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Selected heterozygosity at cis-regulatory
sequences increases the expression
homogeneity of a cell population
in humans
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Abstract

Background: Examples of heterozygote advantage in humans are scarce and limited to protein-coding sequences.
Here, we attempt a genome-wide functional inference of advantageous heterozygosity at cis-regulatory regions.

Results: The single-nucleotide polymorphisms bearing the signatures of balancing selection are enriched in active
cis-regulatory regions of immune cells and epithelial cells, the latter of which provide barrier function and innate
immunity. Examples associated with ancient trans-specific balancing selection are also discovered. Allelic imbalance
in chromatin accessibility and divergence in transcription factor motif sequences indicate that these balanced
polymorphisms cause distinct regulatory variation. However, a majority of these variants show no association with
the expression level of the target gene. Instead, single-cell experimental data for gene expression and chromatin
accessibility demonstrate that heterozygous sequences can lower cell-to-cell variability in proportion to selection
strengths. This negative correlation is more pronounced for highly expressed genes and consistently observed
when using different data and methods. Based on mathematical modeling, we hypothesize that extrinsic noise
from fluctuations in transcription factor activity may be amplified in homozygotes, whereas it is buffered in
heterozygotes. While high expression levels are coupled with intrinsic noise reduction, regulatory heterozygosity
can contribute to the suppression of extrinsic noise.

Conclusions: This mechanism may confer a selective advantage by increasing cell population homogeneity and
thereby enhancing the collective action of the cells, especially of those involved in the defense systems in humans.

Background
In diploid genomes, there are loci for which heterozygotes
have higher fitness than either homozygote. Heterozygote
advantage can maintain advantageous diversity against
random genetic drift and can be considered a classic type
of balancing selection. Well-known examples include the
selective advantage of heterozygous mutants for the
hemoglobin gene [1, 2] and the CFTR gene [3]. Addition-
ally, heterozygosity at the MHC (major histocompatibility
complex) loci may enhance resistance to a wider range of
infections and increase survival rates [4, 5]. Recent
population-based association studies have uncovered a

heterozygote advantage associated with the Klotho gene
[6, 7]. A recent study [8] proposed a possible evolutionary
link between monoallelic expression and heterozygote
advantage. Monoallelic expression leads to the formation
of distinct cell subpopulations, depending on which
protein-coding allele is active and which allele is downreg-
ulated [9]. The increased cell-to-cell heterogeneity is
thought to be the advantage subjecting these alleles to bal-
ancing selection [8].
While all of these examples are limited to protein-

coding regions, regulatory variations can also be targets
of balancing selection. Almost all trans-specific balanced
polymorphisms in humans and chimpanzees are in non-
coding regions [10] and there are substantial examples
of balancing selection on cis-regulatory regions [11, 12].
According to a theoretical model, regulatory mutations
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with a large effect can be adaptive in heterozygotes
because their effect is moderated, thus preventing the over-
shooting of the optimal level of gene expression [13].
Balancing selection leaves genetic signatures that appear

as an excess of polymorphisms at intermediate frequencies
compared with the expectations under neutrality. This
pattern can be detected using Tajima’s D test [14] or the
Hudson–Kreitman–Aguadé (HKA) test [15, 16]. A Tajima’s
D > 0 or an HKA k > 1 indicates balancing selection.
Balancing selection maintains the same alleles in different
populations and thus lowers population differentiation,
which can be detected by Wright’s Fst test [17]. Within a
population, different alleles at the same locus acquire their
own set of neutral mutations and thus cause differenti-
ation between haplogroups [18].

Results and discussion
We searched DNase footprints for balancing selection sig-
natures in three different populations with various filters
that discarded artifactual single-nucleotide polymorphisms
(SNPs) (Fig. 1a). The DNase footprint SNPs with the
largest (top 1 %) positive Tajima’s D values in each popula-
tion were chosen (Additional file 1: Figure S1). The
selected regions had significantly high HKA k values
(95.4 % having k > 1) and low Fst values (Additional file 1:
Figure S2). The increased diversity was associated with
high divergence between haplogroups compared with
within haplogroups [18] (Additional file 1: Figure S3).
Only a minor fraction (Asian, 1.12 %; African, 0.85 %;
European, 1.36 %) of the selected regulatory SNPs were in
linkage disequilibrium (LD) with non-synonymous SNPs.
We discarded the cases in which the non-synonymous
SNPs had a higher Tajima’s D than the matched regulatory
SNPs (Additional file 1: Figure S4).
The balanced SNPs were enriched in the cis-regulatory

regions that are active in immune cells, such as B cells,
T cells, monocytes, and NK cells (red dots in Fig. 1b), or
in epithelial cells, such as intestinal and airway epithelial
cells (blue dots in Fig. 1b) (Additional file 1: Figure S5;
Additional file 2). Binding sites for transcription factors
(TFs) involved in immune function were also enriched
(Fig. 1c; Additional file 1: Figure S6). We mapped the
target genes of the selected SNPs (see “Methods”). Genes
involved in epidermal development, keratinization, or
antigen processing were enriched (Additional file 3).
This enrichment is partly attributed to the clusters of
the small proline-rich protein (SPRR) genes, late corni-
fied envelope (LCE) genes, and MHC class II genes
(Additional file 1: Figure S7). As structural components
of insoluble cell envelopes, the SPRR and LCE proteins
function to provide barriers in different epithelial cells,
including epidermal keratinocytes, against various envir-
onmental challenges [19, 20].

If different alleles at the same locus were indeed main-
tained under selection, the functional differentiation of
the alleles should appear. We first tested whether the
different alleles resulted in differential chromatin acces-
sibility. For this, we looked for a bias in the number of
sequencing tags harboring each allele at the hete-
rozygous DNase footprints. This tendency of allelic
imbalance was specifically observed at the selected sites
in many different cell types (Fig. 2a). There was a posi-
tive correlation between the degrees of selection and the
allelic imbalance (Fig. 2b, left). In addition, the allelic
divergence in motif sequences suggested that different
sets of TFs bind to each allele at the selected sites
(Fig. 2b, right). More empirical evidence for the allelic
binding differences was provided by enrichment of the
balanced SNPs for binding quantitative trait loci (QTL)
of five TFs [21] (Additional file 4).
However, the regulatory sequence divergence was not

reflected in variations in gene expression. Expression
QTL (eQTL) mapping failed to reveal target gene ex-
pression significantly associated with the selected SNPs
(Fig. 2c). For example, in lymphoblastoid cells, only
3.43 % of the balanced (Tajima’s D top 1 %) SNPs had an
adjusted P value < 0.05. In addition to eQTL mapping,
we examined the direct association between the selected
SNPs and their target genes by leveraging the base-pair
resolution genotypes of 358 individuals (see “Methods”).
Again, the association was not strong, with only 2.25 %
of the selected SNPs having an R2 > 0.2 or an adjusted
P value < 0.05 (Fig. 2d). The significant SNPs were elimi-
nated from the following analyses. These findings suggest
that the allelic divergence did result in differential TF
binding but not in differential gene expression.
If the level of gene expression is not the resulting

phenotype, frequency-dependent selection, as well as
heterozygote advantage due to moderation of expression
levels [13], can be ruled out. Natural selection acting on
stochastic noise or cell-to-cell variation in gene expres-
sion has been demonstrated in yeast [22, 23]. It was sug-
gested that some TF binding QTLs that were not eQTLs
might affect phenotypes only by affecting transcriptional
variability between cells [21]. There are two types of
cell-to-cell variability or noise. Intrinsic noise is the
variability that typically originates from fluctuations that
are inherent to biochemical processes such as promoter
binding. Extrinsic noise mostly arises from cell-to-cell
differences in shared cellular factors. A major source of
extrinsic gene expression noise is stochastic fluctuations
in the level of upstream transcription regulators [24].
We hypothesized that these fluctuations might be ampli-
fied in homozygotes, whereas divergent heterozygous
sequences might reduce this effect because fluctuations
in TFs binding to one allele and fluctuations in TFs
specific to the other allele are not likely to be in the
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same phase, especially when these two sets of TFs are
independent of each other (Fig. 3a).
In our mathematical model, we quantified the dis-

crepancy in regulator binding between the two alleles and
examined the difference in extrinsic noise between
homozygotes and heterozygotes (Fig. 3b). When there was
a certain level of allele discrepancy, the noise levels were
consistently higher in homozygotes than heterozygotes for
a varying TF fluctuation parameter (Fig. 3c). However, as
can be inferred from our model and equations (“Methods”),
this noise difference may not be recognizable in effect when
intrinsic noise predominates, which is the case with genes
expressed at a low level [25, 26]. Therefore, if the footprints
of balancing selection we identified are related to extrinsic
noise, the balanced SNPs should be linked to highly
expressed genes. This turned out to be the case when we
examined gene expression levels as a function of Tajima’s D
in various immune cells (Fig. 3d).
To obtain empirical evidence, we used single-cell RNA

and chromatin sequencing data in GM12878 lymphoblas-
toid cells (see “Methods”). The genes with stronger selec-
tion signatures at their cis-regulatory loci were expressed
with lower noise (CV2) than the genes with homozygosity
or weakly selected heterozygosity (Fig. 3e for Tajima’s D
and Additional file 1: Figure S8a for HKA k). This negative
correlation was quantified using the noise strength
(R = −0.185 for Tajima’s D and R = −0.313 for HKA k;
Additional file 1: Figure S9). Using a different enhancer–
promoter mapping dataset recapitulated the same pattern
(Additional file 1: Figure S10). If the observed patterns are
caused by TF fluctuations, they should be reflected in the
cell-to-cell variation in chromatin accessibility. Indeed,
GM12878 single-cell chromatin accessibility data showed a
negative correlation between the chromatin noise and
selection strengths (Fig. 3f for Tajima’s D and Additional
file 1: Figure S8b for HKA k). Green dots in Fig. 3e, f
indicate representative genes with Tajima’s D > 1.5. The
divergences between haplogroups harboring these SNPs
are shown in Fig. 4. Of these, the HLA-B SNPs and HLA-
DRB1 SNPs are segregating commonly in chimpanzees
and in the three human subpopulations analyzed, offering
an example of ancient, long-lived balancing selection [10].
Finally, we tested whether the selective advantage of regu-

latory heterozygosity lies in transcriptional flexibility. Het-
erozygous cis-regulatory sequences may be capable of

responding to more diverse environmental cues because of
their increased repertoire of binding regulators. To test this
possibility, we employed data for gene expression or
chromatin changes in response to various treatments in
GM12878 cells. We failed to observe any differential
capability of the selected heterozygous cis-regulatory
sequences in responding to external cues (Additional file 1:
Figure S11).
It is difficult to directly demonstrate that the proposed

mechanism of noise suppression has conferred a selective
advantage during the course of human evolution. None-
theless, the progressive reduction of both chromatin and
expression noise in proportion to the strength of the selec-
tion signature strongly suggests that the noise levels have
been subject to selection. Robust gene expression in im-
mune cells will increase the number of effective defensive
cells in an organism. Epithelial cells, including intestinal
or respiratory epithelial cells and keratinocytes, are posi-
tioned at the interface between the outside environment
and the body interior, functioning as both a physical bar-
rier and as immune sentinels. These cells express MHC
class II molecules for communication with the immune
system [27]. Hence, noisy gene expression in epithelial
cells will weaken this barrier function.
One cannot rule out the possibility that heterozygotes

gain a selective advantage through moderation or diver-
sification of transcriptional response. Some of the bal-
anced SNPs that we identified must be subject to these
types of selection. First, although expression association
was not observed in cell culture conditions, it is possible
that variation in regulatory sequences may be manifested
only under specific conditions. Second, while our tests
for transcriptional flexibility were limited to particular
types of stimuli, heterozygotes at different loci may read-
ily respond to different environmental cues. In these two
cases, the advantage of each regulatory SNP will be
evident only in response to its associated specific
environmental cue. In contrast to these conditionally
controlled loci, constitutively active regulatory regions
may be subject to balancing selection for noise mini-
mization. Essential genes may be highly expressed because
they are subject to selection to reduce noise whereas
active gene expression can reduce intrinsic noise [25, 26].
Regulatory heterozygosity may confer a selective advan-
tage especially on these genes by buffering extrinsic noise.

(See figure on previous page.)
Fig. 1 Identification of balanced SNPs and their enrichment in cell type-specific DNase hypersensitive sites (DHSs) and transcription factor (TF)
binding sites. a Our data processing workflow for the identification of cis-regulatory SNPs that have potentially been under balancing selection.
AFR African, ASN Asian, EUR European, HWE Hardy–Weinberg equilibrium , LD linkage disequilibrium. b Enrichment of the balanced SNPs in the
DHSs of 125 cell types. Among them, only the cell types in the top half are displayed. An enrichment score reflects the degree to which a set
of SNPs is overrepresented in a specific cell type. Immune cells and epithelial cells are highlighted in red and blue, respectively. The dashed line
indicates the mean level of enrichment across the 125 cell types. c Enrichment of the balanced SNPs in the binding regions of 161 different TFs.
The dot size is proportional to the degree of enrichment. The dashed line corresponds to the mean value

Sung et al. Genome Biology  (2016) 17:164 Page 4 of 15



A

B

D

C

Fig. 2 (See legend on next page.)

Sung et al. Genome Biology  (2016) 17:164 Page 5 of 15



Conclusions
Examples of heterozygote advantage in humans were
confined to protein-coding sequences. By levearing a wealth
of recent epigenomic data, we were able to perform a
genome-wide functional inference of advantageous hetero-
zygosity at cis-regulatory regions. Single-cell experimental
data and mathematicl modeling demonstrated that hetero-
zygous sequences can lower cell-to-cell variability in pro-
portion to selection strengths and led to the hypothesis that
extrinsic noise from fluctuations in TF activity may be amp-
lified in homozygotes, whereas it is buffered in heterozy-
gotes. Noise reduction by this mechanism may confer a
selective advantage by increasing cell population homogen-
eity and thereby enhancing the collective action of the cells,
especially of those involved in the defense systems.

Methods
Data processing for the identification of balanced SNPs
To detect the signature of balancing selection, we used the
genotype information from the East Asian (ASN, n = 504),
African (AFR, n = 661), and European (EUR, n = 503)
panels from the 1000 Genomes Project [28] with a focus on
SNPs in cis-regulatory or TF binding regions. Our workflow
of selection signature detection is shown in Fig. 1a. For the
accurate identification of cis-regulatory regions, we used
DNase footprint data across 41 cell types from the
ENCODE Project [29]. Nucleotide resolution analysis of
the DNase cleavage patterns enabled us to discover the
footprints of binding TFs ranging in size from 6 to 40 bp.
The mean size of the footprint was 15 bp and the median
was 9 bp [30].
We sought to eliminate the potential effects of non-

allelic nucleotide variations among duplicates or repetitive
sequences on nucleotide diversity patterns, based on
which balanced polymorphisms can be detected (de-
scribed in the next section). First, highly similar sequences
collapsed in the reference genome assemblies (GRCh37/
hg19) will result in an unusually high mapping depth.
Therefore, to exclude regions with an exceptionally high
depth of aligned short reads and poor mappability, we
used the depth information inferred from the alignment
of short-read sequences from the 1000 Genomes Project
[31]. Specifically, the SNPs whose 50-kb flanking regions
overlapped the regions of the top 0.1 % of the mapping

depth were filtered out. We also applied a mappability fil-
ter to discard SNPs for which any 50-mer overlapping the
site could be mapped to more than one location allowing
up to two mismatches. The CRG 50-bp mappability score
[32] was available from the UCSC Genome Browser. We
also excluded putative genomic duplicated regions (≥1 kb
and ≥90 % identity) [33, 34], which were not collapsed in
the reference genome because of relatively lower sequence
similarity. These correctly annotated duplicates will not
cause an unusually high mapping depth but can cause
false allelic variant calls due to the incorrect mapping of
some reads from paralogues.
In addition, we discarded SNPs with minor allele

frequencies (MAFs) less than 1 %, as well as SNPs that
violated the Hardy–Weinberg equilibrium (HWE) [35].
A Bonferroni adjusted P value of 0.05 was used as the
threshold of the HWE test. It should be noted that,
under strong heterozygote advantage, we should observe
an excess of heterozygous individuals at sites in the
vicinity of the site under balancing selection. In other
words, a balancing selection signal could be lost due to
such filtering because deviations from the HWE are
expected under heterozygote advantage. However, selec-
tion required to cause HWE violation as distinctly as at
the adjusted P value < 0.05 should be extremely strong,
and such strong selection would be detected using
almost any methods. Moreover, while the methods for
detecting balancing selection capture the genetic signa-
tures of selection in the past, deviation from the HWE
reflects selection acting in the present-day population.
Thanks to medical advances, many selective disadvan-
tages are not so fatal in the contemporary population as
they were in the past. Therefore, HWE filtering will miss
only a minor fraction of truly balanced SNPs. Well-
established examples of balancing selection in the hu-
man genome, such as the selection in the MHC region,
are not lost because of HWE filtering [36]. In essence,
our study observes genome-wide patterns; thus, losing a
small portion of balancing signatures is not critical. On
the other hand, the major concern with sequencing data
is mapping error; thus, HWE filtering is necessary to
reduce the confounding effects of regions with these bio-
informatic artifacts and the problems caused by many
unidentified paralogues in the human genome.

(See figure on previous page.)
Fig. 2 Low expression variation notwithstanding high regulatory sequence divergence at balanced SNPs. a The distribution of allelic imbalance
calculated as the ratio of two alleles from the reads of chromatin accessibility for the balanced (red) or control (black) SNPs at heterozygous loci.
In each cell type, the imbalance measures were normalized by subtracting the median of the control SNPs. Colored squares indicate the median
point of the distribution and the box extends from the 30th to 70th percentile. b Allelic imbalance in chromatin accessibility (left) and allelic
divergence in TF motif sequences (right) as a function of the Tajima’s D of the footprint SNPs. A higher motif divergence reflects more unique
motifs for each allele. c Significance of expression quantitative trait loci (eQTL) mapping in lymphoblastoid (LCL), skin, and adipose cells according
to the selection strengths at the regulatory SNPs. The red dotted lines denote an adjusted P value of 0.05. d The distribution of the coefficients of
determination (R2; top) and the P value (bottom) from a linear regression between the genotype of the balanced SNPs and the expression level of
their target genes in whole-genome sequenced samples. The red vertical line indicates the adjusted P value of 0.05
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Statistical analysis for detection of balancing signatures
For screening the departure signals from the expected
patterns of neutral variation, we calculated the Tajima’s
D statistic [14] for the 5-kb regions centered on focal
SNPs residing within DNase footprint regions. Tajima’s
D is computed based on the difference between the
mean number of pairwise differences and the number of
segregating sites. These two diversity measures are
scaled such that they are expected to be the same under
neutrality. Excess polymorphisms at intermediate fre-
quencies result in a positive D value. The statistics were
calculated with the following parameters: n is the number
of chromosomes, Sn is the number of polymorphic sites
observed, pi is the derived (nonancestral) allele frequency
of the ith SNP, and qi is the ancestral allele frequency of
the ith SNP. The Tajima’s D score was given as:

D ¼ π−θsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var π−θsð Þp ;

where

π ¼ n
n−1

X
i¼1

Sn
2piqi

and

θs ¼ SnXn−1

i¼1

1
i

:

Negative values of Tajima’s D indicate an excess of rare
variations, which is in line with positive selection. Posi-
tive values of Tajima’s D, on the other hand, suggest an
excess of common variations in a region which can be
consistent with balancing selection. Among them, only
the top 1 % of the distribution of SNPs was considered
to have the footprint of balancing selection and the

middle 80 % were used as a control set for all down-
stream analyses (Additional file 1: Figure S1).
To test whether the increased diversity is a conse-

quence of balancing selection acting on different alleles
at a given locus, the mean pairwise π was computed
within and between haplogroups that were defined by
the allele that each haplotype carried at the focal SNP
(Fig. 4; Additional file 1: Figure S3). For regions with
evidence of a long-lived balancing selection (presence of
SNPs segregating commonly in humans and chimpan-
zees), we calculated the mean pairwise π in humans and
chimpanzees (using the phased PanMap set based on
mapping to the chimpanzee reference [37]) in 500-bp
sliding windows. To this end, we identified the ortholo-
gous chimpanzee positions for each human SNP by run-
ning the UCSC liftOver tool between the panTro2 and
hg19 reference assemblies and selecting the coincident
sets of human and chimpanzee SNPs.
To verify the signatures of Tajima’s D, we also performed

a Hudson–Kreitman–Aguade (HKA) test in the EUR panel
(Additional file 1: Figure S2a, b). The HKA test compares
the level of polymorphism (within-species diversity) to the
level of substitution (between-species divergence). We con-
ducted the maximum likelihood HKA test [16] by using
the MLHKA software (http://wright.eeb.utoronto.ca/pro-
grams/). The surrounding 1-kb regions of the DNase foot-
print SNPs were compared with 99 neutrally evolved
regions that were selected as previously described [11, 38].
The number of segregating sites and pairwise number of
between-species differences in each region were used as
the input. Chimpanzee was used as an outgroup in this
analysis. To test for selection, the program was run under
a neutral model in which the number of selected loci was
zero, and then under a selection model in which the sur-
rounding 1-kb region of the focal SNP was regarded as the
only selected locus. Statistical significance was assessed by

(See figure on previous page.)
Fig. 3 Correlation of selection for heterozygotes with cell-to-cell variation in gene expression and chromatin accessibility. a Illustration of how
heterozygosity can buffer stochastic noise caused by the fluctuations of binding regulators. Red and blue spheres indicate TFs binding to the G
and A alleles, respectively. Variation in the blue RNAs directly reflects variation in the blue TFs across the four homozygous cells (top), whereas
variation in the red RNAs compensates for variation in the blue RNAs among the heterozygotes (bottom). It is assumed that the sources of extrinsic
noise affecting the two alleles are uncoupled. b Our mathematical model detailed in the “Methods”. K1 is the dissociation constant between the
promoter and RNA polymerase (R). K2 is the dissociation constant between the cis-regulatory region and TF. For repressing TFs, K3 is used in place of

K1. The noise levels in protein expression are compared between the heterozygote with (K2, λK2) and the homozygote with λK2; λK2
� �

, given the
same level of average gene expression. c The differences in the squared coefficient of variation (CV2) between the heterozygote and homozygote were
obtained as a function of the allele discrepancy parameter λ for the varying TF concentration parameter a. As λ deviates from one, the two alleles of
the heterozygote are more differentially regulated. Whether the TF is an activator (top) or repressor (bottom), the noise differences Δη2 were constantly
greater than zero, indicating that the homozygote introduces higher levels of transcriptional noise than the heterozygote. d Gene expression level as a
function of the Tajima’s D of the associated regulatory SNP. RNA sequencing data in four white blood cells from the Roadmap Epigenomics project
(top) and DNA microarray data in GM12878 before and after particular treatments (bottom) were normalized (see “Methods”) before plotting. e Progressive
reduction of the expression noise (CV2) in proportion to the Tajima’s D of the associated regulatory SNP. The curves show a fit to RNA sequencing data
for 62 single cells with the solid and dashed lines representing heterozygous and homozygous loci in the GM12878 cells, respectively. The heterozygous
curves are divided based on Tajima’s D. The green dots indicate representative genes that have a detectable RNA sequencing measure and are mapped
to footprint SNPs heterozygous in GM12878 with D > 1.5. f Observed cell-to-cell variability in the chromatin accessibility of the cis-regulatory regions
categorized in the same manner as in e. Error bars represent one standard deviation of the variability obtained through bootstrapping (see “Methods”)
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the likelihood ratio test, in which twice the difference in
log likelihood between the selection and neutral models
approximately follows the x2 distribution with a degree of
freedom 1 (number of the selected loci). To ensure the
robustness of the outputs, we applied a chain length of

100,000. For each test site, the selection parameter k and
the P value were obtained from the likelihood ratio test.
The selection parameter k indicates a k-fold elevation to
diversity over the neutral expectation at the given locus.
Therefore, k > 1 supports balancing selection.

Fig. 4 Selection signature at regulatory SNPs of representative genes. The mean pairwise differences between allelic classes (dark red) and within
an allelic class (light red) for the regulatory sequences with Tajima’s D > 1.5 and whose patterns of noise in chromatin variability and associated
gene expression are shown in Fig. 3e, f (green dots). The pairwise differences were calculated in 500-bp sliding windows. The pairwise differences
between haplogroups compared with those within haplogroups are plotted. The between-group (dark blue) and within-group (light blue) pairwise
differences near the HLA-B and HLA-DRB1 SNPs in chimpanzees are shown on the right-hand y-axis
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Selection that favors the same alleles in all populations
lowers Fst, an indicator of population differentiation [17].
Low Fst values can indicate alleles that are maintained at
similar frequencies in different populations against the
tendency for neutral drift to cause these frequencies to
vary [39, 40]. The pairwise Fst among the three populations
(ASN, EUR, and AFR) was calculated as Fst = 1 −Hs/HT,
where HS denotes the average subpopulation heterozygosity
and HT denotes the total heterozygosity (Additional file
1: Figure S2c). It can also be used to infer adaptive evo-
lution between populations.
Prior to the functional analysis of the identified bal-

anced SNPs, we further excluded a few candidate SNPs
that have a lower Tajima’s D score than that of linked
nonsynonymous SNPs because of the concern that those
balancing signals may have been attributed to the regula-
tory SNPs hitch-hiking the nonsynonymous variants that
are actually subject to balancing selection (Fig. 1; Additional
file 1: Figure S4). The linkage disequilibrium (LD) was cal-
culated in each population with an r2 > 0.9 and a chromo-
somal distance <500 kb as the parameters of the SNAP
proxy tool (http://www.broadinstitute.org/mpg/snap/) [41].

Enrichment tests for balanced SNPs
To test for the enrichment of the balanced SNPs in open
chromatin regions in different cell types, we obtained the
whole-genome DNase hypersensitive site (DHS) datasets
for 125 cell types as provided by the ENCODE Project [42]
and those for 349 samples (encompassing 53 distinct tissue
types) studied in the Roadmap Epigenomics Project [43].
We used these footprint data for 41 cell types [30], which
were initially used to identify balanced regulatory SNPs. For
an enrichment score that reflects the degree to which a set
of given SNPs is overrepresented in a specific cell type, the
ratio of the number of the balanced SNP overlaps to the
number of the control SNP overlaps in each cell type was
computed (Fig. 1b; Additional file 1: Figure S5). The full list
of the tested cell types along with the enrichment test re-
sults are provided in Additional file 2. To conduct a
similar analysis in TF binding regions, we obtained the
chromatin immunoprecipitation sequencing (ChIP-seq)
datasets for 161 different TFs from the ENCODE Project
[42] (Fig. 1c; Additional file 1: Figure S6). The same enrich-
ment analysis was performed for the TF binding regions.

Analysis of target gene functions
To identify the genes regulated by the cis-regulatory re-
gion containing the SNPs of interest, we used a couple of
whole-genome promoter–enhancer mapping datasets. We
defined a promoter as the region 500-bp upstream of the
transcription start site of a gene based on GENCODE v.19
annotation and obtained genome-wide multiple cell-type
enhancer information from two previous studies. The first
dataset for the distal enhancer-to-promoter connections

was created by using the correlation of the sequencing tag
density between distal DHSs and proximal DHSs across
cell types [44]. The second dataset was developed based
on the correlations between enhancer RNA levels and
messenger RNA levels as measured by the Cap Analysis
Gene Expression (CAGE) method across the FANTOM5
panel of ~1000 distinct cell types [45].
To determine the function of the genes that are targeted

by the balanced SNPs in cis-regulatory regions, we con-
ducted a gene set enrichment analysis using gene targets
that were identified as described above. The hyper-
geometric enrichment test was performed for each Gene
Ontology (GO) term using the online tool Web-Based Gene
Set Analysis Toolkit (WebGestalt) [46]. To reduce the type I
error, we conducted the Benjamini–Hochberg (BH) correc-
tion for multiple testing [47]. We selected GO terms with
the adjusted P values < 0.05 as significantly enriched func-
tion. These procedures were repeated for the set of the
balanced SNPs detected in each subpopulation (Additional
file 3). A total of 646 target genes mapped to 986 balanced
SNPs from the EUR panel, 651 genes mapped to 910 SNPs
from the ASN panel, and 1006 genes mapped to 1082 SNPs
in the AFR panel were used in our GO analysis.

Allelic imbalance and motif divergence
To test whether the balanced SNPs have regulatory conse-
quences, we examined the differential contribution of the
two alleles at each locus to overall chromatin accessibility
at the region centered on the focal SNP. We screened all
heterozygous variants in the 41 cell types of DNase foot-
print sequencing BAM files from the ENCODE Project
[29]. For a more accurate variant detection, we carried out
several clean-up procedures, including removal of dupli-
cates using the Picard tools (http://broadinstitute.githu-
b.io/picard/), and performed local realignment and base
quality recalibration using the Genome Analysis Tool Kit
(GATK) [48]. After variant calling, GATK variant filtration
was performed to retain the sites for which the map qual-
ity (MQ) was ≥30 and the Phred scaled probability that a
polymorphism exists (QUAL) was ≥30. We used heterozy-
gous variants with a minimum read depth of 10 in the
footprint data and calculated the degree of allelic imbal-
ance as the log2 ratio of the number of reads carrying each
allele (Fig. 2a). To set the median of the allele imbalance
score of the control SNPs to zero for the purpose of
normalization, we subtracted the median of the control
set of SNPs from the allelic imbalance distribution of the
balanced SNPs as well as the control SNPs in each cell
type. As another test for the regulatory effects of the bal-
anced SNPs, we examined whether the alleles at each SNP
result in differential TF binding. To identify TF binding
motifs, we searched the TRANSFAC [49–51] and JASPAR
[52–55] databases with a P value threshold of 10−4 using
FIMO (http://meme-suite.org/doc/fimo.html) [56]. The
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motif search was performed for ±20-bp sequences con-
taining either allele at each footprint SNP. We obtained
the number of TFs that were predicted to bind specifically
to one of the two alleles and the number of TFs that were
associated with both alleles. For a motif divergence score,
the ratio of the number of allele-specific TFs to the num-
ber of common TFs was used (Fig. 2b). Binding QTLs for
five TFs in Yoruban lymphoblastoid cells [21] were used
to test the allelic differentiation of the AFR balanced SNPs
in TF binding (Additional file 4). The Fisher’s exact test
was performed for the overlap of the QTLs with the bal-
anced versus control SNPs.

Gene expression association of balanced SNPs
We investigated whether the balanced SNPs affect gene
expression. Such effects were first estimated with a linear
regression model using the RNA sequencing data of 465
lymphoblastoid cell lines [57, 58] from the Geuvadis
Consortium and the matched whole-genome genotypes re-
trieved from the 1000 Genomes Project [28]. We calculated
the coefficient of determination (R2) and its P value from
the linear regression between the genotype of the regulatory
SNP and the expression level of the target gene (Fig. 2c).
The Bonferroni adjustment was used to address multiple
testing. The target genes were discovered using the meth-
odologies described in the “Analysis of target gene func-
tions” section above. In another test, we used the eQTL
data for 850 samples in adipose, lymphoblastoid, and skin
cells obtained from the MuTHER (Multiple Tissue Human
Expression Resource) Project [59]. When a footprint SNP
was not directly available in the genotyping array used in
the project, we looked for the closest tag SNP within
500 kb in LD (r2 > 0.9) with the footprint SNP of interest
[44] based on the EUR population. The significance of the
association between the genotype of the footprint SNP or
tag SNP and the expression level of the target gene was ad-
justed by the Bonferroni correction (Fig. 2d).

Mathematical model of transcriptional noise in
homozygotes and heterozygotes
For the concentration of an mRNA (m) and its cognate
protein (p), the reaction rate theory of the Central
Dogma can be written as:

m
: ¼ αm f TF½ �ð Þ−γmm
p
: ¼ αpm−γpp

;
�

ð1Þ

where αm is the rate of transcription, αp is the rate of
translation, γm is the rate of mRNA decay, and γp is the
rate of protein decay. The function f([TF]) indicates the
equilibrium concentration of the transcription initiation
complex consisting of the DNA (D), RNA polymerase
(RNAp), and transcription factor (TF). If the TF is an

activator, f([TF]) is an increasing function. If the TF is a
repressor, f([TF]) is a decreasing function. To find an
explicit form of f([TF]), we impose:

� The equilibrium condition on DNA–protein binding:

f TF½ �ð Þ ¼ D01½ � þ D11½ � ¼ RNA½ � D00½ �
K1

þ RNAp
� �

D00½ � TF½ �
K 2K3

¼ RNAp
� �

D00½ �
K 1

1þ K1 TF½ �
K2K3

� 	
;

ð2Þ
where the dissociation constant Ki is defined in Fig. 3b.

� From the constancy of the gene copy number (set to 1):

X
ij

Dij
� � ¼ D00½ � 1þ TF½ �

K 2
þ RNAp
� �

K1
1þ K1 TF½ �

K2K3

� 	

¼ 1;

�

ð3Þ
the concentration of the bare, or unbound, DNA satisfies

D00½ �−1 ¼ 1þ RNAp
� �

K1
þ TF½ �

K 2
1þ RNAp

� �
K 3

� 	
¼ 1þ Rþ 1þ sRð ÞT ; ð4Þ

where R≡[RNAp]/K1 and T≡[TF]/K2 is the concentration
of the RNA polymerase and TF scaled by the polymerase–
DNA dissociation constant K1 and the TF–DNA dissoci-
ation constant K2, respectively. The positive and negative
effect of TF action is captured by s≡K1/K3, which is larger
than 1 for an activator while smaller than 1 for a repres-
sor. An activator that promotes the recruitment of RNAp

(K3 <K1) leads to s > 1 and φ > 1, whereas for a repressor,
the inequalities point in the opposite direction. Rearran-
ging the terms, we obtain [60]:

f Tð Þ ¼ R 1þ sTð Þ
1þ Rþ 1þ sRð ÞT

¼ 1

1þ R−1 1þ s−τ−1ð ÞT
1þ T=τ

� �

¼ f 0ð Þ 1þ ϕ−1
1þ τ=T

� 	
;

ð5Þ
where τ = (1 + R)/(1 + sR), ϕ = f (∞)/f(0) = (R + 1)/(R + S− 1)
is the fold change, and f(0) represents a value correspond-
ing to the basal level of gene expression.
For the cells heterozygous for the given cis-regulatory

sequences, where the binding equilibrium between the
TF and its cognate binding site is controlled by two dis-
tinct equilibrium (dissociation) constants K2 and λK2 for
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the two alleles, the rate equation Eq. 1 can be general-
ized to:

m
: ¼ αm

2
f Tð Þ þ f λ−1T

� �
 �
−γmm

p
: ¼ αpm−γpp

(
: ð6Þ

The corresponding homozygous cells under consider-
ation have a pair of identical regulatory sequences with
λK 2 . For a fair comparison of noise levels between het-
erozygous and homozygous gene expression, we require
the same mean expression level. That is, from Eq. 5:

1
1þ τ=T

þ 1
1þ λτ=T

� �
¼ 2

1þ λτ=T

� �
; ð7Þ

where the angled brackets denote the statistical ensem-
ble average. For a gamma-distributed concentration of
the TF [61] with the shape and scale parameters a and b,
that is [TF] ~ Γ(a,b), the rescaled random variable z[TF]
also follows the gamma distribution as Γ(a, zb).
Now we consider the fluctuations, particularly in [TF].

The aim is to compare protein noise levels between a
homozygote with the normalized transcription rate
f λ Tð Þ ¼ f T=λ

� �
and a heterozygote with gλ Tð Þ ¼ 1

2

f Tð Þ þ f T=λð Þ½ � that have the same level of average
gene expression. With that, the variance in mRNA
and protein levels is given by:

σ2m ¼ αm gh i
γm

þ αmσg

γm

� 	2

¼ mh i 1þ mh i σg

gh i
� 	2

" #
; ð8aÞ

σ2p ¼ ph i 1þ ph i
〈mi

1
1þ γm=γp

þ ph i
mh i2 σ

2
m

 !
; ð8bÞ

where 〈 ⋅ 〉 is the expectation over the statistical ensem-
ble. Thus, the noise level defined as the squared coeffi-
cient of variation:

η2m≡
σ2
m

mh i2 ¼
1
mh i þ η2g; ð9aÞ

η2p≡
σ2
p

ph i2 ¼
1
ph i þ

1
mh i

1
1þ γm=γp

þ η2m ð9bÞ

gives a fractional measure of the stochastic fluctuations.
Note that the first term in ηp

2 (Eq. 9b), which scales with
the inverse of the mean protein level, is reminiscent of a
Poisson process and indicates (i) the so-called intrinsic
noise originating from random births and deaths of the
individual protein molecule. Additional terms reflect an
extrinsic noise stemming from (ii) the mRNA noise at a
given strength of TF–DNA binding and from (iii) the

allele-dependent variation of TF-binding affinity, which
is contained in η2g .
In a steady state, where ph i ¼ αp

γp
mh i ¼ αmαp

γmγp
gλ Tð Þh i, the

protein noise can be additively decomposed as:

η2p gλ Tð Þ½ � ¼ γm
αm

1
gλ Tð Þh i 1þ γp

αp
þ 1
1þ γm=γp

 !
þ η2g;

ð10Þ

where the zygosity comes into play only through η2g . To
calculate the noise level in a homozygote with the normal-
ized transcription rate f T=λ

� �
≡f λ Tð Þ , we first determine

λ , as a function of λ, that satisfies gλ Tð Þh i ¼ f λ Tð Þ� �
from the requirement of Eq. 7. Thus, we obtained the dif-
ference in the noise level, Δη2≡η2p f λ Tð Þ� �

−η2p gλ Tð Þ½ �, as a
function of λ or other parameters across a range of in vivo
biochemical parameters [25, 26, 62]. Figure 3c shows Δη2

as a function of λ.

Expression and chromatin noise from single cell data
We employed RNA sequencing results for 62 single cells
from the GM12878 cell line [63]. This cell line was derived
from the NA12878 sample, for which a fully phased gen-
ome sequence is available [28]. The coefficient of variation,
measured as the standard deviation divided by the mean (C

V ¼ σ
μ ), is the most direct and unambiguous measure of

gene expression noise [64]. We calculated the CV of the
read counts normalized across the samples. To work only
with genes with uniform power to detect high or low vari-
ance, we excluded transcripts with an average FPKM <100
and hence a saturated CV [65]. We fitted the curve using
the parameterization CV 2 ¼ a0 þ a1

μ to capture the de-

pendence of the CV2 on μ [65] (Fig. 3e). We differentiated
homozygous and heterozygous loci using the GM12878 ge-
notypes available from the 1000 Genomes Project [28] and
discovered target genes based on the GM12878-specific en-
hancer–promoter maps created by the Chromatin Inter-
action Analysis by Paired-End Tag sequencing (ChIA-PET)
[66], chromosome conformation capture technology
(Capture Hi-C) [67], and Integrated Methods for Predicting
Enhancer Targets (IM-PET) [68]. ChIA-PET interactions
with four or more PET counts were used. We ran HOMER
(http://homer.salk.edu/homer/ngs/) to identify significant
(P < 10-6) promoter–capture Hi-C interactions. The IM-
PET method was used for our main analyses. We used the
combination of the two experimental datasets (ChIA-PET
and Capture Hi-C) to confirm that the observed expression
noise-selection relationships are not dependent on enhan-
cer–promoter mapping data (Additional file 1: Figure S10).
To analyze cell-to-cell variation in chromatin accessi-

bility, we used the assay for transposase-accessible chro-
matin sequencing (ATAC-seq) data set for 254
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individual cells from the GM12878 cell line [69]. This
dataset was downloaded from the NCBI Gene
Expression Omnibus (GEO) under accession number
GSE65360. We modified and ran the analysis scripts
provided by the authors. We used as input the chromo-
somal coordinates of chromatin accessibility peaks
(top 50,000 non-overlapping 500-bp summits) and
various features associated with each peak, including
fragment counts and sequence bias scores. For our
analysis, we assigned the Tajima’s D score and hetero-
zygosity in GM12878 to each accessible chromatin
peak. We computed the aggregate measure of cell-to-
cell variability in chromatin accessibility for peaks fall-
ing within a given range of Tajima’s D. The standard
deviation of the calculated variability was obtained by
bootstrapping cells as previously described [69]
(Fig. 3f ). For a gene-wise aggregate measure of chro-
matin accessibility noise, the average of the cis-regula-
tory regions connected to the same gene was obtained
by interrogating the IM-PET-based GM12878 enhan-
cer–promoter map [68].

Analysis of gene expression level and transcriptional
responsiveness
To test whether the advantage of the selected SNPs lies
in flexibility of transcriptional responses to various ex-
ternal signals, we sought to analyze gene expression data
for the human lymphoblastoid cell line GM12878. This
cell line was derived from the NA12878 sample, for
which a fully phased genome sequence is available [28].
For the first dataset, we downloaded the data for gene
expression changes in response to doxorubicin treat-
ment from the NCBI GEO under accession number
GSE51709 [70]. The raw expression measures were
treated with the Affymetrix Expression Console using
the gene-level RMA summarization and sketch-quantile
normalization methods. The second gene expression
dataset was downloaded from the GEO under accession
number GSE26835. In this dataset, the expression mea-
sures were obtained prior to ionizing radiation and at 2
and 6 h after exposure to 10 Gy of ionizing radiation
[71]. This dataset was created with the Affymetrix Ex-
pression Console using the MAS5 probe summary
method and global scaling normalization method. For
each gene, the degree of transcriptional responsiveness
was calculated as the maximum absolute gene expres-
sion change in response to the treatment among differ-
ent time points or samples. To link the heterozygosity
and selection strengths of each regulatory SNP with the
transcriptional response of its target gene, we used the
GM12878-specific enhancer–promoter maps generated
by the IM-PET [68] methods. The degree of gene expres-
sion changes in response to doxorubicin or ionizing radi-
ation was computed for the control SNPs (corresponding

to the middle 80 % of the Tajima’s D distribution),
homozygous SNPs, and heterozygous SNPs with varying
Tajima’s D or HKA k (Additional file 1: Figure S11a, b).
The degree of chromatin changes in response to TNF-α
treatment was calculated for the same groups of foot-
print SNPs. We used the ATAC-seq data set for
GM12878 single cells [69] described above (Additional
file 1: Figure S11c). The aggregate measure of chromatin
accessibility across the single cells was obtained for each
chromatin peak.
We sought to test whether the balanced SNPs are ad-

vantageous when their target genes are highly expressed,
in which case extrinsic noise is a dominant source of
cell-to-cell variability. We chose white blood cells for
which mRNA sequencing data were available from the
Roadmap Epigenomics Project, namely, CD4 naïve pri-
mary cells, CD4 memory primary cells, CD8 naïve pri-
mary cells, and peripheral blood mononuclear primary
cells. The IM-PET-based enhancer–promoter map for
CD4 naïve T cells [68] was used to associate the Tajima’s
D score of the regulatory SNPs with the expression level of
the target genes calculated as FPKM. Additionally, we used
the two Affymetrix datasets used for the above respon-
siveness tests, namely, the doxorubicin response data
(GSE51709) and the radiation response data (GSE26835).
We performed sample-wise normalization, in which the
mean expression level of all genes in each sample (CD4
naïve primary cells, CD4 memory primary cells, CD8 naïve
primary cells, peripheral blood mononuclear primary cells,
GM12878 before doxorubicin treatment, GM12878 after
doxorubicin treatment, GM12878 before irradiation, and
GM12878 after irradiation) was set to zero.

Additional files

Additional file 1: Figure S1. a–c The distribution of Tajima’s D for
DNase footprint SNPs in each subpopulation. d Overlapping of the SNPs
with the largest (top 1 %) positive D from each subpopulation. Figure S2.
a The distribution of HKA k values. b HKA P values as afunction of HKA k
values. c The distribution of Fst values. Figure S3. Divergence between
haplogroups compared with within haplogroups in a EUR, b ASN, and c
AFR. Figure S4. Tajima’s D of the selected (top 1 %) DNase footprint SNPs
and non-synonymous SNPs that are in linkage disequilibrium with them in
a EUR, b ASN, and c AFR. Figure S5. Enrichment of the selected footprint
SNPs in cis-regulatory regions of different cell types in EUR, ASN, and AFR.
Figure S6. a, b Enrichment of the selected footprint SNPs in the binding
regions of different TFs. c–e Zoom in for the top TFs. Figure S7. The
localization of the footprint SNPs and linked non-synonymous SNPs at the
clusters of the a MHC class and b, c SPRR and LCE genes. Figure S8. a
Redrawing of Fig. 3e using HKA k instead of Tajima’s D. b Redrawing of
Fig. 3f using HKA k instead of Tajima’s D. Figure S9. Negative correlation
between the degree of balancing selection signature and the noise
strength. Figure S10. a Redrawing of Fig. 3e using the ChIA-PET and
Capture Hi-C data instead of the IM-PET data. b Redrawing of the left panel
of Figure S9 using the ChIA-PET and Capture Hi-C data instead of the
IM-PET data. Figure S11. a, b The degree of gene expression changes in
response to a doxorubicin or b ionizing radiation as a function of selection
strength. c The degree of chromatin changes inresponse to TNF-α
treatment as a function of balancing selection signature. (PDF 3 kb)
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Additional file 2: Details of enrichment tests for the selected footprint
SNPs in cis-regulatory regions of different cell types (Fig. 1b; Additional
file 1: Figure S5). (XLSX 54 kb)

Additional file 3: GO categories enriched in genes associated with the
selected SNPs. (XLSX 18 kb)

Additional file 4: Enrichment of the selected SNPs for TF binding QTLs.
(XLSX 9 kb)
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