to time t.

Note that in the limit as t?? quantity 3 is equal to

PA
T ,C(quasi{prevalence), the probability that at least one

member of A is infected in the QSD.

In figure 3a, the way in which these three quantities may vary

with respect to time is illustrated for a scenario in which the QSD

has practical relevance. In such a scenario, the quantifier

PA
T ,C(quasi{prevalence) is able to capture the value at which

PT ,C(jV
t \A=1) initially ‘plateaus’ before its slow decay to zero.

We have defined PA
T ,C(quasi{prevalence) in terms of the

process which occurs when all individuals are initially infected. We

could, however, define PA
T ,C(quasi{prevalence) in terms of the

process which occurs when only the members of B5V are initially

infected since the QSD, as defined by Daroch and Seneta [32],

[33], is independent of initial conditions. Nonetheless, the process

which occurs when all individuals are initially infected is unique in

Figure 1. A realisation of the graphical representation of
Markovian SIS dynamics on a fully connected network of three
individuals, i, j and k (up to time t). The vertical lines are the time
lines corresponding to each individual. The short diagonal lines indicate
the points of cure and the horizontal arrows are the arrows of infection.
A path from 0 on j’s time line to t on i’s time line is shown in bold.
doi:10.1371/journal.pone.0069028.g001

An Exact Relationship
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that it has the maximum expected time to extinction across all

possible initial states (this follows from jB
t (jV

t (with B5V ) - see,

for example, Grimmett [31]). Therefore, this is the non-

conditioned process which is most appropriately described by

the QSD.

The Equivalent Quantifier of Invasion Probability
In the context of finite contact networks, invasion probability

has not been given a rigorous theoretical definition (see Nåsell [36]

for a discussion of the threshold phenomenon in the stochastic SIS

model). For dynamics with a genuine stationary endemic

distribution, which (in this context) can only exist when the

population size is infinite, the probability of invasion can be

defined as the probability that the infection will persist indefinitely.

For finite populations, this is complicated because we have to

distinguish between infections that fail to invade and infections

which successfully invade but then subsequently die out.

In this section we show that the quantifier of invasion

probability, which is as equally meaningful and relevant as our

quantifier for endemic quasi-prevalence, for outbreaks initiated on

the members of a subset A of a strongly connected network T

(with associated vector C) can be defined as:

Figure 2. Numerical data from simulations of Markovian SIS dynamics on our example network Tex (File S1). (a) is a plot of the total
number of infected individuals against time in a simulation where the outbreak was initiated on a single infectious individual. (b) is a histogram of the
number of infection events in 100 simulations of an outbreak, which were allowed to run up to a maximum of 300 infection events, initiated on the
same individual each time. In both cases, the weighted network matrix was multiplied by 0.01 and the recovery rate was set to unity for all
individuals.
doi:10.1371/journal.pone.0069028.g002

Figure 3. Here we illustrate how it is possible for the quantifiers PA
T,C(quasi{prevalence) and PA

T,C(quasi{invasion) to capture critical
information about the model. If T is undirected then these quantifiers are numerically the same and have equal practical relevance (as is seen by
assuming that T is the same undirected network in (a) and (b), above).
doi:10.1371/journal.pone.0069028.g003

An Exact Relationship
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PA
T ,C(quasi{invasion)~ lim

t??

PT ,C(jA
t \V=1)

PT ,C(jV
t \V=1)

: ð4Þ

Note that the definition of PA
T ,C(quasi{invasion) implies that

quasi-invasion is certain when all individuals are initially infected.

Our definition corresponds to the intuitive notion of invasion, i.e. a

‘large’ outbreak, or the ‘attainment’ of the QSD.

Let us now consider the following quantities:

4. PT ,C(jA
t \V=1)~The probability that the infection survives

to time t given that only the members of A are infected at t~0.

5. PT ,C(jV
t \V=1)~The probability that the infection survives

to time t given that all individuals are infected at t~0.

6. PT ,C(jA
t \V=1)=PT ,C(jV

t \V=1)~The quotient of quan-

tities 4 and 5.

It follows from duality that the three quantities, 4, 5 and 6, are

all equal respectively to the three quantities, 1, 2 and 3, provided

that we transpose T . Note also that, in the limit as t??, quantity

6 is equal to PA
T ,C(quasi{invasion).

Quantity 4 denotes the survival probability up to time t. We see

in figure 3b that this ‘plateaus’ in exactly the same way as quantity

1 for the transposed network (figure 3a). This plateau, which is

captured by quantity 6 in the limit as t??, i.e.

PA
T ,C(quasi{invasion), corresponds to the ‘achievement’ of the

QSD and thus with successful quasi-invasion.

Our quantifier of invasion probability can be generalised as:

PX (quasi{invasion)~ lim
t??

PX
S (t)

Pmax
S (t)

ð5Þ

where X is a transient stochastic state in which the infection is

present. PX
S (t) is the probability of survival to time t given that the

system is initiated in state X , and Pmax
S (t) is the probability of

survival to time t given that the initial state is that which maximises

the expected time to extinction. In this form, the definition

becomes applicable to other Markovian infection dynamics (on

strongly connected networks) which permit endemic behaviour,

e.g. susceptible-infected-removed-susceptible (SIRS) dynamics. It

is the existence of a unique QSD which enables our definition to

capture the probability of invasion in the same way as for SIS

dynamics. Note that the definition of quasi-prevalence can also be

generalised to any infection model with a unique QSD.

The Prevalence-Invasion Relationship
Our main result can be stated as the following (prevalence-

invasion) relationship:

PA
T ,C(quasi{invasion)~PA

TT ,C
(quasi{prevalence) ð6Þ

for any subset A of a weighted and strongly connected contact

network T , conditional on Markovian SIS dynamics.

Equation 6 can be re-written as:

lim
t??

PT ,C(jA
t \V=1)

PT ,C(jV
t \V=1)

~ lim
t??

PTT ,C(jV
t \A=1)

PTT ,C(jV
t \V=1)

ð7Þ

which holds because of the property of duality.

Note that for a single individual we have:

Pi
T ,C(quasi{invasion)~Pi

TT ,C
(quasi{prevalence), ð8Þ

that is, the probability of quasi-invasion from a given individual i is

equal to the probability that it is infected in the QSD (in the

transposed network). By summing over all i[V and dividing by N

we get

P
global
T ,C (quasi{invasion)~P

global

TT ,C
(quasi{prevalence) ð9Þ

where P
global
T ,C (quasi{invasion) is the probability of quasi-invasion

given that the infection is seeded on a single individual selected

uniformly at random, and P
global
T ,C (quasi{prevalence) is the

average fraction of the population that are infected in the QSD.

An implication of the global-level relationship is that, for (strongly

connected) directed networks, reversing the transmission processes

(transposing T ) will result in an interchange between these two

quantifiers without affecting the ‘stability’ of the quasi-stationary

behaviour, i.e. the rate at which the system decays to inevitable

extinction when ‘initiated’ in the QSD is the same for T and its

transpose. This can be understood by observing that

PT ,C(jV
t \V=1)~PTT ,C(jV

t \V=1) Vt§0. Also note that

PT ,C(ji
t\i=1)~PTT ,C(ji

t\i=1) Vt§0, i.e. given the infec-

tion is initiated by individual i, the probability that i is infectious at

any t§0 is the same for T and its transpose.

For the case where T is undirected (T~TT ), the relationship

implies that:

PA
T ,C(quasi{invasion)~PA

T ,C(quasi{prevalence), ð10Þ

and for a single individual i[V :

Pi
T ,C(quasi{invasion)~Pi

T ,C(quasi{prevalence), ð11Þ

and globally:

P
global
T ,C (quasi{invasion)~P

global
T ,C (quasi{prevalence): ð12Þ

Numerical Simulation

Measurement Pi
T ,C(quasi{prevalence) by Stochastic

Simulation

The probability Pi
T ,C(quasi{prevalence) that individual i is

infectious in the QSD is equal to the proportion of time for which i
is infected after the system has ‘reached’ this distribution, assuming

the infection does not die out. Therefore, we measure this as

Pi
T ,C(quasi{prevalence)&

1

t

Xn

k~1

DtkIk
i ð13Þ

where n is a large number of simulated consecutive global events

which occur when the probabilities for the system states obey the

QSD. Dtk is the simulated time between the (k{1)th event and

the kth event, and Ik
i ~1 if i is in the infectious state between these

events but is zero otherwise. The total simulated time is denoted

by t~
Pn

k~1 Dtk. Obviously, the larger we can make n, the more

An Exact Relationship
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exact our measurement becomes. Notice that the events corre-

sponding to a change in the state of individual i, and thus to a

change in the value of Ik
i , represent a very small fraction of the

total global simulated events (assuming the population size is not

extremely small).

In practice, we run the simulation for a sufficiently long time

such that the system is likely to be described by the QSD before we

start to compute Pi
T ,C(quasi{prevalence). For example, were our

simulation to produce an infectious time line similar to the one in

figure 2a we would only include the data from after, say, t~30 in

our computation. Note that in every simulation there is always the

possibility of extinction, even after the QSD has been ‘reached’.

However, we can safely discard any post-extinction data since the

quantity we are interested in is conditioned on non-extinction.

This method of measurement is only valid for systems in which

quasi-stationary behaviour can be easily identified i.e. systems for

which the QSD has significant practical relevance.

Measurement of Pi
T,C(quasi-invasion) by Stochastic

Simulation
In measuring the probability of quasi-invasion through stochas-

tic simulation, the key requirement is separating major outbreaks

from minor outbreaks. Therefore, we look for dichotomised

behaviour in relation to the time until extinction by carrying out

large numbers of simulations, each initiated in the same stochastic

state. For example, we can measure Pi
T ,C(quasi{invasion) as the

fraction of simulations in which an outbreak initiated by individual

i persists for some sufficiently large number EI of infection events,

such that a clear distinction can be made between the simulations

in which long-term persistence occurs and the ones in which it

does not. This is because Pi
T ,C(quasi{invasion) corresponds to

the value at which PT ,C(ji
t\V=1) initially plateaus. Without

observation of this dichotomised behaviour it may not be possible

to classify every simulation. For example, the histogram of

infection events per simulation in figure 2b enables us to clearly

identify the simulations which exhibit long-term persistence, even

though we have only tracked each simulation to the 300th

infection event i.e. EI~300. If such a histogram cannot be

produced from the simulations, EI can be increased in order to try

and ‘uncover’ the dichotomised behaviour.

In general, so long as this kind of dichotomised behaviour is

found, the practical issues which emerge in measuring quasi-

invasion probability by stochastic simulation for the SIS frame-

work are minor. In other words, this method of measurement is

valid, and easily carried out, in systems where PT ,C(ji
t\V=1)

significantly plateaus i.e. systems where Pi
T ,C(quasi{invasion)

has significant practical relevance.

Simulations on our Example Network
By varying a scalar multiplier of a network matrix we can

attempt to investigate infections of varying transmissibility

spreading through the same population. Figure 4 illustrates our

theoretical results, via this method of investigation, for a single

individual in our example network Tex (File S1), clearly showing

the relationship between quasi-invasion probability and endemic

quasi-prevalence. We supply these numerical results to illustrate

the prevalence-invasion relationship. We do of course obtain the

same qualitative behaviour for any strongly connected network as

proved in ‘Theoretical Results’.

To obtain measurements of Pi
T ,C(quasi{prevalence) for

individual i~2332, 100 simulations were run for each of 20

different multipliers of Tex, and in each simulation the first 10

million events, out of 11 million, were discarded. Each simulation

was initiated with sufficient infected individuals such that the

Figure 4. Measurements of Pi
TT ,C

(quasi{invasion) and Pi
T,C(quasi{prevalence) for a single individual (i = node 2332) in our example

network Tex. The recovery rate was set to unity for all individuals while the multiplier of the network matrix was varied. In (a), these two quantifiers
are plotted against each other for each of 20 different multipliers of the network matrix. The faint dashed line indicates equality. On this scale it is not
possible to determine any deviation from the equality of the two quantities. (b) is a ‘zoomed-in’ view of the perpendicular deviation of each of the
data points from the straight line (equality), in the bottom right to top left direction.
doi:10.1371/journal.pone.0069028.g004
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probability of early extinction was negligible. As extinction never

occurred, none of the data was discarded.

To obtain measurements of Pi
TT ,C(quasi{invasion), 1 million

simulations were run for each of the same 20 multipliers. In each

simulation, the infection was initiated on individual i~2332 and

the process was tracked for a maximum of 500 infection events.

Simulations on a Small Square Lattice
An undirected and homogeneously weighted square lattice T of

25 individuals was investigated (see figure 5). Due to the small

population size, the probability of extinction on a relatively short

timescale was significant, even when starting from all-infected.

This network enables us to illustrate the numerical measurement

of our quantifiers in a scenario where the QSD has less practical

relevance, i.e. where endemic quasi-stationary behaviour and

dichotomised persistence are not ‘recognisable’ phenomena. In

this case, we can compute Pi
T ,C(quasi{invasion)

(~Pi
T ,C(quasi{prevalence)) by directly measuring

PT ,C(ji
t\V=1)=PT ,C(jV

t \V=1) at increasing time points

and then estimating its convergent value. Thus, for two different

global transmission parameters (0.8, 0.5), and two different initial

states (all-infected, one infected), 1 million simulations were

allowed to run up to some specific point in simulated time (the

global recovery parameter was always set to 1). For each

simulation, the time at which extinction occurred was recorded

so that the probability of survival up to increasing points in time

could be measured.

In figure 5a, our quantifier is able to capture an important

feature of the model, i.e. the value at which PT ,C(ji
t\V=1)

(~PT ,C(jV
t \i=1)) plateaus before its inevitable decay to zero.

Figure 5b gives an example of a scenario where, although our

quasi-invasion and quasi-prevalence quantifiers are clearly de-

fined, their practical relevance is less obvious. This is because the

transmission parameter was sufficiently low such that early

extinction was the dominant behaviour.

Computational Efficiency in the Measurement of Invasion
Probability and Endemic Prevalence - A New Perspective

Through duality, we can approximate

PA
T ,C(quasi{prevalence) by measuring PTT ,C(jA

t \V=1) at

increasing points in time (as in figure 5) in order to estimate the

value at which it may initially plateau. This could, in certain

circumstances, be much more efficient than trying to establish

global quasi-stationary behaviour and then computing the

proportion of time for which the infection is present in A.

Conversely, if we wish to approximate Pi
T ,C(quasi{invasion), for

all i[V , it may be more computationally efficient to first establish

global quasi-stationary behaviour in the transposed network and

then measure the proportion of time each individual spends

infected.

Discussion

By considering the unique QSD associated with Markovian SIS

dynamics on finite strongly connected networks, along with its

implications under duality, we have provided meaningful math-

ematical definitions for both endemic prevalence (quasi-preva-

lence) and invasion probability (quasi-invasion). Utilising these

definitions, we have also provided a general statement of the exact

relationship between invasion probability and endemic prevalence

at the individual and population level, for any finite undirected

Figure 5. Here we illustrate a method of measurement, through stochastic simulation, for Pi
T,C(quasi{invasion)

(~Pi
T,C(quasi{prevalence)), where T is an undirected and homogeneously weighted square lattice of 25 individuals (we look for

the value towards which PT,C(ji
t\V=1)=PT,C(jV

t \V=1) converges). For (a), the global transmission parameter (Tg) was set to 0.8. For (b),
the global transmission parameter was 0.5. The global recovery parameter was set to 1 in both cases. The figure illustrates how these quantifiers are
well defined but not always practically relevant.
doi:10.1371/journal.pone.0069028.g005
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network of arbitrary heterogeneity (including undirected networks

with weighted links and individual-specific recovery parameters).

The relationship also has implications in the context of directed

networks.

We note that for two specific homogeneous networks (infinite

square lattice and infinite ‘great circle’), invasion probability (in

these cases, the probability of indefinite persistence) from a single

initial infected has been shown to be equal to the fraction of the

population infected in the upper invariant measure [31], [37].

Furthermore, the relationship between the probability of long-

term persistence and quasi-stationary distributions has previously

been investigated (see Chaterjee and Durrett [38] and, for the

related concept of ‘metastability’, see Schonmann [39] and

Simonis [35]). However, although the prevalence-invasion rela-

tionship follows easily from a combination of the QSD and duality,

to our knowledge this is the first general statement of this exact

relationship for any finite strongly connected network. We have

thus related two fundamental epidemiological quantifiers in

systems where they cannot usually be calculated analytically due

to complexity.

It is generally easier to collect empirical data on endemic

prevalence rather than directly on invasion risk. In the case of

undirected networks, prevalence data can thus be utilised to

inform invasion risk. This method echoes Anderson and May’s [7]

estimation of the ‘basic reproductive ratio’ of measles from the

total number of susceptible individuals in England and Wales

(using data from Fine and Clarkson [40]). When other infectious

agents exhibit qualitatively similar behaviour on the same

undirected network, we can expect that the individuals carrying

the greatest level of endemic infection are also those most likely to

initiate new successful invasions. This lends support to the

targeting of high-risk individuals in these systems as an effective

strategy for the mitigation and control of emerging epidemics.
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