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Cancer is considered an age-related disease that, over the next 10 years, will become the
most prevalent health problem worldwide. Although cancer therapy has remarkably
improved in the last few decades, novel treatment concepts are needed to defeat this
disease. Photodynamic Therapy (PDT) signalize a pathway to treat and manage several
types of cancer. Over the past three decades, new light sources and photosensitizers (PS)
have been developed to be applied in PDT. Nevertheless, there is a lack of knowledge to
explain the main biochemical routes needed to trigger regulated cell death mechanisms,
affecting, considerably, the scope of the PDT. Although autophagy modulation is being
raised as an interesting strategy to be used in cancer therapy, the main aspects referring
to the autophagy role over cell succumbing PDT-photoinduced damage remain elusive.
Several reports emphasize cytoprotective autophagy, as an ultimate attempt of cells to
cope with the photo-induced stress and to survive. Moreover, other underlying molecular
mechanisms that evoke PDT-resistance of tumor cells were considered. We reviewed the
paradigm about the PDT-regulated cell death mechanisms that involve autophagic
impairment or boosted activation. To comprise the autophagy-targeted PDT-protocols
to treat cancer, it was underlined those that alleviate or intensify PDT-resistance of tumor
cells. Thereby, this review provides insights into the mechanisms by which PDT can be
used to modulate autophagy and emphasizes how this field represents a promising
therapeutic strategy for cancer treatment.
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INTRODUCTION

Cancer remains one of the most common causes of health
problems worldwide with increasing rates in developed and
under-developed/developing countries (1). The new cases and
deaths numbers were estimated at 18.1 and 9.6 million,
respectively, according to GLOBOCAN updates (2). Cancer
more often affects aged people (50.8% of cases), but there is a
worldwide concern about those >65 years in the near future (3,
4). Over the next 10 years, people will suffer more death from
cancer than from other very common diseases, such as diabetes
(5). It is clear, therefore, that although cancer treatment has
considerably improved in the last decades, the fight against this
disease is in urgent need of novel tools.

Cancer is a multifactorial disease and despite the many
recently introduced chemo and immunotherapies the general
clinical outcome and prognosis of cancer patients is not
optimistic at all. Overall, novel therapies are less detrimental to
Abbreviations: 1400W, N-[3- (aminomethyl)benzyl]acetamidine; 2-DG, 2-deoxy-
D-glucose; 3-MA, 3-methyladenine; 5-ALA, 5-aminolevulinic acid; ABC, ATP
binding cassette; ABCB1, ATP Binding Cassette Subfamily B Member 1 or P-
Glycoprotein 1; ABCB6, ATP Binding Cassette Subfamily B Member 6 (Langereis
Blood Group); ABCG2, ATP Binding Cassette Subfamily GMember 2 (Junior Blood
Group) or BCRP; AKT, Ser and Thr kinase AKT, also known as protein kinase B;
APAF-1, Apoptotic protease-activating factor-1; ATF4, Activating transcription
factor 4; ATF6, Activating transcription factor 6; BAF-A1, Bafilomycin A1; BAK,
Bcl-2 homologous antagonist killer; BAX, Bcl-2 -associated X protein; BLC-2, BCL2
apoptosis regulator; BCL-xL, BCL2 Like 1; BID, BH3 interacting-domain death
agonist; BPD, Benzoporphyrin or verteporfin; Ce6, Chlorin e6; CHOP, C/EBP
homologous protein or DNA damage inducible transcript 3 (DDIT3);
CisDiMPyP, meso-cis-di(N-methyl-4-pyridyl)diphenyl porphyrin dichloride;
cPTIO, 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; CQ,
Chloroquine; DCA, Dichloroacetate; dc-IR825, Near-infrared cyanine dye;
DMMB, 1,9 dimethylmethylene blue; eIF2a, Eukaryotic translation initiation
factor 2A; EGFR, Epidermal growth factor receptor; ER, Endoplasmic reticulum;
ERK, Extracellular signal-regulated kinases; H2O2, Hydrogen peroxide; HAL,
Hexaminolevulinate or 5-Aminolevulinic acid hexyl ester; HPPH, 2-(1-
Hexyloxyethyl)-2-devinyl pyropheophorbide-a; HSP27, Heat shock protein
27; HSP70, Heat Shock Protein Family A (Hsp70) Member 4; HSP90, Heat shock
Protein 90 Alpha Family Class A Member 1; HSPA5, Heat Shock Protein Family A
(Hsp70) Member 5; iNOS/NOS2, Inducible nitric oxide synthase; JNK, c-jun N-
terminal kinases; LAMP2A, Lysosome-associated membrane protein type 2A; LED,
Light-emitting diode; MAP2K1, Mitogen-activated protein kinase kinase 1; MAPK1/
ERK2, Mitogen-activated protein kinase 1; MAPK3/ERK1, Mitogen-activated
protein kinase 3; MPPa, Pyropheophorbide-a methyl ester; m-THPC, meta-
tetrahydroxyphenylchlorin; mTOR, Mammalian target of rapamycin; mTORC1,
mTOR complex 1; NPe6, Mono-L-aspartyl chlorin e6 or talaporfin sodium; N‐TiO2,
Nitrogen‐doped titanium dioxide; •OH, Hydroxyl radical; (O−·

2 ), Superoxide ion; 1O2

, Singlet oxygen; p38a, P38 mitogen-activated protein kinase or Mitogen-Activated
Protein Kinase 14; PARP1, Poly(ADP-ribose) polymerase 1; Pc13, Zinc(II)
phthalocyanine Pc13; PEPT1, Oligopeptide transporter peptide transporter 1;
PFKFB3, 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3; PpIX,
Protoporphyrin IX; PS, Photosensitizer; PSA, Pepstatin A; RIPK3, Receptor
Interacting Serine/Threonine Kinase 3; ROS, Reactive oxygen species; SLC15A1,
Solute Carrier Family 15 Member 1 or PEPT1; TPGS, D-a-tocopheryl polyethylene
glycol 1000 succinate; TPPOH, 5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin;
TPPOH-X SNPs, Silica nanoparticles (SNPs) coated with xylan-TPPOH conjugate
(TPPOH-X); TPPS, Tetraphenylporphinesulfonate; TPCS2a, Disulfonated
tetraphenyl chlorine; TPPS2a, meso-Tetraphenylporphine disulphonic acid
disodium salt (adjacent isomer), WST11, Palladium bacteriopheophorbide.;
TRIB3, Tribbles-related protein 3; ULK1, Unc51-like autophagy activating kinase
1; VMP1, Vacuole membrane protein 1.
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the individual because they are specific in modulating different
immune/biochemical pro-death modes (e.g. apoptosis), to get rid
of tumor cells. Unfortunately, by a phenomenon known as
chemo-adaptation and dormancy many human cancers (e.g.
cutaneous melanoma, breast, head, and neck tumors) can
downregulate specifically the pro-apoptotic mechanisms,
worsening the outcome and the prognosis of cancer patients.
In addition to proliferation and plasticity abilities, tumor cells
considered “stemness” gradually give rise to chemoresistance via
a distinct variety of mechanisms and pathways. For this reason,
the modulation of different cell death pathways could help to
define complementary or alternative strategies to those based on
the activation of apoptosis.

Since all cells have membranes whose integrity is necessary
for survival, therapeutic strategies that address specific oxidative
damage in the membranes of organelles have great potential to
avoid therapeutic resistance. Photodynamic Therapy (PDT) is a
non-invasive and efficient strategy based on photophysical
principles that may provide specific oxidative damage in
organelles such as the endoplasmic reticulum, mitochondria,
and lysosomes. Herein, we present our current knowledge
regarding tumor resistance concerning the suppression of
autophagic response, in an attempt to improve clinical
outcomes. In this scenery, the photo-mediated pro-death
autophagy emphasizes PDT as a promising therapy to deal
with tumors that evade apoptosis. Undeniably, PDT has been
applied with success to treat several types of human cancers with
tolerable side effects. However, as PDT-resistance has increased
due to distinct reasons (oxidative-scavenger response, autophagy
activation, drug extrusion, and others), we will discuss the pitfalls
and successes of its use, considering autophagy as a therapeutic
target to improve tumor remission. Considering the PDT
photophysics and photochemistry effects, as well as the
photooxidative-mediated membrane damage, we will discuss
the molecular mechanism for tumor-resistance, particularly
focusing on the biological, molecular, and translational aspects
of the PDT-related cancer treatments.
PHOTODYNAMIC THERAPY (PDT)

Considering the difficulties and challenges in conventional
cancer treatment, such as tumor resistance, new treatment
concepts for both primary care and adjuvant therapy are
highly necessary. PDT is a well-established medical procedure
due to the selective cancer eradication (sparing normal cells),
especially when tumor sites can be demarcated (6). The PDT
advantages compared to the conventional cancer treatments
include: (i) it does not seem to induce drug resistance, (ii)
promote selective cancer destruction, preserving the
surrounding normal tissues (iii) preserving the native tissue
architecture and giving a decisively better recovery compared
with surgery (iv) can be used with other therapies (7).

PDT is definitively less invasive compared to surgery, andmore
precise than chemotherapy and,finally, as opposed to radiotherapy,
may be repeated several times (8). A photosensitizer (PS) molecule
can be administered intravenously, intraperitoneally, or topically to
January 2021 | Volume 10 | Article 610472
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the patient, and the tumors tissue sites are selectively
irradiated. Although these components (i.e., PS and light)
are harmless alone, when combined they provide localized
antitumor therapy. This avoids damage to healthy cells thus
preventing side effects. The combination of PS and light results in
the generation of reactive excited states (singlet and triplet excited
states) as well as several reactive oxygen species (ROS), such as
singlet oxygen (1O2), hydroxyl radical (

·OH), superoxide ion (O−·
2 ),

and hydrogen peroxide (H2O2). These reactive species can
efficiently oxidize and irreversibly damage targeted tumor
tissues/cells (9–11).

Light with a specific wavelength PS triggers the photooxidative
process, as summarized in Figure 1. PS excitation through photon
absorption transforms the ground state PS (S0) into an excited
state - singlet excited state PS (S1). Next, PS (S1) can be converted
into a triplet excited state (PS (T1), by the change in the spin of
electron via a process known as intersystem crossing (ISC). Due to
its new spin configuration, PS (T1) can live long enough to interact
with species nearby, resulting in two main photosensitization
mechanisms: (a) energy transfer to oxygen (Type II process) or
(b) a directed reaction with biological substrates (Type I process).
On the Type II process, energy transfer to molecular oxygen (3O2)
yields the highly reactive oxygen state known as singlet oxygen
(1O2), an electrophilic molecule that is often considered the main
PDT performance species (10–12). Type I processes are based on
reactions between PS (T1) and nearby biomolecules, forming a
variety of products, which can start a radical chain reaction. The
free radicals generated during the Type I mechanism can still react
with oxygen, resulting in the production of ROS such as · OH,
(O−·

2 ), and H2O2 (10–12).
These two reaction mechanisms, Type I and Type II, invariably

involve oxygen as either a primary or a secondary intermediate
reactant and are also called photosensitized oxidation reactions
(11, 13). Both mechanisms may occur simultaneously, and a
balance between them is important for ROS production and, in
turn, determines the overall photo-cytotoxicity effectiveness of the
PDT reaction (11, 14). The dominant mechanism will depend on
Frontiers in Oncology | www.frontiersin.org 3
the PS itself, the type of substrate, the distance between the PS and
the oxidative targets as well as the oxygen concentration.

The PDT efficiency depends on the illumination conditions,
the chemical properties, and the intra-tumoral localization of the
PSs localization. Selecting a suitable device for the tumor region
irradiation is a fundamental factor in PDT protocols. The main
types of light sources used in PDT include lasers, light-emitting
diodes (LEDs), and lamps. Each category source presents
advantages and disadvantages. For this reason, a choice of
proper light source needs to be carefully evaluated according to
the PS, tumor location, and the light dose to be delivered (15).
The geometry of the tumor area which, sometimes, is not easy to
access, determines the decision of the correct light apparatus to
be used (15). As an example of selecting a suitable light device,
Davanzo et al. demonstrated that it is possible to obtain different
PDT outcomes depending on the light source used (16). Under
the same light dose exposure, they reported that continuous laser
was a better light source compared to other devices (pulsed laser
and LED) under the same light dose exposure (16). Indeed, other
factors impact the final PDT outcome, including the amount and
the type of reactive species, which is highly dependent on the
photochemical and photophysical properties of the PS.

Several classes of PSs have been commonly employed in PDT,
including porphyrins, chlorins, phthalocyanines, and
phenothiazines (10). Each one of them presents distinct
advantages and disadvantages regarding the chromophore type.
For example, Photofrin™ (porfimer sodium), which is an
oligomer and was the first PS approved by the FDA for the
treatment of bladder cancer in Canada in 1993 (17). Its structure
is not well defined, but its aqueous suspension can be applied
intravenously. However, the absorption in the low ‘therapeutic
window’ (between 600-800 nm) and a prolonged (~ 4 weeks)
skin photosensitivity is an important side effect (17). On the
other hand, phthalocyanines have a high molar absorption
coefficient in the red spectral region but are not water-soluble.
To deal with this limitation, a liposomal zinc phthalocyanine was
developed and has been tested in phase 1 or 2 clinical trials for
FIGURE 1 | Photodynamic Therapy Mechanism. The photosensitization process starts with a photon absorption that converts the photosensitizer PS (S0) ground
state to a more energetic state known as a singlet excited state PS (S1). Then, an intersystem crossing conversion (ISC) changes the PS multiplicity to a triplet
excited state PS (T1). PS (T1) can interact with molecules nearby and react via two distinct mechanisms: Type I – electron transfer and Type II – energy transfer,
generating reactive oxygen species (ROS). Finally, oxidative species damage biomolecules and can trigger cell death. Created with BioRender.com.
January 2021 | Volume 10 | Article 610472
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solid tumors (17). However, it did not reach the clinical practice,
probably due to issues concerning the stability and the difficulty
of large-scale liposome (18).

Since several ROS species have high reactivity, short lifetimes,
and consequently small diffusion pathways (12), only those PSs
nearby to the biological substrates can cause tumor photodamage
(12, 19). 1O2 lifetime in pure water is ~4 µs (20), which provides a
mean diffusion distance traveled by 1O2 molecules in water of
less than 200 nm, without considering any other reaction with
biomolecules besides its intrinsic decay. Although the average
dimensions of mammalian cells are around 10-30 µm diameter,
the 1O2 mediated oxidative-damage would reach only short
distances, reaching specifically a target PDT organelle (12, 21).
Therefore, generating amounts of ROS does not mean PS
effectiveness (22). If PS is near to an intracellular target, the
photo-generated ROS would oxidize biomolecules in a more
specific way (22). Thus, the oxidative reactions primarily affect
only nearby PS-targeted organelles (12). Also, the relative oxygen
concentration may favor or disfavor 1O2 formation, which may
amplify (or not) the biomolecule’s oxidation reactions (23, 24).
Another parameter that drives PDT efficiency is the molecular
structure of the PS. Of note, PSs belonging to the same class may
have distinct properties, given the diversity of the side-groups
that can be attached to the lead chromophore (25–31).

Knowing that biological membranes guarantee cell
homeostasis due to their crucial role in compartmentalizing
intracellular content and organelles, they are particularly
important targets for PDT. The basic structural membrane
elements are the lipid bilayer and the integral or linked
proteins (32, 33). Both the lipids and the integral proteins
display amphiphilic characteristics, explaining why PSs that
exhibit amphipathic character will interact with the membrane,
independent of whether it is a plasma, mitochondrial, lysosomal,
or endoplasmic reticulum membrane. As an example, Engelman
et al. compared porphyrins with two charged groups around the
ring at position cis and trans and observed that cis-isomer
presented a much larger binding to the membrane than
predicted by water/octanol partition (log POW) (34). This is
because the cis-isomer has an optimized amphiphilic structure
that matches the amphiphilic structures of the lipids in the
bilayer. As a result, an enhanced photodynamic efficiency was
perceived regardless of the type of the membrane (i.e., liposomes,
mitochondria, and erythrocytes membrane) (34). Tsubone et al.
also studied a series of amphiphilic PSs displaying opposite
charges (negative or positive) and noticed that hydrophobic
and dipolar interactions play crucial roles in defining the
affinity of these molecules to membranes (12, 35). Although
the increase in the alkyl chain length above certain limits leads to
aggregation and decreases in the PS photoactivity, increasing the
hydrophobicity up to certain limits has also been associated with
enhanced cell photokilling efficiency (36–38). Another parameter
that favors the PS binding in the lipid membranes is the molecule
asymmetry. In Porphyrin, a peripherical group at meta-position
was found to be more phototoxic than its para-isomer, mainly
because the meta-isomer asymmetry favors the PS-membrane
interaction compared to the symmetric para-isomer (39).
Frontiers in Oncology | www.frontiersin.org 4
Because proteins are the most abundant biomolecules in cells,
they probably act as major targets for photo-oxidation (40, 41).
The main forces that govern PS-protein interaction are well
described in the literature (42, 43). Phototoxic outcomes seem to
depend on PS-protein interaction. Towards this end, Cozzolino
et al. bound curcumin to bovine serum albumin and showed that
the conjugate displays a better photodynamic effect when
compared to the unbound curcumin (44). Proteins can also be
used as PS carriers. Recently, it was reported a macromolecular
approach of a synergistic combination of Ru-complexes on a
protein carrier with subcellular mitochondria targeting groups,
allows enhanced phototoxicity and efficacy (45).

Linking the PS to a monoclonal antibody allows the
photodamage to be addressed to key specific molecular
markers, present, for example in tumor surface. In this context,
the epidermal growth factor receptor (EGFR) is a promising
target for PS-immunoconjugates, considering it is commonly
overexpressed in cancer cells (46). Indeed, it has been recently
shown that the verteporfin-immunoconjugate (monoclonal
antibody targeting EGFR) causes significantly higher levels of
cell death in ovarian metastatic cancer cells (overexpressing the
EGFR receptor) compared to the cell death without EGFR
overexpression (47, 48). Besides the cell-surface EGFR
receptors that have antibodies, such as cetuximab (49) or
panitumumab (50), recent reports pointed out as promising
targets in preclinical models (51) the photobiomodulation of
tumor-associated regulatory T cells (52, 53).

Cellular compartments vary substantially and the
photosensitizer structures determine the subcellular location of
the photodamage and control cell death efficiency (12).
Therefore, understanding the cellular and molecular
photodynamic mechanisms can lead to an optimization in the
PDT efficacy. As long as each PS has a distinctive subcellular
localization profile, the PDT-mediated cell death can be
modulated regarding specific oxidative stress in the targeted
organelle (47). For instance, whereas CisDiMPyP incorporates
into mitochondria, TPPS2a accumulates mainly within lysosomes
(35). Other PSs can evoke mitochondrial, lysosomal, and/or ER
photodamage (35, 54–62). Such a possibility of PSs selectively
inducing damage in targeted organelles is key to potentiate the
photo-induced cell death (63, 64).
MOLECULAR MECHANISMS FOR TUMOR
RESISTANCE TO PDT

The resistance to regulated cell death mechanisms (RCD) is one of
the most prominent cancer hallmarks, intrinsically contributing to
tumor recurrence and metastasis. Accordingly, the tumor relapse
to current conventional chemotherapies has increased up to 2500-
fold (65). The PDT approach (i.e., light energy and PS
concentration) might eliminate most of the tumor cells,
however, some of them may elicit their survival and dormancy,
leading to phototherapeutic cancer resistance. Thus, despite
PDT potentially circumventing cancer recurrence to some
chemotherapies (e.g. cisplatin, dacarbazine, or 5-Fluoracil)
January 2021 | Volume 10 | Article 610472
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(66–68), its promisor tumor dealing potential might also fail
(69–72). Therefore, just as with other approaches similar to
chemotherapy and radiotherapy, post-PDT treatment tumors
are prone to become resistant and more aggressive (73, 74). Most
of these mechanisms that elicit tumor PDT-resistance relies on the
number of phototherapy sessions, the cell type, delivery system,
and photo-physical aspects of the PS (65, 74–76). Although the
PDT resistance mechanism remains elusive, we briefly consider the
main molecular mechanisms underlying the tumor defense against
the photooxidative damage and PS uptake (Figure 2). We also
pointed out the new PDT approaches to deal with tumor
recurrence and maximize the phototherapeutic efficacy.

Tumoral tissues might acquire an intrinsic resistance to
treatment or activate alternative compensatory signaling
pathways to handle cytotoxicity (73). Indeed, most of those
resistant mechanisms comprise an adaptative response to the
therapeutic-mediated extrinsic stresses, including mutations,
altered genetic and epigenetic profiles, dysregulation of
regulatory proteins of apoptosis or autophagy, dormancy,
surrogation of the chemotherapeutic targets, drug efflux
capacity, and stimulation of compensatory signaling or
mediated repair pathways (76–80). Moreover, we can focus on
tumor relapse related to the tumoral microenvironment, limited
incorporation of the PS, hypoxia, and low penetration of
radiation into tumoral mass (73).
Frontiers in Oncology | www.frontiersin.org 5
In many cases, cell morphology, cytoskeleton, and cell
adhesion changes have been observed in cells or tissue under
photosensitization, which was correlated to significant
impairment of migratory and invasive behaviors (81). The
photo-mediated alterations into cytoskeleton (e.g. shorter stress
fibers, decreased number of dorsal fibers, loss of cell-to-cell
interactions, and epithelial morphology) ascribes less
invasiveness and migratory properties to tumor cells, which
lead to higher cellular plasticity and PDT resilience (81).
Paradoxically, cytoskeleton alteration associated with invasion
and metastasis might result in PDT-resistance (81). Such
discrepancies can occur due to higher tumor heterogeneity, as
well as the presence of hypoxic regions that may impair the PDT-
overcome in innumerous ways beyond the limitation of oxygen,
one of the components of phototherapy (Figure 1).

In an elegant model using heterotypic spheroids composed of
human colorectal SW480 cancer cells and fibroblast, Lamberti
et al. demonstrated that the tumor-stroma interaction with a
hypoxic environment significantly impairs the 5-ALA
metabolism, and so reduces the production of the endogenous
PpIX (Protoporphyrin IX), the photosensitizer molecule (82). In
this context of oxygen deprivation, HIF-1a is the key player and,
despite conferring adaptability to hypoxia, it might also assign
resistance to PDT by at least avoiding intracellular PS
accumulation. Additionally, the HIF-1a mediated resistance
FIGURE 2 | Molecular mechanisms underlying PDT-resistance of tumor cells. Created with BioRender.com.
January 2021 | Volume 10 | Article 610472
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could be induced by the PDT itself (83). In colorectal cancer cell
spheroids, the PpIX-PDT can activate the MAPK1/ERK2 and
MAPK3/ERK1 pathway as an adaptative and survival mode to
resist the mitochondrial photooxidative damage. This molecular
event results in the transcriptional activation of HIF-1a,
suggesting that the ROS-MAPK1/3-HIF-1a axis may be a
solution for PDT-resistance (83). It is worth noting that
autophagy induction in response to PDT might be also related
to HIF-1a. The simple HIF-1a stabilization induces autophagy
in colon Caco-2 and SW480 cancer cells and significantly
increases cell survival following PpIX-PDT (84). The
autophagy activity is dependent on HIF-1a since this
transcription factor recognizes a hypoxia response element
(HRE) in the promoter of expression of the vacuole membrane
protein 1 (VMP1), a protein capable of inducing the formation of
autophagosomes (84) (Figure 2).

The cancer expression profile of drug-efflux mediators has
been involved in multidrug tumor-resistance (MDR) against
chemotherapeutics such as imatinib, doxorubicin, and
mitoxantrone, as well as PDT (79, 85–91). The ATP binding
cassette (ABC) superfamily transporters (e.g. ABCG2 and
ABCB1) were found to extrude PS out of the tumor cells (86–
88). Despite some mutations on ABCG2 (e.g. R482G, R482T) not
affecting PS transport, the Q141K polymorphism may explain
increases in the patient photosensitivity to PDT on account of a
lower PS efflux (89, 90). On the other hand, the ABCG2
overexpression has been suggested to render the incorporation
of some photosensitizers with chemical similarity to
pheophorbide A (PhA), including Ce6, MPPa, and 5-ALA
(89). Noteworthy, the photosensitizers m-THPP and m-THPC
may provide a more effective PDT response even in ABCG2-
overexpressing bronchoalveolar carcinoma H1650 MX50 cell
line (89). To improve PDT-efficacy considering the ABCB1-
mediated PS extrusion, there are several new protocols in
development including those on zinc phthalocyanine
tetrasulfonic acid and nanotechnology approaches (79, 92).
Another way to overcome PS-efflux is to promote a
multifunctional drug delivery system (e.g. endocytosis), in
which lysosome highlights as a targeted organelle (69), as well
as the PDT combination with ABCG2 inhibitor Ko143 (93).
Human glioblastoma T98G cells with the highest ABCG2
expression levels showed relevant synergic death after the
PpIX-PDT plus Ko143 in response to increased 5-ALA
incorporation (93).

Recently, TPPS-loaded nanogels through its endocytic
internalization and pH-sensitive framework might elude
photo-oxidation toward multidrug-resistant cancer cells (94).
Noteworthy, this approach also remarkably modulates
autophagy, whose inhibition may alleviate PFKFB3-elicited
tumor dormancy (95). PFKFB3 functions as a regulator of
cyclin-dependent kinase 1, linking glucose metabolism to cell
proliferation and survival, as well as apoptosis prevention.
Depending on the physicochemical PS properties (e.g. pKa),
the endo/lysosomal entrapment phenomena may occur during
PDT (86), as reported by multiple hydrophobic weak-base drugs
(e.g. sunitinib, doxorubicin) (96, 97).
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Several strategies have been proposed to overcome PDT-
resistance on PS-specificity (70–72, 79). Most of them adjust
the PS chemical structure by targeting specific membrane
components, which may lessen PS-extrusion. For example, the
covalent introduction of a phospholipid to generate porphyrin-
lipid derivatives might deal with ABCB1-mediated BPD
extrusion and alleviate PDT-resistance of tumor cells (88). It is
noteworthy that the ‘unconjugated’ form of the same porphyrin-
lipid does not mitigate the BPD efflux by ABCB1 in breast cancer
cells (88). The covalent conjugation of indocyanine green (ICG)
and TNYL peptide onto the surface of gold nanospheres
(HAuNS) was found to overcome the PDT-resistance (72).
Also, Liu et al. have proposed the molecular linkage of the
nano photosensitizer to a BCL-2 inhibitor as an adjuvant
intervention strategy to increase the PDT efficacy in relapsed-
tumor cells (71). Kralova et al. demonstrated that PDT-resistance
may be related to PS lipophilicity (86). While glycol porphyrins
suffer ABCB1-mediated drug-extrusion, the elicited PDT-
resistance associated with the highest lipophilic structure of
termoporfin relies on the PS-lysosome sequestration (86).

Also, the protein dysregulation involved in PS-influx must be
considered. The 5-ALA influx transporters, such as ABCB6 and
SLC15A1/PEPT1, play a pivotal role in the PS-uptake, whose
overexpression might increase the PDT efficacy depending on
the PS type and the subcellular specificity (91, 98). Thereby, their
genetic profiles might determine phototherapy efficacy in
dormant cancer cells responsible for disease latency, late
metastasis, and tumor relative relapse to chemotherapy and
radiation (80, 99).

Aside from less PS accumulation or reduction on ROS
generation, the tumor molecular adaptation regarding signaling
pathways (e.g. MAPK/JNK/p38a, AMPK, and AKT/mTOR)
have also provided PDT-resistance with crosstalk between
apoptotic machinery (e.g. BCL-2, BCL-xL, survivin, caspases,
and PARP1) and autophagy, as summarized in Figure 2 (60, 74,
76, 100–103). To overcome ATP depletion due to mitochondrial
photo-oxidation, tumor cells activate the canonical energy-
sensing AMPK mechanism (104). After phosphorylation
AMPK becomes active and leads to Rheb/mTORC1 inhibition
with consequent induction of lysosome biogenesis and
autophagy, which may dictate the tumor PDT-resilience (102,
104). Also, the acquired tumor resistance to TPCS2a-PDT likely
occurs due to higher expression of the EGF receptor (i.e., EGFR)
and loss of the MAPK/p38 inducing death pathway (76). Indeed,
by targeting EGFR the TPCS2a-PDT-resistance is significantly
reduced regardless of the tumor adaptation respecting the cell
death mechanism (e.g. apoptosis, necroptosis, or autophagy),
Figure 2 (76).

The phototoxic PDT-effects might be abrogated by
antioxidant defense mechanisms, including ROS-scavenger
proteins glutathione, ferrochelatase (FECH), heme oxygenase
(HO-1), glutathione peroxidase 4 (GPX4), and glutathione S-
transferase Pi 1 (GSTP1) (93, 105). Besides, the heat shock
protein 27 (HSP27) may also play a pivotal role in tumor
resistance to the mediated-photooxidative stress, e.g. against
Photofrin™ (106) or 5-ALAm-PDT, which was related to the
January 2021 | Volume 10 | Article 610472

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Martins et al. Autophagy and PDT for Cancer
activation of autophagy-based recurrence (107). Paradoxically,
its downregulation leads to a relevant decrease in HSP70
expression under hematoporphyrin-PDT, which was associated
with an increase in autophagy (108) or apoptosis lessening (109).

Another type of resistance involves nitric oxide (NO)
generation through inducible nitric oxide synthase (iNOS/
NOS2) in tumor cells. NO has a short life (i.e., <2 s in H2O)
depending on the 3O2 concentration, and is freely diffused as a
bioactive free radical interacting with other biomolecules and
membranes by hydrophobic partitioning. Besides, NO reversibly
impairs mitochondrial respiration through competitive
cytochrome oxidase inhibition (110). Several reports revealed
that the photooxidative stress may activate the inducible NO
synthase isoform (i.e., iNOS), which catalyzes the L-arginine
conversion to citrulline and NO in a Ca+2-independent manner
and the expense of NADPH and O2 (111). The PDT-induced
iNOS activation may virtually increase NO at the micromolar
concentration, which reacts with superoxide ion (O−·

2 ) to give
peroxynitrite (ONOO−), a strong oxidant that damages both
DNA and unsaturated membrane phospholipids, as reviewed by
Tsubone et al. (112). Such NO has been shown to modulate
tumor PDT-resistance, which was first demonstrated for
Photofrin™ through an in vivo preclinical test to treat cancer
(113). Subsequently, several reports revealed that the iNOS-
derived NO might play a pivotal role in the adaptation and
survival of breast (100, 114–117), glioma (103, 118, 119), and
prostate (120) cancer cells to 5-ALA-PDT oxidative stress.
Autophagy activation may modulate the iNOS expression in
response to the suppression of AKT/mTOR signaling via ROS
generation by UCNPs/Ce6-PDT (121).

5-ALA-PDT also triggers NO-adaptative resistance via
activation of the PI3K/AKT signaling, leading to NFkB-
mediated transcription of iNOS, Figure 2 (100, 120, 122). Such
iNOS upregulation increases NO that modulates cytoprotection
against the photo-stress, including apoptosis abrogation,
MAPK1/3 deactivation, invasion/migration, and tumor pro-
growth (100, 103, 114–120). The adaptative response of tumor
cells to PDT-generated oxidative stress (i.e., increased NO)
correlates with inhibition of the pro-apoptotic role of MAPK/
JNK/p38a pathway (100, 114), with consequent downregulation
of the anti-apoptotic proteins survivin, BCL-2, and BCL-xL,
lessening the caspase-dependent apoptosis (117, 122). As
proposed by Girotti the tumor antagonism mediated by the
iNOS/NO axis may promote further PDT-resistance pro-
growth, invasion, and migration of tumor cells, leading to
cancer recurrence (123). To improve 5-ALA-PDT outcome
several approaches have been proposed, including iNOS non-
specific activity inhibitors (e.g. L-NAME or L-NNA), iNOS
specific inhibitors (e.g. 1400W or GW274150), NO scavenger
(e.g. cPTIO), NFkB inhibitor (e.g. Bay11) or iNOS-knockdown
(100, 103, 114–120).

Another molecular mechanism related to tumor adaptation
and resistance against 5-ALA-PDT photo-oxidation relies on the
anti-necrotic role of NFkB via the increase in AKT/mTOR
signaling, at least for glioblastoma U87 and LN18 cells (103).
Likewise, 5-ALA-me through photooxidative stress enhances
Frontiers in Oncology | www.frontiersin.org 7
HIF-1a that alleviates cell demise due to an increase in
expression of VMP1, which plays a vital role in autophagy
initiation (84, 124). On the other hand, 5-ALA-photoinduced
stress may activate autophagy via AMPK signaling, whose
chemical negative regulation results in less caspase-9 activity,
and in turn, death suppression, and PDT-resistance (104). Upon
ER photoinduced stress autophagy activation contributes to
adaptation and rescue of the cellular homeostasis upon RO
damage by hypericin-PDT (60). Autophagy abrogation in
ATG5-silenced cells increases the PERK/eIF2a/CHOP cascade
in response to augmentation of chaperones HSPA5 or GRP78/
BiP after hypericin-PDT induced ER-stress (125). It seems that
the correlation between the levels of proteotoxicity and the
amount of ROS relies on selective autophagy towards the
damaged endoplasmic reticulum (i.e., reticulophagy).
Therefore, any process that alleviates proteotoxicity and ER-
stress might lead to functional consequences, including
anticancer immunity (125–127), as well as chemosensitivity
(128). For more detailed information see our recent review (112).

Whereas autophagy suppression (i.e., ATG5 knockdown or 3-
MA) increases tumor cells’ death, in non-malignant cells (e.g.
fibroblasts and murine embryonic fibroblasts, MEFs) autophagy-
deficiency paradoxically alleviates mitochondrial cytochrome c
release, caspase 3 activation, PARP1 cleavage, and turn apoptosis
induction. Besides, such ATG5-deficiency leads to clearance of
oxidized proteins and reduces photokilling by hypericin-PDT
probably through up-regulation of LAMP2A, a receptor for
another type of autophagy, i.e., chaperone-mediated autophagy
(60). Nevertheless, LAMP2A knockout implicates in apoptotic
death correlated with the upregulation of caspase-3 and poly
(ADP-ribose) polymerase 1 (PARP1) (60). There is interesting
crosstalk between autophagy regulation and PARP1 that may
evoke resistance to PDT (101). Besides, cancer stem cells (CSC)
are essential players for PDT-resistance and tumor regeneration.
Consequently, Wei et al. demonstrated that autophagy in
colorectal cancer stem-like cells promotes resistance to PDT-
induced apoptosis (129). By isolating PROM1/CD133+ stem-
cells they revealed a significant and specific increase in autophagy
in response to PpIX-PDT (129). Interestingly, autophagy
inhibition and PDT concomitantly elicit higher apoptosis
induction, and so, in vivo tumorigenicity alleviation (129).
Therefore, autophagy plays dichotomic roles in the
determination of the cellular resistance or sensitization to
PDT-mediated oxidative-stress. This paradigm will further be
considered along with the studies discussed in the next section.
PDT-MEDIATED AUTOPHAGY
REGULATION IN TUMOR CELLS

PDT triggers autophagy (or macroautophagy) in tumor cells by
suppressing the AKT-mTOR signaling (60) or up-regulating the
AMPK pathway (102, 104), as summarized in Figure 3. The
negative effects of the TSC1/2 complex on the mTORC1
activator Rhe may be regulated by AMPK or AKT signaling
(Figure 2). Also, autophagic machinery may be transcriptionally
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regulated (e.g. ATF4, ATF6, CHOP, and p53) in response to
cytoplasmic or organelle photo-oxidation (128, 135, 136). Photo-
oxidation enhances HIF-1a/VIMP1-mediated autophagy
induction (84, 124). There are other pathways triggered by
PDT capable of regulating autophagy machinery, e.g. NFkB
(103) and MAPK1/3 (74) (Figure 3).

Depending on the extent of mitochondrial photodamage,
tumor cells elicit mitophagy to rescue cellular homeostasis
through clearance of oxidized or depolarized mitochondria.
Mitophagy has several distinct variants (i.e., type 1, 2, and 3)
and prevents the release of proapoptotic proteins, generation of
toxic mitochondrial-derived ROS, and futile ATP hydrolysis
(137–140). A primary cellular response following the
Frontiers in Oncology | www.frontiersin.org 8
mitochondrial photodamage is the recruitment of the E3
ubiquitin ligase PRKN/parkin to the mitochondrial outer
membrane, which depends on PINK1 (59, 141). Once
recruited, PRKN ubiquitinates several outer membrane
proteins marking mitochondria for 2 mitophagy (140, 142).

The cellular responses against the photo-stress also involve
selective autophagy known as reticulophagy that removes
oxidized ER subdomains. Despite not yet being fully
understood, there are two main ER-resident proteins prone to
interact with LC3-II, i.e., reticulophagy regulator 1 (RETREG1/
FAM134B) and cell cycle progression 1 (CCPG1) (143). During
the PDT-mediated reticulophagy, ATF4 or CHOP upregulates
the expression of TRIB3 or autophagy-relevant proteins (ATG5,
FIGURE 3 | PDT-mediated autophagy regulation in mammalian cells. The reactive oxygen species (ROS)-mediated mechanism covers the autophagy regulation via
several signaling cascades, including the energy-sensing AMPK and the PI3K/AKT/mTOR pathways. Following mTOR inhibition, the autophagy initiation starts
through the activation of the ATG/ULK1 complex that translocates to the ER membrane and recruits ATG9, providing membrane components to the phagophore
(130, 131). ULK1 complex can also be alternatively activated by AMPK (132, 133). In the nucleation process, following activation of the Class III PI3K complex I,
occurs the production of phospholipid phosphatidylinositol3-phosphate (PI3P) which recruits PI3P-binding proteins (e.g. WIPI2), resulting in the change of the ER
membrane structure with its elongation to form a phagophore (134). The elongation step relies on the generation of the soluble cytosolic LC3-I that becomes LC3-II
after conjugation to the head group of the lipid phosphatidylethanolamine (PE), which occurs through a cascade of ubiquitin-like reactions involving ATG enzymes
(e.g. ATG7, ATG3, and ATG5-ATG12-ATG16L). Next, LC3-II is attached to the lumenal and cytosolic surfaces of autophagosomes. The drug mediators that activate
(BEZ235, rapa, and LY-294) or inhibit (3-MA, compound C and wo) autophagy machinery are depicted in red. Rapa = rapamycin, LY-294 = LY-294002, wo =
wortmannin. Picture created with BioRender.com.
FIGURE 4 | PDT-mediated autophagy regulation in tumor cells. Several PSs were described as phototherapeutic modulators of autophagy flux, which may be
further activated (green) or inhibited (red) by some drugs, including the Class I PI3K/mTOR inhibitor (BEZ235), NFkB inhibitor (bay11), pan-the Class I PI3K inhibitor
(LY-294002), or mTORC1 inhibitor (rapamycin), AMPK inhibitor (compound C), Class III PI3K/VPS34 inhibitor (3-MA or wortmannin) and lysosome inhibitor (BAF-A1,
CQ, E-64d, or PSA) (104, 150–156). BAF-A1 also blocks the lysosome fusion with autophagosomes that occurs independently on intralysosomal pH and relates to
reduced ATP2A/SERCA activity (152, 157). For more details, see Tables 1 and 2. Art was created with BioRender.com.
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ATG12, and Beclin 1), as well as downregulates the expression of
BCL-2 (62, 135, 136). The PDT-mediated autophagy can be
chemically regulated by some drugs as depicted in Figure 3, such
as rapamycin, BEZ235, LY-294000, Compound C, 3-MA, and
wortmannin (56, 60, 100, 103, 104, 144–147).

PDT of early response genes by the hyperactivation of the
survival pathway, resulting in overexpression of anti-apoptotic
(BCL-2, survivin, BCL-xL) or autophagy-related proteins,
evoking PDT-resistance (68, 122). Recently, the tumor
resistance to several antitumor agents (e.g. cisplatin,
oxaliplatin, carboplatin, doxorubicin, etoposide, rapamycin,
everolimus, alpelisib, pictilisib, and AZD8055) was related to
elevated and sustained activation of the PI3K/mTOR signaling
Frontiers in Oncology | www.frontiersin.org 9
pathway (148). Curiously, in these PI3K/mTOR-activated cells,
the promotion of energy metabolism stress (e.g. 2-DG/DCA) led
to apoptosis due to the sustained blockage of the pro-survival
autophagy (148). Hence, photo-damaging organelles, such as
mitochondria, lysosomes, or reticulum endoplasmic seem to be
amenable to mediate death in drug-unresponsive tumors.

Evidence relating to the important role of autophagy in the
PDT context continues to accrue (63). Owing to the high
reactivity of photogenerated ROS, selective autophagy is
initiated to remove oxidatively damaged organelles, such as
mitochondria (i.e., mitophagy), lysosomes (i.e., lysophagy),
endoplasmic reticulum (i.e. , reticulophagy), and, or
peroxisomes (i.e., pexophagy), which are intracellular targets of
TABLE 1 | PDT-mediated autophagy: cytoprotective role and modulatory guidelines to increase tumor outcome.

PS Target Experimental model Autophagy
activation

Therapeutic modula-
tion of the autophagy

machinery

Outcome Ref.

Chemical Genetic

5-ALA Mito Human glioblastoma (U87 and LN18) and breast cancer
(COH-BR1)

PI3K/AKT/mTOR BAF-A1
Wortmannin
Bay11

ATG7A ↑apoptosis,
↑necrosis
↑LDH

(100,
103)

Chlorophyllin e4 Lyso Human bladder cancer (5637 and T24) Beclin/LC3-II
increase

3-MA
BAF-A1

↑apoptosis (55)

Chlorophyllin f Lyso
Mito

Human bladder cancer (5637 and T24) LC3-II increase 3-MA ↑apoptosis (54)

Hematoporphyrin Memb. Human oral cancer (Fadu) AKT/mTOR 3-MA No effect (101)
Hypericin ER Human cervix carcinoma (HeLa) AKT/mTOR 3-MA ATG5A ↑apoptosis

↑cleaved PARP1
↑caspase 3

(60)

Hypericin low dose
(<100 nM)

ER Human oxaliplatin-resistant colon cancer (HCT116, HCT8)
and HCT116/L-OHP murine model

↑GRP78/↓LC3II/I
↓SQSTM1

3-MA
4-PBA

Beclin
1A

CHOPA

↑apoptosis
↓out-growth
↓Ki67
↑oxaliplatin
sensitization

(128)

Hypocrellin A Mito Human cutaneous squamous carcinoma (cSCC) JNK/NFkB pathway 3-MA
Bay11

↑apoptosis
↓BCL2
↑caspase 3
↑BAX

(146)

Pc13 Mito Human melanoma (A375) BCL-2/LC3-II
increases

CQ
3-MA
Wortmannin

↑apoptosis
↑cleaved PARP1

(74)

Photofrin™ Mito Human cervix carcinoma (HeLa) and breast cancer (MCF7) LC3-II increase 3-MA
BAF-A1

ATG5B

ATG5C
↑apoptosis
↑cleaved PARP1
↑caspase-3

(161,
162)

Photosan-II Mito Human colorectal cancer (HCT116 and SW620), and
SW620 derived xenografts

ATK/mTOR and
AMPK pathway

CQ ATG7A ↑apoptosis
↑cleaved PARP1
↑LC3-II
↓Tumor mass

(102)

Porphyrin IX Mito Human colon cancer (HCT116) BCL-2/Beclin 1/
ATG7/LC3-II

CQ ATG7A ↑apoptosis
↑caspase 3
↑LC3-II
↑SQSTM1

(163)

Protoporphyrin IX Mito Human colon cancer (HT29 and PCC) Beclin 1/ATG7/
ATG5-12/LC3-II

3-MA
CQ

ATG3B

ATG5B
↑apoptosis
↑caspase 3

(129)

TPPOH-X SNPs Lyso Human colon cancer (HT29) LC3-II increase 3-MA ↑apoptosis
↑caspase 3
↓LC3-II

(164)

Verteporfin Mito Murine hepatoma cells (1c1c7) PI3K/AKT/mTOR CQ ATG7B ↑apoptosis (165)
January 2021 |
 Volume 10 | Article
Lyso, lysosome; memb, intracellular membranes; mito, mitochondria; ER, endoplasmic reticulum; 3-MA and wortmannin, Class III PI3K inhibitors; Bay11, NFkB inhibitor; CQ and BAF-A1,
inhibitors of lysosome function; A: siRNA; B:shRNA; C: CRISPR/Cas9.
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several photosensitizers (149). Despite controversial findings
concerning autophagy activation via ROS generation following
PDT, there is now a consensus about the underlying mechanisms
regarding cytoprotection or death.
Frontiers in Oncology | www.frontiersin.org 10
Over the past ten years, some questions have been addressed
by several authors using cancer cell lines and distinct PDT
protocols. As summarized in Figure 4, PDT protocols with
different PSs were found to therapeutically modulate autophagy.
TABLE 2 | PDT-mediated autophagy: death routine and modulatory guidelines.

PS Target Experimental model Molecular mechanism Autophagy flux and death
routine

Autophagy
modulation

Outcome Ref.

5-ALA Mito Human lung cancer (CL10 and PC12) AMPK/MAPK/mTOR Boosting: AMCD? 3-MA ↑survival
↓caspase-9
and 3

(104)

Verteporfin Mito Human prostate cancer (PC3) Inhibition of
autophagosome
formation

Dysfunctional: AACD BEZ235
LY-294002

↑apoptosis
↓cleaved
PARP1
↑LC3-II

(144)

(145)
Ce6 Mito Human breast cancer (MCF7 and MCF7/ADR) ? ? 3-MA

BAF-A1
↑survival

(166)
Human breast cancer (MDA-MB-231 and
MCF7)

AMPK Boosting: AACD 3-MA + 2-
DG

↑apoptosis
↑pAMPK
↓Beclin 1
↓LC3-II
↓Tumor
mass

(167)

DMMB Mito
Lyso

Human cervix carcinoma (HeLa),
hepatocarcinoma (HepG2), and melanoma
(SKMEL18 and 25)

Mitophagy/Lysosomal
dysfunction

Dysfunctional: AACD
↑PRKN, ↑SQSTM1, ↑LC3II,
↑autolysosomes
accumulation

3-MA
BAF-A1

↓survival
Non-
changed

(59)

Hypericin high
dose (500 nM)

ER Human oxaliplatin-resistant colon cancer
(HCT116, HCT8) and HCT116/L-OHP murine
model

GRP78/CHOP/AKT Boosting: AACD
↓SQSTM1, ↑LC3II/I

3-MA
ATG5*
Beclin 1*

↑out-growth
↑Ki67
↓oxaliplatin
sensitization

(128)

MPPa ER Human osteosarcoma (MG-63) JNK pathway Boosting: AMCD?
↓BCL-2, ↑ Beclin 1, ↑LC3II/I,
↓SQSTM1

3-MA
CQ

↓apoptosis
↓LC3-II
↓caspase 3

(168)

Human breast cancer MDA- MB-23 and
murine model

PERK/eIF2a/CHOP Boosting: AACD
↑ Beclin 1, ↑LC3BII/I,
↓SQSTM1

3-MA ↓apoptosis
↑out-growth
↓LC3B-II

(62)

Human osteosarcoma (MG-63) PERK/IRE1a/CHOP
CHOP/AKT/mTOR

Boosting: AMCD?
↑LC3II/I,↓SQSTM1

Rapamycin ↑apoptosis
↓pMTOR
↑LC3-II
↓SQSTM1
↑caspase 3
↑ cleaved
PARP1

(147)

mTHPC
Foscan®

ER Human breast (MCF7), lung (A-427),
oral cavity (BHY), esophagus (KYSE-70),
bladder (RT-4), and cervix (SISO) cancer

GRP78/LC3-II Boosting: AMCD?
↑LC3II/I

Wortmannin
PSA
E-64d

↓apoptosis
↓LC3-II
↓caspase-9
↓caspase-3
↑LC3-II

(56)

(155)

NPe6 Lyso Murine hepatoma (1c1c7) Lysosomal dysfunction Dysfunctional: AACD?
↑LC3II/I, ↑vacuolization

ATG7* ↑survival
↓caspase
activation

(169)

N‐TiO2

nanoparticles
Lyso Human melanoma (A375) Impairment of lysosomal

fusion with
autophagosome

Dysfunctional: AACD
↑LC3II/I, ↑SQSTM1 ↑RIPK1,
↑HMGB1

3-MA
BAF-A1
Necrostatin-
1

↓necroptosis
↑cellular
rescue
(90%)

(170)

TPPS2a Lyso Human cervix carcinoma (HeLa) Lysosomal dysfunction Dysfunctional: AACD
↑LC3II/I, ↑vacuolization

3-MA Slightly
decrease

(35)

TPGS/dc-
IR825

Mito Human lung cancer (A549) and xenografts Mitophagy/AMPK Boosting: AACD
↑PINK1, ↑PRKN, ↑LC3II/I,
↑SQSTM1, ↓ATP

CQ
3-MA

↑survival
↓PINK1
↓pAMPK

(141)

WST11
TOOKAD®

Lyso Murine hepatoma (1c1c7) Lysosomal dysfunction Dysfunctional: AACD?
↑LC3II/I, ↑vacuolization

ATG5*
ATG7*

↑survival
↓caspase
activation

(169)
January 2
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Lyso, lysosome; mito, mitochondria; ER, endoplasmic reticulum; 3-MA, LY-294002, and wortmannin, Class I/III PI3K inhibitors; BEZ235, Class I PI3K/mTOR inhibitor; rapamycin,
mTORC1 inhibitor; BAF-A1, CQ, E-64e, PES, inhibitors of lysosome function; * genetic silencing/knockout.
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Note also that the complexity of autophagy and numerous steps
allows for several possibilities of intervention, but the
performance in PDT does not come to simple conclusions, i.e.,
a better understanding of its role is still necessary. To avoid
controversial analysis of the real role of autophagy (i.e.,
cytoprotective versus death routine), the autophagy community
appeals to a straightforward effort in following robust guidelines
to monitor autophagy (158–160). As summarized in Tables 1 and
2, numerous in vitro or in vivo studies have been conducted to
describe the autophagic pivotal role in PDT. Herein, we will
briefly discuss this paradigm.

The Pro-Survival Autophagy Role
In general, the therapeutic effects of PDT are related to apoptosis
or necrosis, and autophagy might be a double-edged sword,
depending on the type of photosensitizers and cells (19). Instead
of promoting cell death per si, autophagy often accompanies the
cellular demise by PDT, as a last attempt of cells to cope with
oxidative stress and to survive. Several in vitro and in vivo reports
have demonstrated considerable evidence that autophagy plays a
pivotal cytoprotective role that virtually occurs along with other
RCD, like apoptosis, necroptosis, necrosis, or parthanatos (54,
55, 60, 74, 100–103, 128, 129, 146, 161–165, 171–174). The
description of such cell death mechanisms will not be
considered herein.

Autophagy is a key point on survival and tumor adaptation,
whose inhibition decreases anti-apoptotic proteins’ expression
(e.g. BCL-2 and survivin) or increases pro-apoptotic proteins,
such as BAX, leading to tumor sensitization to photo-stress, e.g.
5-ALA-PDT (68). However, this protective response may be
compromised via photooxidative-mediated NFkB activation
through induction of an adaptative AKT/mTOR/S6K response
that leads to the alleviation of necrotic cell death (103). The
apoptotic machinery (e.g. upregulation of cytochrome c release,
BAX, caspase-3, and PARP1) was found to occur accompanying
the protective autophagic signals in response to Photosan II-PDT
via activation of the AMPK pathway or suppression of the AKT/
mTOR signaling (102). Notably, the protective autophagy is
responsible for cell adaptation and delay of PARP1-mediated
apoptosis at low dose hematoporphyrin-PDT (101).

Autophagy was found to protect photosensitized cells from
oxidative damage triggered by several photosensitizers, like 5-
ALA (100, 103), chlorophyllin e4 (55), chlorophyllin-f (54),
hypericin (60, 128), hypocrellin A (146), Pc13 (74),
Photofrin™ (161, 162), protoporphyrin IX (129), and
porphyrin IX (163), TPPOH-X SNPs (164), and verteporfin
(165). This cytoprotective autophagy can be alleviated trough
chemical (e.g. BAF-A1, CQ, 3-MA, or wortmannin) and genetic
inhibition of essential autophagy-related genes (e.g. ATG3,
ATG5, ATG7, or Beclin 1) or autophagy regulators (e.g.
CHOP), leading to significant suppression of PDT-resistance of
tumor cells (Table 1).

Thereby, photoinduced cellular stress could be targeted to
further death through negative modulation of autophagy. Xiong
et al. demonstrated a promisor therapeutic association-targeting
autophagy to overcome PDT-resistance of colon cancer
xenografts (102). Protoporphyrin IX-PDT in colorectal cancer
Frontiers in Oncology | www.frontiersin.org 11
stem-like cells (CCSCs) failed to initiate out-growth in almost
70% when associated with autophagy inhibitors (e.g. CQ and
ATG5 shRNA), compared to 25% in PDT alone. Thus,
autophagy inhibition can be considered as a target to deal with
adaptation or resistance to photooxidative stress, leading to
higher antitumorigenicity of PDT in tumor-xenografts
(102, 129).

Whereas most of the PDT-protocols trigger autophagy as
cytoprotective, fewer propose to activate autophagy as a death
routine in cells succumbing to photooxidative stress, as
summarized in Table 1. By analyzing reliable experimental
studies, we propose in the next section to cope with the
challenge to distinct autophagy-associated death modes,
considering the high variability of cellular responses and
different types of PDT protocols.

The Pro-Death Autophagy Role
In general, photoinduced cell death in the mammalian cells is
preceded or accompanied by autophagic vacuolization, a
morphological alteration that may be considered as an example
of the widespread belief of a “type II programmed cell death” or
“autophagic cell death” (175). However, both terms are
unappropriated following recent guidelines (160). On July 15,
2020, a Medline search of “autophagic cell death” or “autophagic
death” and “PDT” or “Photodynamic Therapy” yielded 17 entries,
which constitutes a fraction - close to 10% - of all 184 articles
published on the topic “autophagy” in the PDT field. This led us
to reflect on the expression “autophagic cell death” (57) after
photodamage. Autophagy can protect cells and help them to
tolerate the photodamage (60, 129); however, if there is a high
level of autophagy or blockade flux, “autophagic cell death” could
probably occur. Herein, we review this paradigm and –
polemically – raise doubts about the existence of “autophagic
cell death” mediated by PDT.

Incontestably, converting a protective autophagic mechanism
to a destructive or lethal avenue is now being well-defined as
autophagy-dependent cell death (ADCD) as postulated by the
international committee on cell death (176). Using ADCD term
one would postulate that the photoinduced death is autophagy-
regulated through its machinery and thereof components,
whereas its pharmacologic or genetic lessening would lead to
less death regardless of other RCD mechanisms. Even though
most of the reports have evaluated increased autophagic flux and
puncta vacuoles, none of them formally establishes autophagy
itself (or ADCD) as responsible for photo-induced cell death.
Consequently, before ascribing a direct death role to autophagy,
it is recommended to determine the machinery efficiency status
by generally inhibiting the autophagy pathway using genetic
approaches (knockdown or knockout based in siRNA, shRNA,
or CRISPR/Cas9), see Table 2.

Some reports have shown that depending on the stress level,
the autophagic apparatus might intrinsically contribute to other
cell death programs, like apoptosis or necroptosis (35, 56, 59, 62,
104, 128, 141, 144, 145, 147, 155, 166–170), see Table 2. In spite
of not inducing cell death per si, the RCD routine autophagy-
mediated cell death (AMCD) may be significantly rescued by
chemical autophagic inhibition (e.g. CQ, 3-MA, or BAF-A1)
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and/or genetic manipulation (e.g. ATG7, Beclin 1), as reported
for some drugs (e.g. QW24, PTC-209, or sodium butyrate)
(177–179).

During photooxidative damage autophagic machinery seems
to play a key role regarding the increase in death mediators,
probably leading to AMCD together with apoptosis (56, 147,
168). Another RCD routine linked to autophagy has been
proposed, i.e., autophagy-associated cell death (AACD, which
may or not occur alongside other cell death modalities, like
apoptosis (Table 2). AACD commonly relates to the impairment
of the early (144, 145) or the late stages of the autophagy flux (35,
59, 169, 170). Based on recent evidence, we propose that the
terms “autophagic cell death” or “autophagy death” should be
substituted to “AMCD” or “AACD”. However, one should
initially consider the main differences between AMCD and
AACD in tumor cells succumbing to photooxidative stress.
Unlike AACD (35, 59, 62, 128, 141, 167, 170), AMCD may
require the autophagic machinery to intrinsically regulate
apoptosis (56, 104, 147, 155, 168), as summarized in Table 2.

The engagement of autophagy as a death route does not occur
naturally, instead, quite specific experimental conditions should
be followed, including the PDT exposure dose, type of protocol
sub-sequentially or parallel photodamage on intracellular
targets), type of targeted organelle (e.g. lysosomes or ER),
availability of cellular machinery to evade apoptosis. Whereas
in the case of cytoprotective autophagy the pharmacologic or
genetic autophagic lessening sensitizes tumor to higher PDT-
photoinduced death (Table 1), in the case of pro-death
autophagy may occur either no effect or substantial alleviation
of the PDT-photokilling (Table 2). Nevertheless, autophagy as a
death routine remains allusive and still requires more studies.

The autophagy-related death can be either related to AMCD
or AACD, depending on the dose, physicochemical properties,
and the intracellular specificity. Lange et al. showed different
autophagy responses concerning the Foscan®-PDT doses (e.g.
LD50 versus LD90) (155). While LD50 dose leads to moderate ER-
stress with less apoptotic cell death and probable autophagic
response, high-dose PDT (i.e., LD90) by damaging proteins
involved in the autophagic machinery triggers pro-death
autophagy associated with activation of apoptotic hallmarks,
such as cleaved PARP1, phosphatidylserine membrane
externalization (155). A similar regulation was described in
mutated caspase-3 breast cancer cells (e.g. MCF7) (56). While
autophagosome formation accompanies cleavage of pro-caspase
7 and PARP1 at the LD90 dose´s Foscan®-PDT, chemical
inhibition of the autophagy flux lessen the pro-death
autophagy, leading to a decrease in procaspase activation and
less cytotoxicity (56). The MPPa-PDT also may activate pro-
death autophagy via a ROS-dependent JNK/Beclin 1 pathway,
which intrinsically enhances procaspase-3 activation (168). By
suppressing the early (e.g. 3-MA) or late stages of the autophagic
process (e.g. CQ), tumor recurrence may increase by up to
70% (168).

Recent reports revealed that MPPa- ER photo-stress could
intrinsically regulate the pro-death autophagy via a PERK/
CHOP/AKT/mTOR signaling, with consequent boosting
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autophagy flux and activation of PARP1, procaspase 3 and 12
(62, 147). Probably, as a secondary response of mTOR on the
phosphorylation of S6K or 4EBP1, the ROS-mediated effect on
the PERK pathway leads also to cell arrest, decrease in invasion
and migration, due to respectively, downregulation on cyclins
(A, E and B1) and metalloproteinases (MMP-2 and -9) (147).
Such MPPa-triggered downregulation of MMP-2 and -9 was due
to the ROS-mediated inhibition of AKT/NFkB/mTOR signaling
with suppression of the metastatic behavior of breast MCF-7
cancer cells in xenografts (180). Chen et al. demonstrated that
rapamycin (mTOR inhibitor) enhances the phototoxicity related
to MPPa-mediated pro-death autophagy with a consequent
decrease in SQSTM1/P62 levels and increased cleavage of
procaspase-3 and PARP1 (147). Even though this pro-death
autophagy role should be more investigated regarding the
elicitation of the autophagic machinery to cleavage PARP1 and
procaspases, these findings are suggestive of an AMCD routine.

Lin et al. revealed that the correlation between AMCD and ER
photo-stress occurs via CHOP following hypericin-PDT at high
doses (128). They proposed that pro-death autophagy occurs in
the case of high ER photo-stress, which may relieve chemo-
resistance towards oxaliplatin (128). Paradoxically, a low level of
ER photo-stress mediated by hypericin-PDT leads to the
opposite role of the autophagy process (i.e., pro-survival), via
downregulation of AKT/mTOR signaling in HeLa tumor cells,
which enhances PDT-mediated death by 50% after negative
modulation of autophagy (e.g. ATG5 siRNA or 3-MA) (60).
Thereby, depending on the level of damage (low or high dose)
mediated by hypericin-PDT, autophagy may contribute
distinctively in apoptosis-resistant tumor cells (128).

The type of activation mechanism (e.g. AMPK) regardless of
the type of PS (i.e., 5-ALA or Ce6) also leads to pro-death
autophagy (104, 167). Although this interpretation is correct, it is
still not possible to correlate pro-death autophagy with PS type
and subcellular localization. PDT activates the pro-apoptotic
MAPK/JNK/p38a pathway (100, 114) but also negatively
regulates the AMPK phosphorylation (104). Parallel to AMPK
activation, there is a decrease in the caspase-3 activity, an
increase in the ATP depletion, and deactivation of the
MAPK1/3 pathway (104). That MAPK deactivation would lead
to mTOR activation, with consequent inhibition of autophagy,
is contrary to the sustained AMPK activation that maintains
elevated as an adaptative response to 5-ALA-PDT (104).
Consequently, AMPK seems to be a key point in the PDT-
response and autophagy activation. Indeed, through AMPK
activity abrogation by compound C or VPS34 inhibition
(3-MA mediated) the cell survival might be partially rescued,
possibly due to the autophagy-independent mitochondrial
photodamage (104). Corroborating this finding, Ce6-PDT also
activates AMPK that is further enhanced upon glycolysis
inhibition by 2-DG, with consequent tumor regression in vitro
and in vivo (167). The AMPK hyperactivation relates to high
ATP depletion, which leads to an increase in Beclin 1 and
LC3 lipidation that could be lessened by 3-MA (167).
Especially in caspase-3 mutated cancer cells resistant to
either multidrug (e.g. doxorubicin, cisplatin, and paclitaxel) or
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Ce6-PDT when the autophagic flux is chemically inhibited (e.g.
3-MA or BAF-A1), the tumor relapse increases up to 50% (166).
It seems that the hyperactivation of the AMPK pathway relates to
boosted autophagy triggered by photooxidative damage on
mitochondria (Figure 3). However, it is important to emphasize
that the activation mechanisms of AACD remain elusive and
poorly understood.

Overall, excessive, or impaired mitophagy/autophagy appears
to trigger the AACD routine. The boosted mitophagy activation
mediated by TPGS/dc-IR825-PDT exceeds the degradative
function of autolysosomes, ending up with huge vacuolization
and degradation impairment, as well as depletion of ATP,
activation of AMPK pathway, and bioenergetic catastrophe
(141). Such effects were also observed in xenografts models
when TPGS/dc-IR825 nanomicelles were intravenously injected
into tumor-bearing mice showing high tumor accumulation and
retention (141). TPGS/dc-IR825 nanomicelles showed a
remarkable in vivo therapeutic efficiency leading to total tumor
remission, possibly related to their minimized cellular-
extrusion (141).

When photodamage reduces the number of functional
lysosomes and promotes their total disruption (59), or avoids
their fusion with autophagosomes (170), AACD is activated. If
the lysosomes are slightly photodamaged, only enough to enable
an autophagic pro-survival response (probably due to
lysophagy), there is a restoration of homeostasis (59). The pro-
survival autophagy triggered by PDT (PS at low doses) can be
promptly switched to AACD when parallel mitochondrial
membrane damage occurs (59). In line with this notion,
lysosomes have been considered as promisor targeted-organelle
to PDT, even much more when parallel damage in the
mitochondria membrane is mediated (59). Some reports
corroborated with this premise (181, 182). Following this
concept, the PDT-triggered mitophagy activation would fail in
the context of lysosomal impairment, which evolves to AACD
(Figure 5) (59).

Another path to trigger AACD was recently reported (170).
Whereas N‐TiO2-PDT induces efficient autophagic flux in the
dark condition, its photo‐activation compromises pro-survival
Frontiers in Oncology | www.frontiersin.org 13
autophagy. The replacement of the cytoprotective response
mediated by photooxidative stress relates to the impairment of
the lysosomal fusion with autophagosomes (170). Consequently,
there was an increase in ROS production with consequent
elicitation of RIPK1/HMGB1‐related necroptosis, which is
abrogated upon treatment with necrostatin-1, a specific
inhibitor (170).

The PDT-triggered molecular mechanisms differ concerning
the pro-death autophagy routine, i.e., AMCD or AACD, and the
mechanistic framework must be carefully considered before
choosing the type of autophagy modulation (e.g. activation or
inhibition). For instance, even targeting the same organelle (i.e.,
lysosomes), the AACD elicitation might differ upon the 3-MA
inhibition in the early autophagy. Whereas the photoinduced
lysosomal dysfunction promoted by DMMB evokes per si tumor
death regardless of 3-MA (59), the impaired lysosome/
autophagosome fusion mediated by N‐TiO2-PDT leads to a
high level of tumor relapse (90%) (59). Thereby, to efficiently
relieve tumor recurrence, a better choice should be the lysosomal
inhibitor BAF-A1, which slightly increases the N‐TiO2

phototoxicity (170). Meanwhile, when PDT increases AMCD,
the boosting autophagy triggered through mTOR inhibition (e.g.
rapamycin) should be the best direction to deal with MPPa-
PDT-resistance (147). Moreover, the secondary effects regarding
mTOR suppression would lessen any invasive or migratory
activity of tumor cells (147).

Although autophagy plays a protective role in murine tumor
cells photosensitized with lower concentrations of verteporfin
(165), at higher concentrations it switches pro-survival
autophagy to AACD probably by the inhibition of
autophagosome formation in human prostate cancer cells
(144). Thereby, in high-phototoxicity doses that compromise
autophagy flux instead of inhibiting autophagy it is preferable to
modulate its activation through treatment with dual Class I
PI3K/mTOR inhibitor, e.g. BEZ235 (144), or pan-Class I PI3K
inhibitor, e.g. LY-294002 (145). BEZ235 markedly increased
growth inhibition of PI3K mutated-cancer cells (183). These
findings highlight that verteporfin-PDT is an independent cancer
treatment strategy, capable of overcoming pro-autophagy to deal
FIGURE 5 | Parallel photodamage in mitochondria and lysosome evolves to autophagy-associated cell death. The PDT-mediated photodamage in mitochondria and
lysosomes per si leads to efficient autophagy-associated cell death regardless of the chemical modulation of autophagy flux (i.e., BAF-A1 or 3-MA) (59). Figure
created with BioRender.com.
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with cancer resistance (e.g. against chemotherapy and radiation).
However, further in vivo studies are still urgent to determine
whether such a combination will lessen tumor out-growth.

Based on these pieces of evidence, we can conclude that the
efficiency and rate of engagement in causing death after PDT
depend on the cell type, the photosensitizer type, protocol details
(concentration, light dose, targeted-organelle, and others). As
revealed by pre-clinical studies, both AACD and AMCD can be
chemically or genetically modulated to increase PDT outcomes,
and therefore both mechanisms should be considered as
promisor ways to deal with clinical tumor recurrence.
THE IMPROVEMENT IN THE CLINICAL
OUTCOME OF CANCER PATIENTS
MEDIATED BY PDT

Aside from the PDT-mediated photodamage that intrinsically
correlates with regulated cell death, PDT also plays antitumor
immunological activity, involving activation of CD+4 and CD+8

helper T lymphocytes, endothelial damage, the release of
inflammatory mediators and cytokines (184–188). Thereby,
along with the engagement of cell death PDT outcomes,
tumoral remission is also due to its modulatory role in the
immune response (187), which could control the disease´s
progression to distant sites. Several preclinical pieces of
evidence pointed out the promising role of PDT as a
therapeutic strategy for tumor local or distant remission
supporting; the oncology community also moved forward in
the clinical field. Consequently, several clinical trials have been
conducted or are in progress. According to Clinical Trials.Gov,
186 intervention studies have been carried out so far (189).

Despite all favorable oncological applications of PDT, it still
raises urgent debate in medical practice. We shall, therefore,
summarize the key issues concerning clinical outcomes,
tolerability, and efficacy of PDT using e.g. 5-ALA, HAL,
Photofrin™, Foscan®. We have considered only completed or
terminated clinical trials, which enrolled at least three patients,
most of them had the involvement of apoptosis or necrosis, and
we will argue how the regulation of autophagy could improve
clinical outcomes.

Basal cell carcinoma (BCC) continues to have increased
incidence rates worldwide, especially in Australia where there
has been a 4.4-fold increase (190). According to a network meta-
analysis of non-melanoma skin cancer treatment, the surgical
excision has been considered as the optimal approach with high
efficacy, considering the complete response and complete lesion
clearance, with moderate adverse effects (191). However, the risk
of developing a subsequent lesion in three years after the first one
is elevated ranges from 33% to 70%, which probably evolves from
compromised histological margins (192). Indeed, even after early
surgery intervention, tumor recurrence was observed in 50% of
the BCC patients (~7 months after first intervention) (193). In
addition to the poor or unacceptable long-term cosmetic
outcomes, wide surgical excisions might sometimes require
surgical reconstruction (194).
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Contemplating the preserved cosmetic effect and safety for
treating non-melanoma skin cancer, PDT is highlighted as an
alternative strategy to treat BCC (195, 196). According to the
randomized phase 3 trial (NCT02144077), the PDT protocol
employing the 5-ALA formulated through a non-emulsion gel
BF-200, promoted an effective remission response (93.4%) in
BCC lesions, with a low cancer recurrence of 8.4%, after a one-
year follow-up (197). The trial showed side effects with mild to
moderate intensity regarding tolerability and safety, including
pain at the treatment site. Another clinical trial corroborates the
favorable outcome of PDT for BCC treatment. In a non-
randomized phase 1 trial (NCT00985829) with the enrolment
of 28 participants, 5-ALA-PDT lead to complete (32%) or partial
(50%) remission, without considerable cosmetic impairment,
having only low cases of local pain (7.1%). Even though 5-
ALA-PDT is a promising therapeutic avenue to tackle BCC,
some details of the protocol were not considered or even
described, including exposure time and thickness of the
photosensitizer applied to the skin, the specific wavelength of
the light used, and the clinical outcome of BCC concerning its
histologic subtype, e.g. pigmentary, superficial or nodular.
Therefore, it is difficult to analyze the reasons for partial
remission response (<50%) (NCT00985829). Proper
establishment/definition of the dosimetry parameters could
improve this result (197). Considering tumor-adaptative
response related to sustained AMPK signaling (104), drug-
efflux (89) or iNOS/NO axis (123), the combination of 5-ALA-
PDT with positive modulators of the autophagic machinery (e.g.
rapamycin), regulators of iNOS and drug-extrusion, NO
scavengers, or NFkB inhibitors should be considered to
increase clinical outcomes (93, 100, 103, 114–120, 147).

In general, the therapeutic approach to tackle head and neck
tumors is difficult, considering that recurrence or even the
remaining disease may occur in over 40% of the treated
patients (198). This scenery maybe even more dramatic in
severe cases, including those related to surgeries following neo-
adjuvant treatment, or even, in the case of adjuvant radiotherapy.
To overcome such difficulties related to internal tumors, the PDT
protocol was improved based on the facility to percutaneously
deliver light using multiple laser fibers, which are inserted
directly into head and neck tumors, named Interstitial
photodynamic therapy (iPDT). A phase 1-2 study attempted to
assess the efficacy of iPDT using Foscan® as a photosensitizer.
This strategy was considered as an alternative rescue therapy to
treat recurrent head and neck tumors before surgery,
radiotherapy, or chemotherapy (199). After 1 month of follow-
up, 20% of the 45 patients treated obtained a complete response
(e.g. free disease), whereas half (53%) experienced symptomatic
relief (bleeding, pain, or decreased tumor volume). Among those
patients with complete response, 33% died due to recurrence
disease within an interval of 17 to 32 months. Meanwhile, 56%
survived during follow-up time (10-60 months). Notably, 73% of
patients survived for at least 16 months. Adverse events such as
pain and edema for 2-4 weeks was reported (199). To improve
clinical outcomes, the combination of Foscan®-PDT with late
inhibitors of autophagy flux might be considered in future
studies, which beyond increases to AACD may improve
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antitumor immunological activity. This combined approach may
increase the proteotoxicity and calreticulin surface exposure,
instigating a series of immune responses including DC
maturation, CD8+ T cell proliferation, and cytotoxic cytokine
secretion (112, 125, 155, 200).

In head and neck tumors, several reports are using PDT as a
treatment option, from early-stage tumors to those without other
therapeutic alternatives. Complete remission rates range from
68% to 95% (201). According to the open-label phase 2 trial
(NCT00453336), the PDT protocol employing the Photofrin™

evolved a better clinical outcome regarding the lesion location,
the histopathological and clinical staging, thereby, less
aggressive/invasive lesions located in the oral cavity at early
stages of the disease. Briefly, the casuistic comprised 45 patients
showing lesions in the oral cavity (53.3%), larynx (40%), or other
lesions (6.7%). Concerning the histological subtypes, 22/45
related to squamous carcinoma, 13/45 to severe dysplasia, 9/45
in situ carcinomas, and 1/45 verrucous cancer. Upon a six
month-based follow up, Photofrin™-PDT evolved completed
cancer remission of 73% for less aggressive or invasive disease
(e.g. severe dysplasia and in situ carcinoma), whereas it was of
50% for squamous carcinoma. On the other hand, clinical-stage
squamous carcinoma (stage I) revealed 70% of complete
responses, while more advanced stages obtained lower
complete responses (i.e., 38%). This study counted to 45
adverse events, such as pain inside the oral cavity (53%) or
moderate skin irritation (18%). Remarkably, after seven years of
follow-up, 71% of patients obtained a desirable outcome;
meanwhile, fewer patients required endoscopic resection
(13%). Despite the difficulty of adequately managing the light
device to provide proper dosimetry assessment, by following
standard guidelines, it is possible to successfully tackle
carcinomas at early stages, which after Photofrin™-PDT
treatment, show cure rates in the oral cavity and larynx as high
as 94% and 91%, respectively (202). Based on preclinical findings
the tumor-resistance should decrease following Photofrin™-
PDT combined with negative regulators of autophagy (e.g. 3-
MA or BAF-A1) (161, 162).

The nonrandomized pro spec t i v e c l i n i c a l t r i a l
(NCT00530088) proposed to determine the efficacy of
Photofrin™-PDT in the treatment for dysplasia, in situ
carcinoma, or stage I carcinoma in the oral cavity and larynx.
After following the patients for a mean period of 15 months, a
significant and complete lesion remission was observed in 92% of
the patients, with recurrence in only 13% of the treated cases.
Adverse effects associated with PDT were transient local edema,
pain, and phototoxic reaction (203). These findings corroborate
with the PDT´s premise as an alternative and efficient strategy to
treat cancers of the oral cavity and larynx since the protocols are
already better defined.

HAL-PDT was investigated to treat cervical intraepithelial
neoplasia of 262 patients during a randomized phase 2 clinical
trial (NCT01256424) (204). In this study, 118 were diagnosed
with CIN1 (low-grade squamous intraepithelial lesion), 83 with
NIC2 (high-grade squamous intraepithelial lesion), the others
were not considered as eligible for the study (i.e., NIC 3 or
regular exam). Among those eligible, the frequency for high-risk
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oncogenic HPV (e.g. HPV 16/18) was 46% (6/13) and 37% (7/19)
for CIN2 and CIN1, respectively. Aside from the significant and
sustained tumor remission of 95% for CIN2, PDT also leads to a
remarkable reduction of HPV infection. For instance, PDT
undergoes clearance of high-risk HPV in 83% of CIN2 patients
(5/6) compared to the control group (33%). Despite the favorable
PDT response, adverse effects were reported in 125 patients and
included vaginal discharge, local discomfort, and mild bleeding
(204). In a phase 2 study (NCT00708942) involving 83 women
diagnosed with CIN1, it was observed that the HAL-PDT was
able to offer a complete cytohistological and HPV viral clearance
in 90% of the patients, in a 6-month follow-up.

Even with PDT’s mechanism inactivates the HPV virus is
elusive; it seems to be related to the host’s immune response.
Studies suggest that there is an influence of antitumor immunity
after PDT. This premise is based on experimental findings
demonstrating the activation of dendritic cells and tumor-
specific T response upon PDT. Beyond this immunity
activation, PDT also triggers systemic inflammation causing
oxidative damage and cytokines release (187, 188).

Studies carried out on lung tumors have shown that PDT
might reduce airway obstruction and improve respiratory
function (205, 206). The literature has reported several clinical
studies highlighting PDT as a promising strategy to treat early-
stage, superficial lung cancer, through a robotic transthoracic
needle, and navigation bronchoscopy (205). The first clinical trial
was conducted in 1993, through a prospective phase 2 trial on
PDT using Photofrin II in which 84.8% cases of squamous cell
carcinoma, centrally located, evolved a complete response after
initial PDT-treatment (207). This favorable outcome extended
for a median of 14 months (range 2-32 months). Aside from a
lower frequency of side effects (e.g. photosensitivity in 2% of
cases), PDT led to fewer cases of local recurrence in 4/50 (8%)
cases during the 16-month follow-up. The multicenter phase 2
trial applying NPe6-PDT revealed a considerable outcome in
patients succumbing with early-stage, lung squamous carcinoma
(208). Again, PDT leads to a complete response in 85% of lesions
but now with incredibly low skin photosensitivity. Based on these
favorable findings, PDT with Photofrin II or NPe6 was approved
in Japan as a suitable treatment for early-stage lung cancer,
centrally located (205).

The uncontrolled, non-randomized, open-label, prospective,
multicenter, phase 1 clinical trial (NCT03344861), performed in
10 patients, evaluated the safety of the tissue response to
hematoporphyrin-PDT in solid lung tumor, previous to
surgery. On the 15th day after PDT, patients were submitted
to standard surgery, following macro and microscopic cancer
evaluations. Despite the occurrence of side effects in 40% of
patients, including hemorrhagic shock, anemia, and skin
photosensitivity, the performance status and presence of
inflammation suggest Photofrin™-PDT as a preoperative
possibility in solid lung tumors. The same group conducted a
phase 1, interventionist study (NCT02916745), in 5 patients
diagnosed with non-small cell lung cancer or with lung
metastasis. The objective was to assess the safety and viability
of Photofrin™-iPDT by bronchoscopy intervention. The tumor
remission with antitumor immunity after 6 months of iPDT was
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complete (20%) or partial (60%). In general, this PDT-mediated
antitumor-immunity has been associated with the activation of
dendritic and T cells (188).

The critical role of autophagy in cell biology and its considerable
therapeutic potential against cancer recently received the oncology
community’s attention. Autophagy generally promotes resistance
to photodynamic therapy-induced apoptosis or necrosis and may
serve as a strategy to improve its efficacy (129, 161). In linewith this
notion, PDT’s autophagy modulation would represent a potential
therapeutic target for human cancer (209, 210).Wemust be aware
that the PDT-phototoxicity as well as the type of autophagy
induction is dose-dependent, if cytoprotective or pro-death, as
discussed earlier.
MAJOR CHALLENGES AND
PERSPECTIVES

The trajectory of clinical PDT for cancer treatment is somewhat
peculiar and not straightforward. Many new photosensitizers
have been designed and tested, showing relatively important
improvements compared to preceding ones. However, few of
them were approved by the FDA and others are undergoing
clinical trials (17). Despite the FDA approval, until now no PS
presented a magic bullet or exhibited all characteristics of an
ideal PS. Photofrin™, Foscan®, ALA and HAL are still the most
used photosensitizers in PDT, despite the several disadvantages
presented by them (17).

Thus, somehow a significant part of the knowledge acquired
is not reaching clinical protocols routinely. It is essential to call
attention to this fact and ask: how can we get through it? We
consider that one of the bottlenecks for expanding the PDT
application in a clinical routine because of the biological system’s
complexity. Toward this end, it would be necessary to stress the
interaction of the PDT response regarding other intrinsic
stressors, including cell stemness capacity, metabolic condition,
cross-talking with the microenvironment and stroma,
microbiota, genome instability, inflammatory and immune
responses, vasculogenic mimicry, hypoxia, and other
biochemical anomalies.

Another pivotal point comprises the discrepancy or even lack
of a consensual or gold-standard procedure for PDT clinical
practice concerning light dose exposure regimen, PS
concentration, and the type of light device used. Also, topical
products containing PS are lacking information about the exact
amount applied to the skin and the time to be activated. All these
points make it difficult to establish standard protocols that can be
replicated in other studies. Furthermore, the progression-free
survival investigation of clinical cases is still missing. We should
also look for the PDT’s ability to prolong the patient’s time of life,
instead of PDT being indicated only for the curative aspect.

Considering the premise that autophagy represents a
therapeutic target to improve oncology clinical outcomes, future
efforts should bemade to the development of drugs with increased
pharmacologic specificity beyond those commonly used in the
current approach. Among all efforts, we have elicitedmainly those
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focused on the development of novel autophagy inhibitors, whose
consolidation into therapeutic regimens should be considered as a
new avenue for the PDT antitumor field.
CONCLUDING REMARKS

In this review, we discussed the significant progress in the
comprehension of autophagy modulation in cells succumbing
to photooxidative damage. Preclinical reports pointed out that
autophagy targeting can be a key regulatory routine to improve
clinical outcomes in oncology practice. The repurposing drugs
have been considered, including mTORC1 inhibitors (e.g.
temsirolimus, everolimus, and rapamycin), chloroquine, and
BAF-A1. Several efforts have been made to deal with tumor
resistance. Chemical or photochemical inhibition of lysosomal
function seems to bear a promising strategy since autophagy
machinery plays a pivotal role in tumor vulnerability. Towards
the increase in the death-autophagy related to lysosomal
photodamage (e.g. verteporfin-PDT) or ER-stress (e.g. MPPa-
PDT), the positive regulation of autophagy (e.g. BEZ235, LY-
294002, or rapamycin) is highlighted as a promisor way to deal
with tumor resistance. Notably, the modulation of parallel
photodamage in lysosomes and mitochondria is a favorable
route to trigger AACD thoroughly. Therefore, the PDT-
mediated autophagy associated-cell death may be considered as
a new therapeutic avenue, even though it needs to be further
explored in clinical trials.
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et al. Synthesis and photophysical characterization of a library of photostable
halogenated bacteriochlorins: An access to near infrared chemistry.
Tetrahedron (2010) 66:9545–51. doi: 10.1016/j.tet.2010.09.106

27. Zheng G, Potter WR, Camacho SH, Missert JR, Wang G, Bellnier DA, et al.
Synthesis, photophysical properties, tumor uptake, and preliminary in vivo
photosensitizing efficacy of a homologous series of 3-(1′-alkyloxy)-ethyl-3-
devinylpurpurin-18-N-alkylimides with variable lipophilicity. J Med Chem
(2001) 44:1540–59. doi: 10.1021/jm0005510

28. Pereira MM, Monteiro CJP, Simões AVC, Pinto SMA, Arnaut LG, Sá GFF,
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resistance protein is the enemy of hypericin accumulation and toxicity of
hypericin-mediated photodynamic therapy. BioMed Pharmacother (2019)
109:2173–81. doi: 10.1016/j.biopha.2018.11.084

88. Baglo Y, Liang BJ, Robey RW, Ambudkar SV, Gottesman MM, Huang HC.
Porphyrin-lipid assemblies and nanovesicles overcome ABC transporter-
mediated photodynamic therapy resistance in cancer cells. Cancer Lett
(2019) 457:110–8. doi: 10.1016/j.canlet.2019.04.037

89. Robey RW, Steadman K, Polgar O, Bates SE. ABCG2-mediated transport of
photosensitizers. Cancer Biol Ther (2005) 4:187–94. doi: 10.4161/
cbt.4.2.1440

90. Hira D, Terada T. BCRP/ABCG2 and high-alert medications: Biochemical,
pharmacokinetic, pharmacogenetic, and clinical implications. Biochem
Pharmacol (2018) 147:201–10. doi: 10.1016/j.bcp.2017.10.004

91. Hagiya Y, Fukuhara H, Matsumoto K, Endo Y, Nakajima M, Tanaka T, et al.
Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic
acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation
in bladder cancer. Photodiagn Photodyn Ther (2013) 10:288–95.
doi: 10.1016/j.pdpdt.2013.02.001

92. Chekwube AE, George B, Abrahamse H. Phototoxic effectiveness of zinc
phthalocyanine tetrasulfonic acid on MCF-7 cells with overexpressed P-
glycoprotein. J Photochem Photobiol B Biol (2020) 204:111811. doi: 10.1016/
j.jphotobiol.2020.111811

93. Mastrangelopoulou M, Grigalavicius M, Raabe TH, Skarpen E, Juzenas P,
Peng Q, et al. Predictive biomarkers for 5-ALA-PDT can lead to
Frontiers in Oncology | www.frontiersin.org 19
personalized treatments and overcome tumor-specific resistances. Cancer
Rep (2020) 1–16:e1278. doi: 10.1002/cnr2.1278

94. Zhang X, Chen X, Guo Y, Jia HR, Jiang YW, Wu FG. Endosome/lysosome-
detained supramolecular nanogels as an efflux retarder and autophagy
inhibitor for repeated photodynamic therapy of multidrug-resistant
cancer. Nanoscale Horizons (2020) 5:481–7. doi: 10.1039/c9nh00643e

95. La Belle Flynn A, Calhoun BC, Sharma A, Chang JC, Almasan A, Schiemann
WP. Autophagy inhibition elicits emergence from metastatic dormancy by
inducing and stabilizing Pfkfb3 expression. Nat Commun (2019) 10:1–15.
doi: 10.1038/s41467-019-11640-9

96. Gotink KJ, Broxterman HJ, Labots M, de Haas RR, Dekker H, Honeywell RJ,
et al. Lysosomal Sequestration of Sunitinib: A Novel Mechanism of Drug
Resistance. Clin Cancer Res (2011) 17:7337–46. doi: 10.1158/1078-
0432.CCR-11-1667

97. Tan Q, Joshua AM, Wang M, Bristow RG, Wouters BG, Allen CJ, et al. Up-
regulation of autophagy is a mechanism of resistance to chemotherapy and
can be inhibited by pantoprazole to increase drug sensitivity. Cancer
Chemother Pharmacol (2017) 79:959–69. doi: 10.1007/s00280-017-3298-5

98. Zhao SG, Chen XF, Wang LG, Yang G, Han DY, Teng L, et al. Increased
expression of ABCB6 enhances protoporphyrin ix accumulation and
photodynamic effect in human glioma. Ann Surg Oncol (2013) 20:4379–
88. doi: 10.1245/s10434-011-2201-6

99. Nakayama T, Otsuka S, Kobayashi T, Okajima H, Matsumoto K, Hagiya Y,
et al. Dormant cancer cells accumulate high protoporphyrin IX levels and are
sensitive to 5-aminolevulinic acid-based photodynamic therapy. Sci Rep
(2016) 6:1–6. doi: 10.1038/srep36478

100. Bhowmick R, Girotti AW. Cytoprotective signaling associated with nitric
oxide upregulation in tumor cells subjected to photodynamic therapy-like
oxidative stress. Free Radic Biol Med (2013) 57:39–48. doi: 10.1016/
j.freeradbiomed.2012.12.005

101. Kim J, Lim W, Kim S, Jeon S, Hui Z, Ni K, et al. Photodynamic therapy
(PDT) resistance by PARP1 regulation on PDT-induced apoptosis with
autophagy in head and neck cancer cells. J Oral Pathol Med (2014) 43:675–
84. doi: 10.1111/jop.12195

102. Xiong L, Liu Z, Ouyang G, Lin L, Huang H, Kang H, et al. Autophagy
inhibition enhances photocytotoxicity of Photosan-II in human
colorectal cancer cells. Oncotarget (2017) 8:6419–32. doi: 10.18632/
oncotarget.14117

103. Coupienne I, Bontems S, Dewaele M, Rubio N, Habraken Y, Fulda S, et al.
NF-kappaB inhibition improves the sensitivity of human glioblastoma cells
to 5-aminolevulinic acid-based photodynamic therapy. Biochem Pharmacol
(2011) 81:606–16. doi: 10.1016/j.bcp.2010.12.015

104. Ji H-T, Chien L-T, Lin Y-H, Chien H-F, Chen C-T. 5-ALA mediated
photodynamic therapy induces autophagic cell death via AMP-activated
protein kinase. Mol Cancer (2010) 9:91. doi: 10.1186/1476-4598-9-91

105. Oberdanner CB, Plaetzer K, Kiesslich T, Krammer B. Photodynamic
Treatment with Fractionated Light Decreases Production of Reactive
Oxygen Species and Cytotoxicity in vitro via Regeneration of Glutathione.
Photochem Photobiol (2005) 81(3):609–13. doi: 10.1562/2004-08-23-RN-284

106. Wang HP, Hanlon JG, Rainbow AJ, Espiritu M, Singh G. Up-regulation of
Hsp27 Plays a Role in the Resistance of Human Colon Carcinoma HT29
Cells to Photooxidative Stress. Photochem Photobiol (2002) 76:98.
doi: 10.1562/0031-8655(2002)076<0098:urohpa>2.0.co;2
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