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Abstract

Background: The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-
Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric
heterochromatin (Telomeric Associated Sequences, ‘‘TAS’’) has the capacity to repress in trans, in the female germline, a
homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well
as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways.

Principal Findings: Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the
soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third
instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the
telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-
homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All
germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a
telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to
establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can
simultaneously repress two P-lacZ targets located on different chromosomal arms.

Conclusions and Significance: Therefore TSE appears to be a widespread phenomenon which can involve different
telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural
Drosophila populations.
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France

Introduction

Mobilization of transposable elements (TEs) is regulated by

complex mechanisms which involve proteins encoded by the TEs

themselves as well as heterochromatin formation and small RNA

silencing mechanisms [1–8]. The study of these mechanisms can

be facilitated by the fact that some of these elements are recent

components of genomes, allowing us to study strains with and

without these transposable elements (TEs). The P transposable

element (a transposase encoding TE) has invaded all natural

populations of Drosophila melanogaster in less than two decades

during the last century (1950–1970) [9,10]. Strains free of P

elements (collected before 1950) are called M strains, whereas

strains with P elements (collected after 1970) are called P strains

[11,12]. P strains crossed with each other do not show P elements

mobilization. However, when P males are crossed to M females, P

elements repression is lifted in the germline of the resulting

progeny. This induces the occurrence of a syndrome of germline

abnormalities called hybrid dysgenesis (P-M system) which

includes a high mutation rate, chromosomal rearrangements,

male recombination and an agametic temperature-sensitive

sterility called GD sterility (Gonadal Dysgenesis) [11–13]. P

PLoS ONE | www.plosone.org 1 September 2008 | Volume 3 | Issue 9 | e3249



element mobility and dysgenesis can be repressed by various

mechanisms depending on the structure and location of regulatory

P copies [14,15]. A biparentally-transmitted moderate repression

can be established by different types of P copies having the

capacity to encode polypeptides (deleted transposase) which

behave as repressors [16–21]. In contrast, the most efficient P

repression mechanism is a maternally transmitted P repression

capacity termed ‘‘P cytotype’’ [14,22] - the absence of P

repression, being referred to as ‘‘M cytotype’’. P cytotype

determination appears to involve mainly a master locus located

at the telomere of the X chromosome at the cytological site 1A

[23–26]. Indeed, one or two complete or defective P elements at

1A repress P transposition and P-induced hybrid dysgenesis more

efficiently than 15–20 P elements scattered at random on the

chromosomes, following P element transformation of an M line

[23,25–29]. Further, establishment of the P cytotype by telomeric

P insertions was shown to be sensitive to mutants affecting both

heterochromatin formation (HETEROCHROMATIN PRO-

TEIN 1, ‘‘HP1’’) and small RNA silencing pathways (AUBER-

GINE, an Argonaute member), suggesting a complex molecular

mechanism [25,30,31]. These telomeric P elements at 1A were

found to be inserted in a sub-telomeric heterochromatin region

[25,26,32] called ‘‘Telomeric Associated Sequences’’ (TAS)

[33,34]. TAS are heterochromatic tandemly-repeated non-coding

sequences that induce variegation in the eye of P-white transgenes

inserted within them [34–41]. Recently, extensive analysis of small

RNAs complexed with Piwi family proteins (AUBERGINE, PIWI

and AGO3) were performed in the Drosophila female germline

[6,42]. This analysis showed that most of these piwi-RNAs

(piRNAs) correspond to repeat associated small interfering RNA

(rasiRNA [3,7]). Among them, piRNAs corresponding to TAS

regions were found, suggesting that TAS may correspond to

platforms of piRNA production [6,43].

Finally, not only telomeric natural P elements, but also

telomeric P- transgenes, which are unable to encode any P-

repressor, were shown to have some repressive capacities. Indeed,

a P-lacZ transgene located in TAS can repress an euchromatic P-

lacZ transgene in trans, a phenomenon termed ‘‘Trans-Silencing

Effect’’ (TSE) [44]. This repression is dependent on the length of

homology between the two sequences [26]. Incomplete TSE does

not result in homogenous weak lacZ staining but produces clear-

cut variegation of lacZ expression in the germline [45,46]. TSE

appears to illustrate the molecular mechanism of the strong P

repression elicited by telomeric P elements since P cytotype and

TSE present similar properties: 1- both show maternal inheritance

and epigenetic transmission through the meiosis which depends on

an extra-chromosomal maternally-transmitted factor [45,47]; 2-

both are sensitive to mutations in Su(var)205 encoding HP1

[25,45]; 3- both are sensitive to mutations of aubergine affecting

RNA silencing [31,45]. Recently, we conducted a more extensive

candidate gene analysis of mutations affecting TSE and have

shown that this silencing strongly depends on genes involved in the

rasiRNA silencing pathway (aubergine, homeless, armitage and piwi),

but does not depend on r2d2 involved in the small interfering RNA

(siRNA) silencing pathway, nor on loquacious involved in the

microRNA (miRNA) pathway [45]. These data support the

proposition that TSE involves a rasiRNA pathway linked to

heterochromatin formation which was co-opted by the P element

to establish repression of its own transposition after its recent

invasion of the D. melanogaster genome.

In this paper, we analyze the phenotypic properties of TSE, first

showing that this silencing is restricted to the female germline and

second that it occurs during development in third instar larvae. We

further investigate its generality throughout the genome: we

identify new telomeric silencers located in the TAS of the second

and third chromosome telomeres and show that silencers located

at non-homologous telomeres can functionally interact in

establishing TSE. We show that TSE represses all tested

euchromatic insertions located on all main chromosomal arms.

We finally also show that TSE can repress simultaneously two

transgenes located on different chromosomal arms. Therefore,

TSE properties allow us to propose that the TAS located at non-

homologous telomeres can be interacting piRNAs-producing

platforms. Consequently, regulatory P element copies can be

inserted in these platforms and interact to establish repression of

the euchromatic P copies scattered throughout the genome.

Materials and Methods

Experimental conditions
All crosses were performed at 25uC and involved 3–5 couples in

most of the cases. All ovary lacZ expression assays were carried out

using X-gal overnight staining as described in Lemaitre et al. 1993

[48], except that ovaries were fixed for 6 min [45].

Transgenes and strains
Transgene structures. P-lacZ fusion enhancer-trap

transgenes (P-1152, P-1103, P-1155, BQ16, BC69, BA37, P-1039)

contain an in-frame translational fusion of the E. coli lacZ gene to

the second exon of the P transposase gene and contain rosy+ as a

transformation marker [49]. SUPor-P-863-1, P-w-y-T2R-PAR are

P-yellow-white transgenes [50] (see legend of Figure S1). P-Co1 is an

insertion of the pCo transgene (P-otu-lacZ) in which

b2galactosidase expression is driven by the otu promoter and is

therefore strongly detected in both nurse cells and the mature

oocyte [51]. This transgene contains a white gene as a

transformation marker. A4-4 (also called P-833) is a P-white-rosy

transgene [34,52,53].

Telomeric silencers. The P-1152 and P-1103 insertions

come from stocks #11152 and #11103 of the Bloomington Stock

Center and have been mapped at the telomere of the X

chromosome (cytological site 1A); these stocks were previously

described to carry a single P-lacZ transgene inserted in TAS [44].

However, in our #11152 stock, we have mapped two P-lacZ

transgenes inserted in the same TAS unit and in the same

orientation which might have resulted from an unequal

recombination event duplicating the P-lacZ transgene [45]. P-

1155 comes from stock #11155 of the Bloomington stock center.

It contains a single P-lacZ transgene in TAS at the 3R chromosome

arm telomere (site 100F). P-1152 and P-1103 show no lacZ

expression in the ovary, whereas P-1155 shows weak and non-

uniform lacZ staining in follicle cells but no staining in the

germline (data not shown). SUPor-P-863-1 has been mapped to

TAS of the X-chromosome telomere [50] and carries two adjacent

SUPor-P transgenes (P-white-yellow [50]) in the same orientation,

one of which is deleted at one extremity (see legend of Figure S1).

P-w-y-T2R-PAR has been mapped to TAS of the 2R chromosomal

arm telomere (site 60F) and carries a single P-white-yellow transgene

(see legend of Figure S1). A4-4 has been mapped to TAS of the 3R

chromosomal arm telomere (site 100F) and carries a single P-white-

rosy transgene [34,43,52,53]. All these telomeric silencers are

homozygous viable and fertile. Information concerning the

mapping of telomeric silencers within a TAS repeat are shown

on Figure S1.

Euchromatic targets. BC69 is inserted on chromosome 2 in

the first exon of the vasa gene and results in vasa loss of function: it

is consequently homozygous female sterile. BQ16 is located at 64C

in euchromatin of the third chromosome and is homozygous
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viable and fertile. It was mistakenly reported to be located on the

second chromosome in [46]. BQ16 and BC69 are strongly

expressed in the nurse cells and in the oocyte. BA37 is located at

87F on the third chromosome and is homozygous lethal. It is

strongly expressed in the follicle cells but shows no expression in

the female germline. P-1039 is located at 60B on the second

chromosome and is homozygous lethal. It shows strong lacZ

staining in numerous tissues including the follicle cells, the nurse

cells and the oocyte. BA37 and P-1039 are maintained over

balancer chromosomes. P-Co1 is an insertion of the pCo transgene

(P-otu-lacZ) on the third chromosome (87AB) which is homozygous

viable and fertile. ptc-lacZ and sd-lacZ correspond to enhancer-traps

in the patched and scalloped genes, respectively. Other constructs

which have been used as TSE targets are listed in Table S1.

Table S2 gives the nomenclature information and references for

all transgenes tested as TSE silencers or targets.

Lines carrying transgenes have M genetic backgrounds (devoid

of P transposable elements), as well as the multi-marked balancer

stocks used in genetic experiments (M5; Cy/T(2;3)apXa and M5;

TM3, Sb/T(2;3)apXa). Cantony and w1118 are typical M strains

marked with a spontaneous mutation of yellow and a deletion inside

the white locus, respectively.

Quantification of TSE
Depending on the target, TSE can be almost total or

intermediate. When TSE is incomplete, variegation is observed

since ‘‘on’’ and ‘‘off’’ lacZ expression is seen among egg chambers:

egg chambers can show strong expression (dark blue) or no

expression, but intermediate repression levels are not (or very

rarely) found. Simple quantification of TSE is thus possible by

determining the percentage of repressed egg chambers. The

number of repressed chambers among the first five egg chambers

of a given ovariole is scored for ten ovarioles chosen at random per

ovary. For a given genotype more than 1000 egg chambers were

classically counted. This measure generally produces very

reproducible results among replicate experiments allowing accu-

rate quantification of TSE [45].

Results

TSE is germline specific
Trans-silencing was discovered through the study of the

mechanism of the establishment of the P cytotype, the P element

maternally-inherited repressive state which takes place in the

germline, the tissue in which the P elements can transpose and

induce hybrid dysgenesis. It was shown previously that a crucial

component of this P cytotype results from telomeric P elements

inserted in subtelomeric heterochromatin at the telomere of the X

chromosome [25]. These telomeric P elements have repressive

capacities which are restricted to the germline. We have thus

tested the tissue specificity of TSE in order to determine if it can

take place in other tissues than the germline. Males which carry

euchromatic P-lacZ transgenes expressed in various tissues were

crossed with M females and with females carrying a strong

telomeric silencer locus (P-1152) [45]. Various tissues in G1

individuals were stained and were compared for the two kinds of

G1 progeny. Figure 1 shows that, for the targets expressed in

ovaries, TSE occurs in the female germline (nurse cells inside egg

chambers, see BQ16 (A vs B) and P-1039 (E vs F)) but does not

occur in the somatic follicle cells surrounding the egg chambers

(see BA37 (C vs D) and P-1039 (E vs F)). Further, no repression by

P-1152 is detected in the testis (see P-1039, G vs H). Finally, no

TSE was detected in the salivary glands nor in the fat body of third

instar larvae (see P-1039, I vs J). It can be noted that a given P-lacZ

insertion (P-1039) expressed in various tissues, undergoes repres-

sion in the nurse cells but not in the somatic cells nor in the testis.

Thus, this tissue specificity cannot be interpreted as a consequence

of a specific property of the target genomic site. In addition, the

germline repression using the BQ16 and P-1039 targets corre-

sponds to TSE since in both cases it was shown to present the TSE

signatures i.e. a maternal effect (repression only when the telomeric

transgene is maternally inherited) and variegation when the

repression is not complete ( [45] and data not shown).

To generalize these results, TSE was tested using a number of

different P-lacZ target insertions scattered through the genome.

Nineteen insertions, located on all main chromosomes and

showing expression in the female germline (nurse cells and in

some cases the oocyte), were tested (Table S1). In all cases, TSE

was observed in this tissue. TSE appears to be a general

phenomenon which can take place across the whole genome.

Further, the tissue specificity of TSE at the adult stage was

confirmed with seven different P-lacZ target insertions expressed in

ovarian somatic follicle cells and with six different P-lacZ target

insertions expressed in the testis: in all cases no repression was

observed. Among these targets, three P-lacZ are expressed in both

the female germline and in follicle cells and six P-lacZ targets are

expressed in both the female germline and the testis: in each case

TSE was observed only in the nurse cells and/or the oocyte. TSE

at the adult stage appears therefore restricted to the female

germline and shows no escapers among target transgenes

expressed in this tissue, as tested using 19 targets located on all

the main chromosomes.

TSE is also active in larvae
TSE was previously analyzed mainly in adults. We tested if TSE

can occur during development at the third instar larvae in gonads

and imaginal discs (Figure 2). We first performed classical crosses

known to induce a strong TSE in adult ovaries. We crossed BQ16

and BC69 males with both M females and females carrying the

telomeric P-1152 silencer and have stained the gonads of G1 third

instar larvae. In female larval gonads, BQ16 and BC69 were

expressed in the G1 deriving from M females but were strongly

repressed in G1 larvae deriving from P-1152 females (Figure 2).

Conversely, no repression by P-1152 was observed in the male

gonads for the two target transgenes. Therefore, TSE is detected

in female but not male gonad tissue in larvae. We further tested

the maternal effect of TSE by performing the reciprocal cross

(females P-lacZ target x males P-1152) and no repression was

detected in G1 female larvae. Finally, we tested if TSE can occur

in the soma of larvae by crossing M and P-1152 females with

males which carry an enhancer-trap either in the scalloped or patched

genes and staining imaginal discs in the resulting progeny (scalloped

and patched, but not P-1152, are expressed in imaginal discs (data

not shown)). Whatever the disc tested (eye, wing, leg, haltere), no

repression was detected in the presence of P-1152 (Figure 2). Thus

TSE can occur in third instar larvae and presents the same

maternal effect and female germline specificity as in adults.

TSE silencers can be found in the TAS of various
telomeres

Following the discovery of the crucial role of telomeric P

elements inserted in TAS of the X chromosome in P cytotype

determination [24,25], TSE was discovered by using two P-lacZ

insertions also located at the X chromosome telomere and one P-

white-rosy insertion located at one of the third chromosome

telomeres [44]. In each case, the telomeric silencer transgenes

were located in TAS. In the same analysis, telomeric transgenes

inserted in non-TAS sequences were found to be devoid of

Epigenetic Trans-Silencing
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Figure 1. TSE is restricted to the female germline. Males from lines carrying various tested euchromatic P-lacZ enhancer-trap transgenes
expressed in different tissues were crossed with females devoid of P-transgenes (M females) or with females carrying the telomeric silencer P-1152. G1

individuals were stained overnight for lacZ activity. A–F, adult ovaries; G–H, adult testis; I–J, third instar larvae salivary glands (full arrow) and fat body
(dashed arrow). The staining observed in the larval brain is not discussed in the present analysis since the P-1152 transgene alone produces staining in
this tissue. The enhancer-traps tested as targets and introduced by the fathers are indicated on the figure (on the left) and their structures and
locations are described in the ‘‘Material and Methods’’.
doi:10.1371/journal.pone.0003249.g001
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repressive capacities. We have extended the search for silencers by

testing a number of transgenes located at other telomeres, other

centromeres, in euchromatin and on the fourth chromosome. The

results are presented in Table 1. Transgenes are classified with

regard to their genomic location and to their capacity to repress, in

trans, a homologous euchromatic transgene expressed in the female

germline. In addition, data from [51], in which were tested clusters

of P-lacZ-white transgenes generating variegation in the eye for the

white marker [54,55], are also reported. Among 38 insertions

located in euchromatin on all chromosomal arms, no transgene

Figure 2. TSE occurs in third instar larvae and presents the same properties as in adults. Different crosses were performed between
individuals from M or P-1152 lines and individuals from lines carrying various euchromatic P-lacZ enhancer-trap transgenes expressed in different
tissues. Imaginal discs or gonads from G1 third instar larvae were stained overnight for lacZ activity. The tissue is indicated on the figure together with
the cross (above) and the enhancer-trap used (on the left). ptc-lacZ and sd-lacZ are enhancer trap in the patched and scalloped genes, respectively.
BC69 and BQ16 are expressed in the germline of the two sexes and are described in the ‘‘Material and Methods’’. Pictures are not to scale.
doi:10.1371/journal.pone.0003249.g002
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was found to be able to induce TSE. In particular, three

transgenes located in the ‘‘gooseneck’’, cytological region 31

located on chromosome 2, which is bound by HP1 on salivary

gland polytene chromosomes, were tested and no silencer was

found. Ten transgenes located in pericentromeric heterochromatin

from the three main chromosomes were also tested and two

transgenes located on the heterochromatic fourth chromosome

were tested: no silencer was found.

In contrast, we tested 11 telomeric transgenes located in TAS

and found six silencers among these. Three previously undescribed

telomeric silencers were found which are located on the first, the

second and the third chromosomes. Thus silencers can be located

at the telomeres of all main chromosomes. Two transgenes

inserted in the LINEs telomeric clusters which are distal to the

TAS and which do not present Telomeric Position Effect [41]

were tested and did not induce TSE. This confirms thus that the

capacity for a transgene to be a TSE silencer requires not only to

be at a telomere but also to be inserted specifically in TAS. The

only exception to this rule comes from a P-lacZ-white transgene

cluster called ‘‘T-1’’ which is located on the second chromosome.

T-1 results from X-ray treatment of a cluster called BX2 which

contained seven tandem P-lacZ-white transgenes located in 50C

and which presents weak variegation in the eye. T-1 presents, on

polytene chromosomes, numerous uninterpretable chromosomal

rearrangements and presents a very strongly variegating repression

of the white marker in the eye. This cluster was shown previously to

be a strong TSE silencer whereas all the clusters without any

rearrangement cannot induce TSE [51]. It is possible that the

rearrangements induced by irradiation lead to a sort of

‘‘pseudotelomerisation’’ of this cluster region. It is noteworthy

that we did not detect silencers among the 10 centromeric

transgenes tested, despite the fact that these transgenes are inserted

in heterochromatin.

Finally, an important point is that TSE silencers can have different

structures since silencers can be telomeric P-lacZ, P-white-rosy or P-

white-yellow transgenes, provided that the target transgene used for

the assay exhibits homology with the telomeric insertion. Indeed,

telomeric trans-repression was shown to be homology-dependent

[26]. The present data shows that this homology can result not only

from the lacZ sequence, but also from the white or rosy sequences since

in some cases, the silencer does not carry lacZ and the 0.82kb of P

element sequence which are common to all these transgenes were

previously shown not to be long enough to induce TSE [51]. Thus,

silencing of the target likely involves a cis-spreading on this target

from the sequence homologous to the telomeric transgene to the lacZ

sequence. In conclusion, the requirements for a transgene to be a

TSE silencer are that they be telomeric, flanked by TAS and share

homologous sequences with the target. Under these conditions,

various telomeres can work and the silencer does not need to carry

the repressed gene (lacZ). However, not all transgenes inserted in

TAS are silencers, a result which can be attributed to a position effect

of the transgenes inside the TAS repeat array or to the structure of

distal part of the telomere.

All silencers show the TSE maternal effect
Two main properties are characteristics of TSE. The first one is

the maternal effect: strong TSE occurs only when the telomeric

silencer is maternally inherited. The second is the variegation:

when repression is incomplete a clear cut random ‘‘on-off’’ lacZ

staining is observed from one egg chamber to another [46]. This

Table 1. Capacity of P transgenes to induce Trans-Silencing Effect.

Not Silencer Silencer

Telomere SUPor-P690-I (1A)*, SUPor-P22-I (60F)*, SUPor-P-KG10047 (60F)**, P-1611
(100F)*, SUPor-P525-1A (100F)*, SUPor-P316-I (100F)*, SUPor-P-KG01591
(100F)**

P-1103 (1A)*R, P-1152 (1A)* R, SuPor-P863-1 (1A)*, P-w-y-T2R-PAR
(60F)*, A4-4 (100F)*R, P-1155 (100F)*

Centromere P-2004 (20A-B), SUPor-P-KG01248 (20C), SUPor-P-KG03740 (20D), SUPor-P-
KG09078 (20D), CH(2)6 (2R)*, P-1296 (40A), P-819 (41A), P-1784 (80A-F),
P-993 (81F), P-1695 (81F)

Chromosome 4 P-6303 (101F), P-2648 (102F)

Euchromatin P-1131 (1C), P-592 (1E), P-1164 (2D), P-1260 (3C), SUPor-P-KG06450 (7D), P-1468
(8D), P-589 (10B), SUPor-P-KG02704 (11A), Bl-5536 (12A), sd-lacZ (13F), P-1168
(19A), P-1085 (19C), H15-lacZ (25E), wg-lacZ (27F), SUPor-P-KG08841 (28A), P-1195
(29C)*, P-435 (31D)G, P-644 (31D)G, P-476 (31E)G, P-936 (33E), P-1033 (35D-E),
P-605 (39E)*, 6-2 (50C), P-1038 (50D), SUPor-P-KG00786 (52D), P-2032 (62A-B),
P-1075 (64D), P-1169 (65C-D), SUPor-P-KG05833 (68C), P-1052 (70A), P-1064 (70F),
P-1173 (84E), P-0950 (85B), neur-lacZ (85C), P-300 (89B)*, P-1151 (91B), SUPor-P-
KG10155 (91F), kay-lacZ (99B-C)

P-lac-w clusters 1A-6 (50C, 2 copies), 6-4 (50C, 4 copies), DX1 (50C, 6 copies), BX2
(50C, 7 copies), 6-E (92E, 3 copies)

T-1 (50C,X-ray, 7 copies)

A large panel of transgenes inserted at various chromosomal locations has been tested for its capacity to induce TSE. Females from lines carrying the tested transgene
were crossed with males carrying a BQ16 or P-Co1 transgene as target. M females (from the Cantony or w1118 strains, devoid of P sequences) were crossed with similar
males in the same conditions (M control). Overnight lacZ staining of ovaries was performed. Tested transgenes were designated as ‘‘Silencer’’ when progeny showed
egg chambers with lacZ repression when compared to the M control progeny. Transgenes known to be flanked by TAS are indicated by an asterix; telomeric transgenes
inserted in terminal retrotransposons are indicated by two asterixes. Insertions located in the region of the 2L chromosomal arm which is covered by HP1 on larval
polytene chromosomes (called the ‘‘gooseneck’’) are indicated by G. Among silencers, R indicates that the effect was described previously in [44]; P-1155 was not found
to be a repressor in the latter study, whereas we identified it as a silencer possibly because we used a more sensitive target transgene. Tested transgenes are P-lacZ
constructs except for those of the SUPor-P series which are P-white-yellow and for P-833 and P-819 which are P-white-rosy constructs. All SUPor-P insertions were tested
using P-Co1 as a target so that the two transgenes share long enough sequence homology (white marker). The cytological location is given in parenthesis. P-lac-w
clusters correspond to transgenes in tandem arrays; the number of transgenes is given in parenthesis; X-ray indicates that the line has undergone a chromosomal
rearrangement – for details, see [51,55]. Chromosome 1 = 1A–20F; 2L arm = 21A–40F ; 2R arm = 41A–60F; 3L arm = 61A–80F; 3R arm = 81A–100F; chromosome
4 = 101A–102F; the telomeres are in bold. The properties and references of all transgenes are listed in Table S2. Mapping and orientation of some telomeric insertions
inside a TAS repeat are reported in Figure S1.
doi:10.1371/journal.pone.0003249.t001
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first case of female germline variegation allows an easy

quantification of TSE by scoring the repressed egg chambers

and determining the percentage of TSE [45]. We tested if the

silencers located on different telomeres have the same repression

phenotypic properties. Thus, we crossed six telomeric silencers

with the P-Co1 target and measured the TSE in G1 females of the

two reciprocal crosses (Figure 3). In each case, a strong maternal

effect is observed since a much stronger level of repression is

observed when the telomeric transgene is maternally-inherited

compared to when it is paternally-inherited. The level of

repression appears stronger with silencers which carry two

telomeric transgenes (P-1152, SUPor-P-863-I) than one transgene,

a result already described by Roche and Rio using telomeric

transgenes located on an X minichromosome [44]. In addition,

irrespective of the telomeric silencer, variegation among egg

chambers is observed when repression is incomplete. Therefore,

telomeric transgenes inserted at various telomeres present the

same properties with regard to repression in trans, strongly

suggesting that the same molecular mechanism is involved from

one telomere to another.

Figure 3. Silencers inserted at different telomeres exhibit a maternal effect. The two reciprocal crosses were performed between
individuals carrying the euchromatic P-otu-lacZ transgene (P-Co1), used as the TSE target, and lines carrying a telomeric silencer transgene inserted in
TAS. As an expression control, P-Co1 individuals were crossed with Canton M individuals (devoid of P sequences). In each case, ovaries from G1

females were stained overnight for lacZ activity. The percentage of repressed egg chambers (% of TSE) is given with the total number of egg
chambers counted in parenthesis. The transgenes tested as silencers are indicated on the figure (on the left) and their structures and locations are
described in the text and in Figure S1.
doi:10.1371/journal.pone.0003249.g003
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TSE functional interaction exists between non
homologous telomeres

Next, we tested if silencers located at different telomeres can

interact for establishing TSE. TSE establishment was previously

shown to require, not only the presence of the chromosomal copy of

the telomeric silencer, but also the inheritance of a maternally-

transmitted component deposited in the oocyte of females carrying

the telomeric silencer [45]. If the female is hemizygous for a silencer,

this component can be transmitted independently of the chromo-

somal copy of the silencer itself. This component has the capacity to

stimulate TSE in the progeny provided a copy of this silencer is

transmitted by the male. Such a phenomenon makes of TSE a ‘‘two

component system’’, interpreted as resulting from the deposition in

the oocyte of small RNAs produced by the telomeric silencer which

interact in the zygote at the embryonic state with the chromosomal

copy of the silencer in order to render it apt (via its heterochroma-

tinization) to establish TSE [45]. We tested if telomeric silencers

located at non-homologous telomeres can functionally interact via

this two component system. In other words, is the maternal

component produced by a transgene located on the third

chromosome able to stimulate establishment of TSE by telomeric

transgenes located on the X chromosome and vice-versa?

We used two telomeric P-lacZ silencers, P-1152 and P-1155 which

have the same structure but are located on the X-chromosome and

on the 3R chromosomal arm, respectively. Females were constructed

which had maternally inherited P-1155 and which had a dominant

marker (Sb) on the homologous chromosome 3 (balancer chromo-

some). Figure 4 shows that crossing these hemizygous females (‘‘A’’

females) with males carrying a target transgene produced control

‘‘B’’ females which inherited, from their mother, both the cytoplasm

and a chromosomal copy of the telomeric silencer: in these females

TSE is about 15%. However, sisters having inherited the Sb

chromosome do not show any repression (‘‘C’’ females, TSE = 0%).

Thus, the cytoplasm of a P-1155 female without a chromosomal P-

1155 copy cannot induce TSE. Crossing P-1152 ; P-Z-target males

with females devoid of telomeric silencer produces a non-null but

weak repression in the progeny (8.5%), as shown by ‘‘E’’ females, a

result consistent with the fact that, given the maternal inheritance of

TSE, paternal transmission of a telomeric silencer results in weak

TSE (see Figure 3 and [51]). Finally, crossing ‘‘A’’ females with males

Figure 4. Functional interaction between silencers located in TAS at non-homologous telomeres: a silencer inserted at the 3R
chromosome arm telomere transmits a maternal component which stimulates the repressive properties of a silencer located on the
X-chromosome telomere. Genotypes are given for chromosomes 1 and 3. ‘‘A’’ females, hemizygous for the P-1155 telomeric silencer locus on the
third chromosome, were established by crossing homozygous P-1155 females and males carrying the balancer chromosome TM3-Sb (marked by the
dominant Stubble mutation). These ‘‘A’’ females were crossed with males carrying the P-Co1 euchromatic P-lacZ as target in order to recover the ‘‘B’’
and ‘‘C’’ females having inherited, or not, P-1155. ‘‘A’’ females were also crossed with P-1152; P-lacZ-target males in order to recover the ‘‘D’’ females
having inherited P-1152 from the father and the ‘‘F’’ females having inherited the two telomeric silencers. P-1152; P-lacZ-target males were also
crossed with females devoid of P-transgenes producing ‘‘E’’ females genotypically similar to ‘‘D’’ females, except that they have inherited a naive
cytoplasm, whereas, ‘‘D’’ females have inherited a ‘‘P-1155’’ cytoplasm. ‘‘B–F’’ females were scored for TSE. ‘‘G’’ females show the expression control
for the target. The percentage of repressed egg chambers (% of TSE) is given with the total number of egg chambers counted in parenthesis.
doi:10.1371/journal.pone.0003249.g004
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carrying a P-1152 telomeric silencer and a target transgene allows

recovery of females having maternally inherited only a ‘‘P-1155’’

cytoplasm and paternally inherited a P-1152 chromosomal silencer.

In that case, significant repression is observed (‘‘D’’ females, 18%

TSE; the difference with the level of E females is highly significant,

x2 = 44.4, df = 1, p,1023). Thus the P-1155 cytoplasmic component

(incapable by itself of inducing TSE, as shown with ‘‘C’’ females)

combined to a paternally inherited P-1152 telomeric silencer can

establish TSE. When the two telomeric silencers were inherited a

stronger repression was observed (‘‘F’’ females, 42% TSE). Thus

cytoplasm produced by a female carrying P-1155 is able to stimulate

the repression capacities of a P-1152 chromosomal copy.

The reciprocal experiment was performed to test the capacity of

P-1152 cytoplasm to stimulate repression by a P-1155 paternally-

inherited transgene. In that case, the semi-dominant marker for

the X chromosome was Bar on the M5 balancer chromosome.

Figure 5 shows that the cytoplasm of a P-1152 female without a

chromosomal P-1152 copy cannot induce TSE (‘‘C’’ females, 0%

TSE). The same situation was found for females which inherited

P-1155 transgenes paternally (‘‘E’’ females, 0% TSE). In contrast,

females which maternally inherited only a ‘‘P-1152’’ cytoplasm

and paternally inherited a P-1155 chromosomal silencer show

strong repression (‘‘D’’ females, 51% TSE). ‘‘B’’ females which

have maternally inherited a P-1152 chromosomal copy and

cytoplasm show unexpectedly moderate TSE (36%). Again, when

the two telomeric silencers were inherited a stronger repression

was observed (‘‘F’’ females, 69% TSE). These two experiments

show that the cytoplasm associated to a silencer located at a

telomere can positively interact with the chromosomal copy of a

silencer located at a different telomere to induce TSE suggesting

that the same mechanism is involved by transgenes located at

various telomeres for establishing this trans-silencing.

Epigenetic transmission of TSE does not require the
presence of the target transgene

TSE exhibits both a maternal effect [51] and a maternal

inheritance [45]. The maternal effect is the fact that when

performing the reciprocal crosses (female P-lacZ-telomeric x male

P-lacZ-target) and (female P-lacZ-target x male P-lacZ-telomeric),

strong TSE occurs only in the progeny of the first cross. Maternal

inheritance is the fact that these two kinds of G1 females transmit

different repression capacities to their own daughters. So despite

the fact that G2 females receive a maternally-inherited silencer,

they will have different properties because of an epigenetic

memory of the properties of their grandmothers. It was shown

previously that the effect of the maternal inheritance can be

Figure 5. Functional interaction between silencers located in TAS at non-homologous telomeres: reciprocal interaction between
the silencers located at the X and 3R arm telomeres. Presentation is similar to that in Figure 4. ‘‘A’’ females, hemizygous for the P-1152
telomeric silencer locus on the X chromosome and carrying the P-Co1 euchromatic target, were established by crossing homozygous P-1152; P-Co1
females and males carrying the balancer chromosomes Muller-5 (M5) and TM3. These ‘‘A’’ females were crossed with males devoid of P-transgenes in
order to recover the ‘‘B’’ and ‘‘C’’ females having inherited, or not, P-1152. ‘‘A’’ females were also crossed with P-1155 males in order to recover the ‘‘D’’
females having inherited P-1155 from the father and ‘‘F’’ females having inherited the two telomeric silencers. P-1155 males were also crossed with P-
Co1 females producing ‘‘E’’ females genotypically similar to ‘‘D’’ females, except that they have inherited a naive cytoplasm, whereas, ‘‘D’’ females
have inherited a ‘‘P-1152’’ cytoplasm. ‘‘B–F’’ females were scored for TSE. ‘‘G’’ females show the expression control for the target.
doi:10.1371/journal.pone.0003249.g005
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detected for more than five generations conferring to TSE an

epigenetic transmission through meiosis [45]. We tested if the

maternal inheritance of TSE, previously tested in the presence of

the euchromatic target in G1 females, can be detected in the

absence of the target in G1 females, since it could be postulated

that the target can itself play a role in the difference between these

G1 females. For that, we generated the two kinds of G1 females

which have inherited the P-1152 silencer, maternally or paternally

(Figure 6) but which carry no target transgene. We tested further

if the maternal inheritance shown previously [45] can be detected.

For that, we crossed theses G1 females with males carrying a target

transgene and measured TSE in G2 females. This experiment was

performed using two target transgenes (BQ16 and BC69). Figure 6

shows that in both cases a strong difference in TSE level was

detected between G2 females which have inherited the transgene

from their grandmother vs their grandfather (83.0% vs 15.3% with

BQ16 and 56.4% vs 6.6% with BC69). This shows that the two

kinds of G1 females having the telomeric silencer but not the target

transgene can transmit to their progeny different states which play

a role in determining the capacity to repress a target. Maternal

inheritance of TSE, responsible for its epigenetic behavior, can

thus be established in the absence of the target transgene.

A single telomeric silencer locus can repress two targets
located on different chromosomal arms

We finally tested if a single telomeric silencer locus can repress

two P-lacZ target transgenes inserted at allelic or non-allelic

positions. We used the telomeric P-1152 silencer which carries two

copies of P-lacZ at the cytological site 1A and the BQ16 and P-Co1

target insertions which are located on the 3L and 3R chromosomal

arms respectively. We measured TSE in females which have

inherited a P-1152 silencer and which are either homozygous for a

given target (BQ16) or hemizygous for two different targets (BQ16

and P-Co1). Table 2 shows the crosses performed to generate

these genotypes, plus other control genotypes and the levels of

TSE measured. The targets expression controls (rows 1–5) show,

of course, no repressed egg chambers. The classical TSE positive

controls (one silencer locus+one target: rows 6 and 7–92.7% and

89.5%, respectively) show the classical strong levels of TSE found

previously for these targets (Figure 3 and [45]). Rows 6 and 9 show

that irrespective of the maternal or paternal mode of inheritance of

the BQ16 target, close repression levels are observed (92.7% vs

91.5%): thus, in contrast to the mode of inheritance of the

telomeric silencer, the mode of inheritance of the target transgene

is not crucial for TSE. Rows 10 and 11 show that a maternally-

Figure 6. Maternal inheritance of TSE does not require the presence of the target. The two reciprocal crosses were performed between P-
1152 and individuals devoid of P-transgenes and carrying the Muller-5 chromosome marked with Bar. G1 females have the same genotype, but have
inherited different cytoplasms. These G1 females were crossed with males carrying an euchromatic P-lacZ as target and the capacity of G2 females to
repress this target was measured after overnight lacZ staining. The experiment was performed with two different P-lacZ enhancer traps as targets
(BQ16 and BC69). The percentage of TSE is given with the total number of egg chambers scored in parenthesis.
doi:10.1371/journal.pone.0003249.g006
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inherited single P-1152 locus strongly repress two copies of BQ16

or one copy of BQ16 plus one copy of P-Co1, showing that a single

silencer locus can strongly repress two transgenes (89.0% and

78.8% respectively). It is noticeable that the combinations (one

silencer+one target) and (one silencer+2 allelic targets) produce

similar levels of repression (rows 9 and 10: 91.5% vs 89.0%), but

this fact is not observed when the two targets are not located on

the same chromosomal arm (compare row 11 (78.8%) to rows 9

(91.5%) or 7 (89.5%)). Finally, the level of repression of row 8 (two

silencer loci+two allelic targets, 100%) is stronger than the (one

silencer loci+two targets) combination (row 9, 91.5%), showing

that the number of silencers can influence the level of target

repression, a situation already encountered on Figures 4 and 5

using two different silencers (P-1152 and P-1155). In conclusion, a

single telomeric silencer can simultaneously induce trans-repression

at various locations in the genome.

Discussion

1 –TSE does not occur in the soma
Trans-silencing was tested in various tissues at both the adult and

third instar larval stage and no repression was detected in the

somatic tissues, nor in the male gonads (Figures 1–2). This result

was confirmed with a number of different targets insertions,

including some targets which are expressed in both the female

germline, the testis and in the soma; in each case the target was

sensitive to TSE in the female germline, but not in the soma, nor

in the testis (Table S1). This shows that the tissue specificity cannot

be attributed to specific properties linked to the genomic context of

some of the targets which would render these targets insensitive to

TSE. To explain the germline specificity, two main hypotheses can

be proposed. The production of the primary small RNAs by the

TAS locus would be, for an unknown reason, restricted to the

germline. Alternatively, the tissue specificity of TSE could be

linked to the amplification step of the piRNA pathway which

could be restricted to the germline. Indeed, under the model

proposed for this pathway, piRNA biogenesis involves at least

three PIWI family proteins: PIWI, AUBERGINE and AGO3

[6,42]. It has been shown that, whereas PIWI is present in the

female germline and in somatic tissues (for example in the follicle

cells), AGO3 and AUBERGINE are not detected in the follicle

cells, but are present in the germline [6]. Thus, TSE restriction to

the germline would result from the fact that the ping-pong positive

loop of piRNA biogenesis cannot occur in the soma.

2 - Silencers located at different telomeres induce
phenotypically similar silencing and interact functionally

TSE induced by silencers located at different telomeres appear

to have the same genetic and phenotypic properties and thus likely

involve the same mechanism. Indeed, in all cases, an incomplete

repression does not lead to an intermediate homogenous pale blue

staining of the ovary but to variegation between egg chambers

(Figure 3). In addition, the various telomeres can interact. Indeed,

TSE establishment was previously shown to require both a

chromosomal copy of the telomeric silencer and a maternally

transmitted component which can be transmitted independently of

the chromosomal telomeric copy itself [45]. This maternal

component was interpreted to be small RNAs produced by the

telomeric silencer in the female and deposited in the cytoplasm of

the oocyte. Maternal deposition of small RNAs was described in

Drosophila virilis where repression of hybrid dysgenesis, linked to the

Penelope retroelement, has been correlated to Penelope small RNAs

deposition in the embryo [56]. In D. melanogaster, piRNAs of TAS

have been detected for both the TAS of the X chromosome [6]

and the TAS of the 3R chromosomal arm telomere [43]. In the

case of TSE, maternally-transmitted small RNAs would modify

the chromatin structure of the paternally or maternally-inherited

chromosomal telomeric copy, rendering it apt to produce small

RNAs and to maintain their concentration. Such a positive loop

between small RNA production and chromatin structure modifi-

cations could explain the epigenetic transmission of TSE over

several generations. We show here that this functional interaction

can exist between silencers located at non-homologous telomeres

(X and third chromosome telomeres, Figures 4 and 5). This

suggests that the various telomeric TAS platforms would use a

similar positive loop pathway. TSE being homology-dependent, a

functional interaction between telomeres is possible because of the

full sequence homology between the telomeric insertions used (P-

1152 and P-1155 are the same construct) and, to a lesser extent,

the partial homology between various TAS, (especially X and 3R

Table 2. Capacity of a telomeric locus to repress two target transgenes inserted at allelic or non-allelic positions.

Row Parental cross Genotype analysed % TSE n

1 R BQ16 x = BQ16 +/+ ; BQ16/BQ16 0.0 1000

2 R P-Co1 x = P-Co1 +/+ ; P-Co1/P-Co1 0.0 1400

3 R Cantony x = BQ16 +/+ ; +/BQ16 0.0 1400

4 R Cantony x = P-Co1 +/+ ; +/P-Co1 0.0 1500

5 R BQ16 x = P-Co1 +/+ ; BQ16/P-Co1 0.0 900

6 R P-1152 x = BQ16 P-1152/+ ; +/BQ16 92.7 1300

7 R P-1152 x = P-Co1 P-1152/+ ; +/P-Co1 89.5 1050

8 R P-1152 ; BQ16 x = P-1152 ; BQ16 P-1152/P-1152 ; BQ16/BQ16 100 1085

9 R P-1152 ; BQ16 x = Cantony P-1152/+ ; BQ16/+ 91.5 1450

10 R P-1152 ; BQ16 x = BQ16 P-1152/+ ; BQ16/BQ16 89.0 1000

11 R P-1152 ; BQ16 x = P-Co1 P-1152/+ ; BQ16/P-Co1 78.8 1600

The parental cross shown in column 2 was performed at 25uC in order to generate G1 females whose genotype is given in column 3 (for chromosomes 1 and 3). In each
case, parental strains carrying transgenes were homozygous for these transgenes. Overnight staining of G1 female ovaries was performed and TSE was measured. TSE
percentage and the total number of egg chambers counted are given in columns 4 and 5, respectively. BQ16 and P-Co1 are both located on chromosome 3, but are
inserted on different chromosomal arms.
doi:10.1371/journal.pone.0003249.t002
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linked TAS). In conclusion, the TAS piRNA-producing platform

located at different telomeres can cooperate for establishing

repression. Interaction between non-homologous telomeres in

Drosophila was also shown to exist for Telomeric Position Effect

(TPE), although in this case it has been proposed to involve pairing

between different telomeres [57]. At the level of P element

repression, interactions between non-homologous telomeres for

TSE shows that in natural populations, the P elements which are

frequently present not only on the X chromosome telomere [58],

but also on autosomal telomeres (data not shown) can cooperate to

establish the P cytotype. This hypothesis is also illustrated by the

fact that a transgene located at the third chromosome telomere

can stimulate P repression establishment by regulatory P elements

located on the X chromosome [59]. Natural telomeric P elements

located at different telomeres in natural populations can thus

cooperate to establish the P cytotype. However, not all telomeric

transgenes inserted in TAS are TSE silencers (Table 1), a result

which can be attributed to variations in the position of these

transgenes inside the TAS tandem array, to the length of this array

or to the structure of the retrotransposon array distal to the TAS

[60]. Consistent with this hypothesis, telomere structure was

shown to affect TPE significantly [36,38,57]. In addition,

fragments of transgenes generated by TAS region rearrangements

which escape detection by PCR analysis may also play a role in the

repressive capacities of the telomeric transgenes.

3 – TSE silencers appears restricted to telomeric sites but
can repress targets located anywhere in the genome

In TSE studies reported so far, telomeric transgenes, but not

centromeric transgenes, although also being heterochromatic,

were found to be silencers and all euchromatic P-lacZ insertions

expressed in the female germline were found to be targets (Tables 1

and S1) [26,44]. Indeed, nineteen targets located on chromosomes

1, 2 and 3 were tested and all were sensitive to trans-repression. We

found thus no TSE escaper, even though the sensitivity of the

different targets to repression may vary. For example BC69,

located on the second chromosome, almost never undergoes

complete repression, whereas BQ16 or P-Co1 can show nearly

complete repression covering all stages of oogenesis. This

sensitivity does not appear to be correlated to the level of

expression of the target (data not shown).

How can the fact that we did not find TSE silencers located in

centromeric heterochromatin be explained? Three main models

have been proposed to explain the molecular mechanism of target

repression by the silencer [46]. Two models involve recognition of

the target(s) by the silencer sequence at the DNA level upon

scanning of the genome by telomeric sequences. This scanning

would lead to pairing of the two homologous sequences. In a first

model, this pairing would result in trans-heterochromatinization of

the target induced by the telomeric sequence which is itself

heterochromatinized. A second model would involve dragging of

the target to a compartment of the nucleus where subtelomeric

heterochromatin would be localized. In a third model, telomeric

sequences would produce small non coding RNAs which would

result in silencing of the target: this last phenomenon could occur

either via degradation of the RNA produced by the target, or via

induction of target heterochromatinization due to interaction of

the smalls RNAs produced by the telomeric silencer with the

nascent transcripts of the target [61,62]. To explain that telomeric,

but not centromeric insertions, can be silencers, it is possible to

propose, taking into consideration the first two models, that

scanning of the genome is a property of the telomeres and not of

the centromeres. Under the third model, it is possible that, in the

germline, the telomeric TAS locus produces small RNAs but not

the centromeric loci, at least those which are close to the

centromeric P-lacZ insertions we tested. This perhaps seems

contradictory to the fact that the other known master site of TEs

control in Drosophila is centromeric. Indeed, the flamenco locus

regulating gypsy and the COM locus regulating ZAM and Idefix are

located close to the centromere of the X chromosome. However,

flamenco and COM exert their repression in somatic follicle cells, the

starting points of the transposition events of these retrotransposons

[63–68]. It remains thus to be demonstrated that flamenco and

COM have a direct repressional capacity in the germline.

However, it also remains possible that centromeric TSE silencers

exist but that being rare we did not detect them in our screen. A

greater number of centromeric insertions therefore needs to be

tested before we can conclude this point more categorically.

Finally, the fact that a single telomeric silencer locus can repress

two targets on different chromosomal arms is more consistent with

the third model in which the crucial point is the concentration of

piRNAs present in the nucleus. According to this model, if this

concentration is above a certain threshold, all targets located at

any genomic site could be simultaneously repressed. Regarding P

element repression, it is possible to propose that numerous

euchromatic copies of natural P elements are repressed by a

single telomeric P element.

4 – A telomeric silencer alone can establish epigenetic
maternal inheritance

TSE transmission over generations shows a maternal inheri-

tance whose effect can be detected for more than five generations

[45]. Indeed, the female progeny of the reciprocal crosses (female

P-lacZ-telomeric; P-lacZ-target x male M) and (female M x male P-

lacZ-telomeric; P-lacZ-target), not only has different silencing

properties with regard to their own ovaries, but will transmit

different silencing properties to G2 females, despite that these two

types of G2 females have inherited the telomeric silencer from a

female. The G1 dissymmetry is thus the starting point of epigenetic

transmission of TSE over generations. The question now is

whether the presence of the target transgene is necessary for the

dissymmetry in transmission from G1 to G2 or, alternatively, if the

telomeric silencer alone is able to establish it. In TSE, the influence

of the maternal inheritance is interpreted to be linked to the

amount of piRNAs maternally-transmitted from the female to the

progeny. According to the ping-pong model, two partners are

involved in the biogenesis of piRNAs: the master regulatory locus

which carries sequences of the repressed transposable element and

the target element locus (the euchromatic TEs copies) [6]. The

master regulatory locus produces mainly antisense TEs RNAs and

the euchromatic copies mainly sense RNAs. The ping-pong model

proposes that small antisense piRNAs associated with AUBER-

GINE or PIWI interact with sense RNAs produced by target TEs

copies and cleave it, in order to induce the production of small

sense piRNAs associated with AGO3, which in turn will interact

with antisense transcripts produced by the master locus of

repression. In that system, the euchromatic copy appears necessary

for the ping-pong interaction to take place and to increase the

concentration of piRNAs. We show here that in TSE, females

issued from the two reciprocal crosses (female P-lacZ-telomeric x

male M) and (female M x male P-lacZ-telomeric) have different

TSE capacities indicating that maintenance of the dissymmetry in

repression capacity in G1 females does not require the presence of

target elements (Figure 6). This suggests that the telomeric

silencers can produce all the components required, not only to

establish the repression equilibrium state (inside the P-1152 line),

but also to induce its epigenetic maternal inheritance when out-

crossing. Consequently, if TSE involves the ping-pong model [6],
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this suggests that the telomeric silencer locus can produce both the

sense and anti-sense transcripts involved in piRNA biogenesis.

5- TSE: a major component of the P cytotype elicited by
telomeric P elements

TSE, a repression mechanism shown to exist by the use of P-

transgenes, is likely a major component of P element repression

elicited by natural telomeric P elements. Indeed, inheritance of the

TSE repressive capacities over generations has the same epigenetic

behavior as the P cytotype [22,45,47,69,70]. Further, both TSE

and the repression established by telomeric P elements are

sensitive to mutations affecting HP1 and the piwi-family protein

AUBERGINE [25,30,31]. At Drosophila telomeres, both defective

and complete P elements can be found in TAS [25,26,32]. In the

case of defective telomeric P elements, repression should occur via

only TSE between these telomeric P copies, unable to encode a

repressor, and the targets which are euchromatic autonomous

copies of P elements. In contrast, in the case of autonomous

telomeric P elements, both TSE and production of P-encoded

repressor can be supposed to occur.

But is TSE the only component of the P cytotype established by

telomeric P elements? Under such a hypothesis, the tissue

specificity associated with TSE should show the same character-

istics as that of P repression by telomeric P elements in TAS. In

fact, the tissue specificities of the two phenomena are partially

overlapping. TSE and P cytotype by telomeric P elements are both

restricted to the germline. Indeed, the three X-chromosome

telomeres containing regulatory P elements we isolated (Lk-P(1A)

from Russia, Ch-P(1A) from France and NA-P(1A) from Tunisia)

were shown to have weak or null repression capacities in the

somatic tissues [24–26]. Lack of somatic repression capacities was

found for the two other natural telomeric regulatory P elements

(called TP5 and TP6) deriving from American populations [23,32].

In contrast, TSE is detected only in the female germline, as tested

with several different P-lacZ targets (Table S1), whereas repression

by telomeric natural P elements can be detected in both sexes.

Indeed, repression was detected in the female germline with all the

telomeric natural P elements described above, but repression was

also found in males when tested. Lk-P(1A) was shown to repress P-

element excision in the male germline (using a P-white transgene

excision assay) [24], but this line carries two telomeric autonomous

P elements which can encode a repressor. In contrast, the TP5 and

TP6 elements correspond to defective telomeric P elements

inserted in TAS at the X chromosome [32] and induce P-

repression in males, as tested with dysgenic sterility (atrophy of the

testis) assay and P element excision assay (using an hypermutable

P-induced allele called snw) [23,32]. GD repression in males can be

explained by the developmental stage at which dysgenic sterility is

determined. Indeed, gonadal dysgenesis is determined during early

development at late embryonic stages and reflects simply a

maternally-transmitted property (deposition of maternal P repres-

sive factors in the cytoplasm of the oocyte) [30,47]. In contrast, the

occurrence of repression of P-element excision in the male

germline by the TP5 and TP6 elements, as tested with the snw

assay, is more striking, since this assay takes place in the adult testis

and transmission of the maternal component alone is not sufficient

to repress P excision at the adult stage [24,32]. The defective TP5

and TP6 elements have been shown to encode a polypeptide

devoid of repressive capacities [71]. They are thus thought to

repress P element activity via TSE, suggesting that TSE can work

in the male adult germline. Two hypotheses can be proposed to

explain this discrepancy: 1- TSE may occur only in a limited

subset of germline cells of the testis rendering detection of lacZ

staining difficult; 2- TSE does not occur in the testis and the TP5

and TP6 telomeric elements repress P element excision in the adult

male germline by another mechanism than TSE. However, the

lack of effect of TSE in the male gonads at the third instar larvae

(Figure 2) is more consistent with the second hypothesis. In any

case, it is clear that TSE can play a role in P element repression in

females at all stages and in males at least in embryos to establish

protection against GD sterility.

In conclusion, following its arrival in the D. melanogaster genome,

the P elements inserted both at telomeres into TAS and at various

sites in euchromatin. Euchromatic P elements increased copy

number (30–40) over several generations (25–40) before repression

occurred as shown by transformation experiments of M lines with

the complete P element [27–29]. In contrast, P elements inserted

in TAS, provided a strong repression mechanism which is elicited

by a small number of copies (1–2). Telomeric P elements thus

likely had a pivotal role in P cytotype establishment in Drosophila

natural populations, a result consistent with the fact that telomeric

P elements can be found in natural populations geographically

widespread [25,32,58].

Supporting Information

Table S1 Trans-Silencing Effect targets: P-lacZ transgenes

tested for their capacity to be repressed by a telomeric silencer.

Males from lines carrying the P-lacZ transgene, tested as target,

were crossed with females carrying the P-1152 telomeric silencer

and with females devoid of P-transgenes (Cantony or w1118 M

lines) as a control for target transgene expression. Overnight lacZ

staining of ovaries and testis were performed. Tested transgenes

were designated as ‘‘target’’ when lacZ expression was repressed in

the presence of P-1152 when compared to the M control. All

transgenes tested showing expression in the female germline (nurse

cells and/or mature oocyte) were repressed in this tissue by P-

1152, whereas P-1152 never showed any repression capacity in the

somatic follicle cells with any target transgene. For example, in the

case of transgenes expressed in both the female germline and the

soma (P-1039, ABOO, P-1061), repression was observed in the

female germline, but not in the soma. In the case of P-0321, the

transgene corresponds to an hedgehog enhancer trap expressed in

the somatic terminal filament. It is not sensitive to TSE. In the

female germline, TSE can occur at all stages of oogenesis, as

shown for example with BQ16 of BC69 which are expressed at all

stages (from germarium to mature oocytes). No repression by P-

1152 was detected with target transgenes expressed in the testis.

The name of the transgene is given with the cytological location,

when known, between parenthesis. (1A–20F, chromosome 1;

21A–60F, chromosome 2; 61A–100F, chromosome 3). The strains

referred to as P-nnnn were obtained from the Bloomington Stock

Center and have been renamed later to as #1nnnn by the stock

center (for example, P-1039 was renamed 11039). Some of the

strains have been discarded from the stock center. The properties

and references of all transgenes are listed in Table S2.

Found at: doi:10.1371/journal.pone.0003249.s001 (0.02 MB RTF)

Table S2 Genotype and references of transgene(s) insertions

tested as TSE silencers or targets. (A) Name of the insertion used in

the present study; (B) Transgene(s) location on salivary glands

polytene chromosomes; (C) Insertion genotype; (D) Transgene(s)

name as referenced in flybase; (E) Flybase ID of the insertion; (F)

Reference describing the insertion; (G) Bloomington stock number

presently used (if any). Further informations concerning the

transgene structure are as follows: (Transgene construct name/

Transgene Flybase ID/Transgene reference): (P{lacW}/

FBtp0000204/[33]); (P{PZ}/FBtp0000210/[22]); (P{wAR}/

FBtp0000064/[2]); (P{wA}/FBtp0000063/[2]); (P{PLH}/
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FBtp0003686/[34]); (P{GT1}/FBtp0002720/[35]); (P{A92}/

FBtp0000154/[36]); (P{otu-lacZ.Co}/FBtp0015417/[8]); (P{SU-

Por-P}/FBtp0001587/[37]); (P{HZ}/FBtp0000211/[38]);

(P{lArB}/FBtp0000160/[39]). Flybase: http://flybase.bio.indi-

ana.edu/. (See the additional file called ‘‘Table References S2’’)

Found at: doi:10.1371/journal.pone.0003249.s002 (0.31 MB

RTF)

Figure S1 Position inside the TAS sequence of telomeric

transgenes in relation to their repression capacities. All the

transgenes analyzed here have been found to be localized inside a

173bp TAS subrepeat, a motif tandemly repeated (3–4 times)

inside each TAS unit [1]. This 173bp motif was also found to be

tandemly repeated in the TAS described for other telomeres (2R

and 3R chromosomal arms) [2]. Transgenes therefore are drawn

along a single 173bp subrepeat. For each transgene, the name, the

orientation (arrowhead indicates the 39 P element end) and the

chromosomal arm (indicated by the color) is given. TSE silencer

transgenes are positioned above the line whereas transgenes

devoid of repression capacities are positioned below it. Both P-

1152 and SUPor-P-863-I were found to carry two transgene copies

at the same positions. The P-1152 copies are located at the same

position in two adjacent TAS 173bp subrepeats and result likely

from a 173bp subunit duplication. SUPor-P-863-I has a tandem

repeat of two SUPor-P copies in direct orientation, this tandem

being flanked by a target site duplication: this results likely from a

transgene rearrangement which derived from a single initial

transgene insertion. These copies are numbered 1 and 2 and are

shown at the same position. A4-4 was described and mapped

previously [2–6]. (See the additional file called ‘‘Figure Notes and

References S1’’).

Found at: doi:10.1371/journal.pone.0003249.s003 (0.38 MB TIF)

Figure Notes and References S1 Notes and references for

Figure S1

Found at: doi:10.1371/journal.pone.0003249.s004 (0.06 MB

RTF)

Table References S2 References for Table S2

Found at: doi:10.1371/journal.pone.0003249.s005 (0.05 MB

RTF)
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