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The effect of SUV discretization in 
quantitative FDG-PET Radiomics: 
the need for standardized 
methodology in tumor texture 
analysis
Ralph T.H. Leijenaar1, Georgi Nalbantov1, Sara Carvalho1, Wouter J.C. van Elmpt1, 
Esther G.C. Troost1, Ronald Boellaard2, Hugo J.W.L Aerts1,3, Robert J. Gillies4 & 
Philippe Lambin1

FDG-PET-derived textural features describing intra-tumor heterogeneity are increasingly investigated 
as imaging biomarkers. As part of the process of quantifying heterogeneity, image intensities (SUVs) 
are typically resampled into a reduced number of discrete bins. We focused on the implications of the 
manner in which this discretization is implemented. Two methods were evaluated: (1) RD, dividing the 
SUV range into D equally spaced bins, where the intensity resolution (i.e. bin size) varies per image; 
and (2) RB, maintaining a constant intensity resolution B. Clinical feasibility was assessed on 35 lung 
cancer patients, imaged before and in the second week of radiotherapy. Forty-four textural features 
were determined for different D and B for both imaging time points. Feature values depended on 
the intensity resolution and out of both assessed methods, RB was shown to allow for a meaningful 
inter- and intra-patient comparison of feature values. Overall, patients ranked differently according 
to feature values–which was used as a surrogate for textural feature interpretation–between both 
discretization methods. Our study shows that the manner of SUV discretization has a crucial effect 
on the resulting textural features and the interpretation thereof, emphasizing the importance of 
standardized methodology in tumor texture analysis.

In recent years, oncological research has increasingly focused on the prediction of treatment outcome 
based on individual patient and tumor characteristics1, aiming to avoid the one-size-fits-all treatment 
approach that under- and over-treats a large number of patients. Imaging can play a crucial role here, as 
it allows for a non-invasive identification and characterization of the tumor2,3. Positron emission tomog-
raphy (PET) is a valuable tool for detecting and staging cancer4. In recent years, PET imaging has also 
been increasingly used for decision support5, treatment planning6,7 and response monitoring during radi-
otherapy8. The most widely used PET tracer is [18F] fluoro-2-deoxy-D-glucose (FDG), commonly quan-
tified by standardized uptake values (SUVs)9. Easily derived SUV measurements, such as the maximum 
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or peak SUV10, are described as predictors for treatment outcome11–13,39. Additionally, more advanced 
quantitative imaging features describing tumor image texture (i.e. the spatial arrangement of intensities 
within the image), which reflect intra-tumor heterogeneity of metabolic activity, are increasingly being 
investigated as potential imaging biomarkers in lung14,15, head and neck16,17, cervical16,18, esophageal19–21 
and other cancers22,23 — a field of research often referred to as ‘Radiomics’2,3,24,25,40,41,42.

Efforts have been made to provide guidelines for quality control measures in PET imaging and to 
standardize patient preparation, dose administration, image acquisition, image reconstruction and SUV 
normalization, in such a way that absolute SUV measurements are interchangeable in multicenter stud-
ies26. Interchangeable SUV measurements are very important in PET Radiomics, but the methodology 
used to determine textural features is also subject to variability. Standardization is therefore needed27–29 
(Fig. 1).

One important methodological factor is SUV discretization (i.e. resampling image intensity values). 
Discretization reduces the otherwise infinite possible number of intensity values to a finite set and effec-
tively reduces image noise. Most recent literature describes using a fixed number (e.g. 8, 16) of discrete 
resampled values or ‘bins’ to divide the image SUV range into equally spaced intervals before calculating 
textural features14–16,18–22,28,30–32. Consequently, this results in discretized images with varying bin sizes or 
‘intensity resolutions,’ depending on the SUV range. An alternative discretization method is to resample 
the image SUVs with a fixed bin size in units of SUV (e.g. 0.1, 0.5), maintaining a constant intensity 
resolution across all tumor images33.

When aiming to identify imaging biomarkers in cohort and multicenter studies or trials, it is impor-
tant that textural features and their ascribed values be directly comparable, both inter- and intra-patient, 
in order to derive meaningful conclusions. To our knowledge, the effect of the SUV discretization method 
in this respect has not been previously evaluated and we hypothesize that the aforementioned intensity 
resolution used for SUV discretization plays a key role in this regard.

The general objectives of our study are to compare both aforementioned conceptually different dis-
cretization methods for several popular textural features and to identify which of these methods is most 
appropriate for texture quantification in a clinical setting. We will specifically investigate the role of the 
intensity resolution and use a clinical case study to demonstrate the effect of the SUV discretization 
methodology on the interpretation of the assessed textural features.

Patient preparation
Dose administration

Quality control
PET acquisition

Image reconstruction

SUV normalization

Methodology  to determine tumor texture

Interchangeable absolute SUV 
measurements

Interchangeable PET Radiomic features

Figure 1.  Levels of standardization in PET Radiomics. Interchangeable absolute SUV measurements are 
obtained by standardizing patient preparation, dose administration, image acquisition, image reconstruction 
and SUV normalization26. Standardization of the methodology used for tumor texture analysis ensures 
interchangeable PET Radiomic features and their ascribed values
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Materials and Methods
Patients and PET imaging.  This study comprised 35 non-small cell lung cancer (NSCLC) patients 
who were prospectively included in a clinical trial (NCT00522639) and scheduled for radiotherapy and/
or chemotherapy between July and December 200811. 18F-FDG-PET/CT imaging was performed on a 
Biograph 40 PET/CT scanner (Siemens Medical Solutions) twice: (1) after induction chemotherapy but 
before radiotherapy and (2) during the second week of radiotherapy (Fig.  2a,b). Patients fasted for at 
least six hours before imaging. The injected amount of 18F-FDG was (4 ×  body weight [kg] + 20) MBq. 
Patients rested 60 minutes before image acquisition. Patients’ blood glucose levels were below 10 mmol/L, 
so no correction for blood glucose level was applied.

PET images were iteratively reconstructed using normalization- and attenuation-weighted OSEM 
using 4 iterations, 8 subsets and a 5 mm Gaussian filter. The resulting images had an in-plane pixel size 
of 4 ×  4 mm and a 3 mm slice thickness. PET images were converted into units SUV, normalized by 
patient body weight9. Tumor volumes of interest (VOIs) were manually delineated on fused PET/CT 
images for treatment planning purposes. Further details are described elsewhere11. This study was con-
ducted according to national laws and guidelines and approved by the appropriate local trial committee 
at Maastricht University Medical Center (MUMC+ ), Maastricht, The Netherlands. All included patients 
signed an informed consent form.

Image processing and feature extraction.  SUVs within the VOI were first discretized using: (1) a 
fixed bin size (B), or intensity resolution, in units of SUV (Fig. 2c) and (2) a fixed number of bins (D), 
or discrete resampling values (Fig.  2d). For image I, let I(x) represent the SUV of voxel x, SUVmin the 
minimum SUV in I and SUVmax the maximum SUV in I. Resampling SUVs into bins with an intensity 
resolution of B was performed using:
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Figure 2.  Left column: Representative images of sequential imaging for one patient, showing pre-treatment 
imaging (a) and imaging during the second week of radiotherapy (b). The tumor delineation is outlined 
in green. Both images are displayed with the same window/level settings. Right column: Histograms of the 
pre-treatment and during treatment images, resampled with a fixed bin size (i.e. intensity resolution) (c) or 
a predefined number of bins (d). In (d), one can appreciate the difference in resulting intensity resolution 
when resampling with a fixed number of bins. Pre-treatment and during treatment intensity resolutions were 
0.6 and 0.37 [SUV], respectively
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Where term ( ( )/ ) +I x B[min 1] ensures that the bin count starts at 1. We use the shorthand notation 
RB for this resampling method. Resampling SUVs into D bins was performed using:

( ) =










( ) =





 ×

( ) −

−





 ( )

I x

I x SUV

D
I x SUV

SUV SUV

1

otherwise
2

D

min

min

max min

Where the intensity resolution equals ( − )/SUV SUV Dmax min . This resampling method is denoted by 
RD. Discretization using RB and RD was performed for different discretization values B (0.05, 0.1, 0.2, 0.5 
and 1 [ SUV]) and D (8, 16, 32, 64 and 128), respectively.

Textural features describing the spatial distribution of voxel intensities were calculated from gray-level 
co-occurrence (GLCM)34, gray-level run-length (GLRLM)35 and gray-level size-zone texture matrices 
(GLSZM)21. Texture matrices were determined by considering 26 connected voxels (i.e. voxels were con-
sidered to be neighbors in all 13 directions in three dimensions) at a distance of 1 voxel. Features derived 
from GLCM and GLRLM were calculated by averaging their value over all 13 directions. In total, 44 tex-
tural features (22 GLCM, 11 GLRLM and 11 GLSZM) were calculated. Changes in feature values between 
the pre-treatment and during treatment imaging time points were described as delta features, defined as:

∆ = − ( )X X X 3during treatment pretreatment

Image analysis was performed in Matlab R2012b (The Mathworks, Natick, MA) using an adapted 
version of CERR36 and software developed in-house to extract textural features. Mathematical definitions 
for features assessed in this study are described elsewhere33.

Statistical analysis.  For both RB and RD, the pairwise intra-class correlation coefficient (ICC)37 was 
calculated for each feature for all possible pairwise combinations of B (ICCB) and D (ICCD), to assess 
whether pre-treatment feature values were consistent for different discretization values. The ICC was 
defined as:

=
−
+ ( )

ICC BMS WMS
BMS WMS 4

Where BMS and WMS are the between-subjects and within-subjects mean squares, respectively, obtained 
by Kruskal-Wallis one-way ANOVA. An ICC of 1 indicates perfect agreement (i.e. identical feature val-
ues).

Patient rankings according to feature value were created to serve as a surrogate for textural fea-
ture interpretation. Pairwise correlations between patient rankings were evaluated with Spearman’s rank 
correlation coefficient (ρ). We compared patient rakings according to pre-treatment feature values and 
patient rankings according to delta feature values (Δ X), between all possible pairwise combinations of 
B (ρBB), D (ρDD) and B and D (ρBD). We considered a pairwise ρ to indicate acceptable concordance 
between rankings when ρ >  0.9. Statistical analysis was performed in Matlab R2012b.

Results
Consistency of feature values for varying intensity resolutions.  To assess whether feature values 
(using either RB or RD) were consistent for different discretization values, we calculated the pairwise ICCs 
for each feature between different values of B (ICCB) and D (ICCD), respectively. This analysis was per-
formed on the pre-treatment images. For each feature, we reported the range and median of all pairwise 
ICCs (Fig. 3). None of the observed pairwise ICCs was higher than 0.85, meaning that textural features 
and their ascribed value depend on the intensity resolution used for SUV discretization.

Variability of intensity resolution when resampling with a fixed number of bins.  Using RD, we 
determined the pre-treatment and during treatment bin sizes, as well as their difference, for each lesion. 
We observed a significant variation in both inter- and intra-lesional intensity resolution, which is directly 
proportional to the SUV range. The ratio of the largest with the smallest observed intensity resolution 
was 1254% for pre-treatment imaging and 1038% for during treatment imaging. Absolute percentage 
differences in intensity resolution between pre-treatment and during treatment images ranged between 
0.5% and 56%, with a median of 21%.

Comparing patient rankings based on pre-treatment feature values.  For each feature we 
determined the patient ranking according to feature value, using RB and RD for different resampling 
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values B and D, respectively. We then calculated pairwise ρ of patient rankings between different B 
(ρBB), different D (ρDD) and between different B and D (ρBD). For each feature, we reported the range 
and median of all pairwise ρ (Fig. 4).

We identified 14 GLCM and 6 GLRLM features to give reliable patient rankings for both discretiza-
tion methods (i.e. all pairwise ρBB >  0.9 and all pairwise ρDD >  0.9), meaning that patient rankings were 
nearly not affected by changes in intensity resolution. GLCM ‘Difference entropy,’ GLRLM ‘Gray-Level 
Non-uniformity (GLN)’ and GLSZM ‘High Intensity Emphasis (HIE)’ were only found to provide robust 
patient rankings for different resampling values when using RB. GLCM features ‘Correlation,’ ‘Inverse 
Difference Moment Normalized (IDMN)’ and ‘Inverse Difference Normalized (IDN)’ provided very sim-
ilar patient rankings between both discretization methods, regardless of the value of either B or D (i.e. all 
pairwise ρBD >  0.9). All other features presented dissimilar patient rankings between both discretization 
methods.
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Figure 3.  Graphical representation of pairwise ICCs for each feature for different values of B (ICCB) 
and D (ICCD), based on pre-treatment imaging. Blue lines extend from the minimum to the maximum 
observed ICC value. Median ICC values are represented by the red markers. Abbreviations of feature 
groups: gray-level co-occurrence (GLCM), gray-level run-length (GLRLM) and gray-level size-zone 
(GLSZM). Abbreviations of feature names: Difference Entropy (Diff. Entropy), Inverse difference moment 
normalized (IDMN), Inverse difference normalized (IDN), Informational measure of correlation 1 (IMC1), 
Informational measure of correlation 2 (IMC2), Maximum probability (MP), Gray-Level Nonuniformity 
(GLN), High Gray-Level Run Emphasis (HGLRE), Low Gray-Level Run Emphasis (LGLRE), Long Run 
Emphasis (LRE), Long Run High Gray-Level Emphasis (LRHGLE), Long Run Low Gray-Level Emphasis 
(LRLGLE), Run-Length Nonuniformity (RLN), Run Percentage (RP), Short Run Emphasis (SRE), Short 
Run High Gray-Level Emphasis (SRHGLE), Short Run Low Gray-Level Emphasis (SRLGLE), High Intensity 
Emphasis (HIE), High Intensity Large Area Emphasis (HILAE), High Intensity Small Area Emphasis 
(HISAE), Intensity Variability (IV), Large Area Emphasis (LAE), Low Intensity Emphasis (LIE), Low 
Intensity Large Area Emphasis (LILAE), Low Intensity Small Area Emphasis (LISAE), Small Area Emphasis 
(SAE), Size-Zone Variability (SZV), Zone Percentage (ZP)
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Comparing patient rankings based on delta feature values.  We also performed pairwise com-
parisons of patient rankings for each Δ X between different B (ρ∆

BB), D (ρ∆
DD) and different B and D (ρ∆

BD). 
For each feature, we reported the range and median of all pairwise ρ (Fig.  5). ρ∆

BB and ρ∆
DD were both 

higher than 0.9 for of 10 GLCM features and 2 GLRLM features. Δ X of GLCM features ‘Difference 
Entropy,’ ‘Homogeneity 1’ and ‘Sum Entropy’ were only found to give similar patient rankings for differ-
ent resampling values when using RB. For Δ X of GLCM features ‘IDMN’ and ‘IDN,’ this was the case 
when using RD for different D. The high ρ∆

BD (0.95–1.00) for all pairwise comparisons for GLCM feature 
‘Correlation’ indicated highly similar patient rankings based on Δ X between both discretization meth-
ods, regardless of the value of B or D. Some pairwise ρ∆

BD for GLCM features ‘IDMN’ and ‘IDN’ indicated 
similar patient rankings for Δ X as well, but with a large range for ρ∆

BD (0.55–0.98 and 0.57–0.99, respec-
tively). For all other Δ X, assessed patient rankings were found to be discordant between both discreti-
zation methods.

Discussion
We compared tumor texture analysis based on SUV discretization using either a fixed number of bins 
(RD) or a fixed bin size in units SUV (RB), in the context of clinical treatment response assessment. 
Textural feature values were shown to depend on the intensity resolution used for SUV discretization. 
Overall, both resampling methods gave discordant results in terms of interpreting textural features. In 
the following section, we will discuss which method may be appropriate for use in a clinical setting.
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Figure 4.  Graphical representation of pairwise Spearman rank correlations between patient rankings 
according to feature value for different B(ρBB), different D (ρDD) and between different B and D (ρBD), 
based on pre-treatment imaging. Blue lines extend from the minimum to the maximum observed pairwise 
ρ. Median ρ values are represented by the red markers. The gray vertical line represents ρ = 0.9. For 
abbreviations, see the caption of Fig. 3
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Correct comparison of textural feature values.  As pointed out earlier, it is important that tex-
tural feature values be directly comparable, both inter- and intra-patient, in order to derive meaningful 
conclusions from tumor texture analysis. The key role of the intensity resolution in this respect can be 
illustrated by the mathematical background of histogram bin probabilities. Let X be a continuous random 
variable, such as SUVs in a tumor image, with probability density function f(x). The bin probabilities P(i) 
of the first order histogram, considering equally spaced and non-overlapping bins, are then defined as:

∫( ) = ( )
( )( )

( )+
P i f x dx

5t i

t i w

Where w represents the histogram bin size (i.e. the intensity resolution) and t(i) denotes the left-hand 
endpoint of bin i. Analogous to P(i), textural matrices are essentially histograms of joint probability 
densities that describe the probability of a voxel assigned to bin i being either (1) adjacent to a voxel 
assigned to bin j ( ( , )P i jGLCM ), (2) part of a consecutive run of l voxels assigned to bin i ( ( , )P i lGLRLM ) 
or (3) part of a connected neighborhood of v voxels ( ( , )P i vGLSZM ).

The aim is to compare textural feature values calculated from these histograms between tumor 
images. For all tumor images, the image intensities (x) are not dimensionless, but measured in SUV 
units. Maintaining a constant intensity resolution (w, in SUV units) across tumor images yields identical 
histogram probability definitions (P(i)) for each image, and hence directly comparable numerical values 
of each calculated feature. Using a non-constant intensity resolution across images causes one to quantify 
patterns (i.e. texture) on a different intensity scale (in terms of SUV) in each image.

By calculating pairwise ICCs, we observed that feature values indeed depend on the intensity 
resolution used for SUV discretization (Fig.  3). More importantly, there was a significant inter- and 

GLCM Autocorrelation
Cluster Prominence

Cluster Shade
Cluster Tendency

Contrast
Correlation

Diff . Entropy
Dissimilarity

Energy
Entropy

Homogeneity 1
Homogeneity 2

IDMN
IDN

IMC1
IMC2

Inverse Variance
MP

Sum Average
Sum Entropy

Sum Variance
Variance

GLRLM GLN
HGLRE
LGLRE

LRE
LRHGLE
LRLGLE

RLN
RP

SRE
SRHGLE
SRLGLE

GLSZM HIE
HILAE
HISAE

IV
LAE
LIE

LILAE
LISAE

SAE
SZV

ZP
-1 0 1

ρBB
Δ

-1 0 1

ρDD
Δ

-1 0 1

ρBD
Δ
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minimum to the maximum observed pairwise ρΔ. Median ρΔ values are represented by the red markers. 
The gray vertical line represents ρ =  0.9. For abbreviations, see the caption of Fig. 3
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intra-lesional variation in intensity resolution during the course of treatment when using RD for image 
intensity resampling. Effectively, RD discards the absolute radiotracer uptake information (i.e. metabolic 
activity), by considering each tumor image to have the same dimensionless range of intensity. In this 
respect, we consider RD to be a less appropriate choice for SUV discretization in a clinical setting, as it 
results in textural feature values that are not defined on the same SUV scale for each tumor image. In 
contrast, a constant intensity resolution is maintained across resampled images when using RB for SUV 
discretization, which we believe makes it a more suitable method for tumor texture analysis.

Impact of SUV discretization method and intensity resolution on the interpretation of tex-
tural features.  Several textural features were found to provide reliable patient rankings using either 
RB or RD for discretization, suggesting that results based on these features may be compared between 
studies if they exclusively use RB (where studies may use a different intensity resolution B) or RD (where 
studies may use a different number of bins D). However, as discussed in the previous section, we find 
RD to be less appropriate in a clinical setting considering that tumor image intensities are measured in 
SUV units and that tumor images generally do not have the same SUV range. We therefore illustrated 
the implications of SUV discretization with RD instead of RB on the interpretation of textural features in 
our clinical case study. Both discretization methods resulted overall in patients being ranked differently 
according to their feature value (Figs  4,5). These results show that the manner of SUV discretization 
can affect the interpretation of textural features and should therefore be carefully considered in tumor 
texture analysis.

We furthermore observed that when RB was used, patient rankings for several features were affected 
by the choice of intensity resolution (B). For those features, at least one pairwise ρBB was found to be 
lower than 0.9 (Fig. 4). This suggests that results obtained for those features cannot be directly compared 
when different intensity resolutions are used and also suggests that their interpretation (e.g. prognostic 
or predictive value) depends on the intensity resolution.

It is noteworthy that the GLCM feature ‘Correlation’ was the only feature observed to have highly 
similar patient rankings over the course of treatment, regardless of the discretization method or dis-
cretization value used (Figs 4,5). This suggests that results obtained for this particular feature might be 
reliably compared between studies, provided the same discretization method is used throughout each 
specific study.

We used different arbitrary values for B and D throughout our study, where we kept the ratio between 
the smallest and largest B or D approximately the same and reasonably large. Although other values may 
be used as well, we found this selection to be sufficient to study our objectives. In terms of RB however, 
an optimal intensity resolution cannot be straightforwardly determined. A value of 0.5 [SUV] has been 
described earlier, but without substantial motivation33. Methods for estimating an optimal intensity res-
olution could be performed38. It should then be emphasized that the same intensity resolution needs to 
be maintained throughout the entire study, as determining a separate bin size for each individual patient 
results in non-comparable feature values. However, estimating an optimal intensity resolution does not 
take into account the aforementioned effect the intensity resolution has on feature interpretation, as well 
as the fact that using different intensity resolutions may result in complementary information17. In this 
respect, clinical validation including outcome measures is necessary to identify optimal settings that lead 
to meaningful results in tumor texture analysis.

Standardization in texture analysis.  FDG-PET quantification is affected by several factors, includ-
ing for instance breathing motion in lung26. Recent studies have investigated several technical aspects of 
FDG-PET-derived textural parameters in different cancer sites, including their test-retest repeatability 
and robustness regarding tumor delineation or partial volume correction31–33, or their variability due 
to image acquisition and reconstruction parameters30. In order to provide a complete overview and 
acknowledging that feature stability may as well be dependent on the methodology used for SUV dis-
cretization in tumor texture analysis, we did not exclude textural features previously reported to have 
limited repeatability or robustness. Reliability analyses should however be performed at specific settings 
used in tumor texture analysis, in order to identify those features suitable for treatment assessment. The 
aforementioned studies point to the importance of robust and standardized PET protocols in terms of 
reliable quantification of tumor heterogeneity with textural features, especially when the SUV is consid-
ered to be an interchangeable quantity26,29. This becomes even more essential when using fixed intensity 
resolutions for SUV discretization, as shown in this paper. Our study confirms that using standardized 
methodology for tumor texture analysis is also an important aspect of identifying and validating imaging 
biomarkers related to a certain outcome or underlying biology43,44, between different studies or trials27,28.

Conclusion
When aiming to identify and validate imaging biomarkers with tumor texture analysis of FDG-PET, it is 
important that the textural feature values be directly comparable, both inter- and intra-patient, in order 
to derive meaningful conclusions. We focused on the effect of SUV discretization and compared tumor 
texture analysis based on SUV discretization using a fixed intensity resolution (i.e. bin size) in units SUV 
(RB) with using a fixed number of bins (RD). We showed that maintaining a constant intensity resolution 
for SUV discretization across tumor images (RB) yields textural feature values that are defined on the 
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same SUV scale, allowing for a meaningful comparison of texture between images. Discretizing SUVs 
using RD was found to be less appropriate for inter- and intra-patient comparison of textural feature 
values in a clinical setting. The interpretation of textural features was overall different between both 
discretization methods and, for several features, affected by the choice of intensity resolution. Our study 
shows that the manner of SUV discretization has a crucial effect on the resulting textural features and 
the interpretation thereof and should therefore be carefully considered, underlining the importance of 
standardized methodology in tumor texture analysis.
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