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ADAR1-mediated regulation of melanoma invasion
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Melanoma cells use different migratory strategies to exit the primary tumor mass and invade

surrounding and subsequently distant tissues. We reported previously that ADAR1 expres-

sion is downregulated in metastatic melanoma, thereby facilitating proliferation. Here we

show that ADAR1 silencing enhances melanoma cell invasiveness and ITGB3 expression. The

enhanced invasion is reversed when ITGB3 is blocked with antibodies. Re-expression of wild-

type or catalytically inactive ADAR1 establishes this mechanism as independent of RNA

editing. We demonstrate that ADAR1 controls ITGB3 expression both at the post-

transcriptional and transcriptional levels, via miR-22 and PAX6 transcription factor, respec-

tively. These are proven here as direct regulators of ITGB3 expression. miR-22 expression is

controlled by ADAR1 via FOXD1 transcription factor. Clinical relevance is demonstrated in

patient-paired progression tissue microarray using immunohistochemistry. The novel

ADAR1-dependent and RNA-editing-independent regulation of invasion, mediated by ITGB3,

strongly points to a central involvement of ADAR1 in cancer progression and metastasis.
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Malignant melanoma is the most aggressive and
treatment-resistant form of skin cancer. Melanoma is
arguably among the most widely metastasizing neo-

plastic disease, with a disposition to metastasize as a very early
event. Understanding the acquisition of invasive behavior is
therefore crucial. One important step for progression to meta-
static disease is the transition from radial growth phase (RGP) to
the vertical growth phase (VGP)1. Specifically, one of the most
important proteins associated with melanoma metastatic poten-
tial is ITGB31–3. Together with the αV subunit, it forms the
heterodimeric adhesion receptor vitronectin. Upregulation of
αVβ3 expression occurs in many tissues and has been associated
with malignant potential. It is a major cell–extracellular matrix
(ECM) mediator that binds a range of ligands containing the
amino-acid sequence RGD, mainly collagen, laminin, and fibro-
nectin. Changes in the cytoskeleton organization and altered
contacts with the ECM are required for increasing cell motility
and intravasation4,5.

Due to the strong association of ITGB3 with the ability to
convert non-invasive RGP melanoma to an invasive VGP mela-
noma, the biochemical mechanisms that regulate ITGB3 expres-
sion in cancer cells are of substantial interest. Experiments with
reporter constructs containing regions upstream to the ITGB3
transcription start site show that the transcription factors SP16,
FoxC27, and CDK11P588 are involved in the regulation of ITGB3
expression. Additional studies show that miRNAs9–16 and other
regulatory elements, such as protein kinase C17, activated RAF-
MEK-ERK signaling18, and CCND1b19 as putative regulators of
ITGB3 expression.

RNA editing is a post-transcriptional mechanism through
which RNA sequences are directly altered, thus increasing protein
diversity from a limited set of genes20. The most common form of
RNA editing is adenosine-to-inosine (A-to-I) editing, which is
catalyzed by members of the family of adenosine deaminases that
act on RNA (ADARs) enzymes. In mammals, three ADAR pro-
teins have been identified: ADAR1 and ADAR2 are detected in
many tissues; whereas ADAR3 is brain-specific. Rare events of
editing in coding regions may result in amino-acid substitu-
tions21, while editing in non-coding regions might affect splicing,
RNA stabilization, and nuclear retention22. Furthermore, editing
of non-coding RNAs affects their biogenesis or alters their target
gene specificity23,24. It has been suggested that ADAR plays a role
in various biological processes in an RNA editing-independent
manner, such: affecting gene expression25; processing of
miRNA26–28; creating protein–protein complexes29; and
decreasing protein kinase activities30,31. The ability to create
protein–protein interaction via its double-stranded RNA-binding
domain (dsRBD) facilitates ADAR1 to regulate an entire biosy-
thetic pathways directly and systematically27,28.

We have recently shown that ADAR1 is downregulated along
melanoma progression, particularly during the metastatic transi-
tion27, thereby enhancing proliferation27 and resistance to tumor-
infiltrating lymphocytes32, in an RNA-editing-independent man-
ner. It was shown in a recent seminal paper that ADAR-mediated
A-to-I RNA editing occurs in miRNA-455-5p, leading to inhibi-
tion of melanoma growth and metastasis in vivo33. Here we
provide substantial evidence on the role of ADAR1 in melanoma
cell invasion by controlling ITGB3 expression independently of
RNA editing, at the transcriptional and post-transcriptional levels.
These results provide new insights on the mechanistic role of
ADAR1 in the acquisition of melanoma metastatic phenotype, as
well as on the regulation of ITGB3 expression.

Results
ADAR1 controls melanoma cell invasion. To evaluate the effect
of ADAR1 downregulation on the acquisition of invasive

potential, four melanoma cell lines (624mel, 003mel, A375, and
WM-266-4) were stably transduced with ADAR1-shRNA
(knockdown, KD) or non-targeted-shRNA (control), as pre-
viously described27. These cells represent metastatic (624mel,
003mel, and WM-266) and primary melanoma (A375), express
ADAR1, and exhibit basis invasion potential. Expectedly, the
constitutive ADAR1-p110 comprised ~90% of total ADAR1
(Fig. 1a, b). Efficient ADAR1-KD was validated for both ADAR1
forms at the mRNA and protein levels using quantitative reverse-
transcription PCR (qRT-PCR) and western blot, respectively
(Fig. 1a, b). Exposure of the cells to interferon-alpha (IFN-α)
induced the ADAR1-p150 but not the ADAR1-p110 (Fig. 1b),
confirming that the weak band observed at 150 kD is indeed
ADAR1-p150. Matrigel invasion tested both by XTT quantifica-
tion and by membrane cell fixation, congruently revealed a
remarkably enhanced invasion rate following ADAR1-KD in all
melanoma cells lines tested (Fig. 1c), confirming the role of
ADAR1 in the regulation of melanoma invasion. A strong
negative correlation between endogenous ADAR1 expression and
invasion activity was demonstrated in 10 different melanoma cell
lines (Fig. 1d).

ADAR1-dependent regulation of invasion is mediated by
ITGB3. We previously published a list of differentially expressed
genes following ADAR1-KD in melanoma, and categorized them
according to putative function, including invasion (doi:10.1172/
JCI62980DS1)27. This list of genes (Supplementary Data 1) was
analyzed using the online tool String to map potential protein
interactions34. Importantly, this analysis identifies ITGB3 at the
center of the protein network (Supplementary Fig. 1) with a
variety of interactions, indicating a key role within this group of
altered genes.

ITGB3 is strongly upregulated in melanoma2 and correlates
to the aggressiveness of the tumor3–5. On the other hand, we
have previously reported that ADAR1 is downregulated upon
metastatic transition in melanoma27. Remarkably, analysis of
ITGB3 and ADAR1 expression levels in 38 low-passage
patient-derived metastatic melanoma cultures shows a highly
significant negative correlation (Fig. 2a). In line with this
observation, the expression of ITGB3 was substantially increased
in all four melanoma cell lines after experimental
ADAR1 silencing at the mRNA and protein levels (Fig. 2b, c).
We therefore hypothesized that the upregulation in ITGB3
expression may explain the enhanced invasiveness following
ADAR1 silencing (Fig. 1).

Accordingly, the ability of ITGB3 to interact with the ECM
components was blocked with β3 integrin blocking polyclonal
antibodies. The four ADAR1-KD or control melanoma cell
systems described above (Fig. 1) were pre-incubated for 1 h with
10 µg/ml of the blocking or control antibodies, and then seeded
onto the matrigel-coated upper chamber. Invasion rate was
evaluated 24 h post seeding. The blocking antibodies significantly
decreased the invasion rate of the ADAR1-KD cells as compared
to the control antibodies (Fig. 2d and Supplementary Fig. 2).
Noteworthy, the blocking antibodies had no significant effect on
the invasion rate of the control cells (Fig. 2d). Reduced invasion
rates of the control melanoma cells could be observed when a
higher concentration of the polyclonal blocking antibodies was
used (Fig. 2e and Supplementary Fig. 2). These results suggest
that the enhanced invasion driven by ADAR1-KD is mediated by
ITGB3.

ITGB3 expression is directly regulated by miR-22. ADAR1 was
previously demonstrated to affect the expression of many
miRNAs27 while ITGB3 is known to be regulated by several
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miRNAs11,14,15,35,36 and its expression was upregulated following
ADAR1-KD (Fig. 2b). Thus, a list of miRNAs predicted to target
ITGB3 3′-untranslated region (3′-UTR), based on TargetScan
5.237 analysis was crossed with the list of miRNAs, which were
downregulated (due to ADAR1-KD) and are known as potential
tumor suppressors27. This analysis suggests 15 miRNAs: let-7a,
miRs-22-3p, -30, 138-5p (miR-138-1 and -138-2), -185-5p, -211-
5p, -489-3p, -532-5p, 767-5p, -892b, -938, -1248, -1275, and
-1296 as putative candidates as both ADAR1-controlled and
ITGB3 regulators (Fig. 3a).

Four miRNAs (miRs-22, -138-5p, -185, and -211) were selected
for further examination based on previous studies describing their
key involvement in cancer or melanoma invasion38–46. None of
these miRNAs has been described as a regulator of ITGB3.
Accordingly, a portion of ITGB3 3′-UTR containing the putative
binding sites for these miRs was cloned. Due to the location of the
binding sites and the size of the 3′-UTR, it was divided into two
segments UTR-I (putative binding sites for miRs-22-3p, -211-5p,
and -138-5p) and UTR-II (putative binding site for miR-185-5p).
Both 3′-UTR segments were cloned upstream to Renilla luciferase
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Fig. 1 Reduced ADAR1 expression leads to increased melanoma invasion. ADAR1 reduced expression in four melanoma cell lines following ADAR1 silencing
(ADAR1-KD, KD) or negative control (control, CNT) as determined by a qRT-PCR selective for p110 and p150 ADAR1 variants and b left: western blot using
antibodies against ADAR1 and β-actin as loading control (grouping of images from different gels). Results are representative experiment out of three
biologically independent performed; right: western blot for ADAR1 of 624mel cells treated with IFNα. The exponent numbers indicate the amount of
international units (IU) used; c invasive behavior of ADAR-KD vs. control cell systems (as detailed above). Invasion was performed for 24 h using Boyden
chamber assay and monitored by standardized XTT assay or membrane fixation and staining. Error bars indicate ± SEM. Numbers in the bars represent the
absolute cell count of invading cells. Representative microphotographs of thincerts are shown; d correlation between % invasion and ADAR1 expression
quantified by qPCR and normalized to reference melanocytes, in 10 cell lines. Correlation coefficient was determined with Spearman’s test. Asterisks
represent P values: *P < 0.05; **P < 0.01 (two-tailed t-test)
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in a dual luciferase reporting psiCheck2 system. The putative
binding sites were altered with three point mutations (UTR-
MUT) in one or more binding sites (MUT-A and MUT-B) and a
combination of both (MUT-AB), if required, for each miR. All
miRs were cloned into the pQCXIP expression vector. Empty
psiCheck2 (no UTR) and pQCXIP (Mock) served as negative
controls. The various constructs were co-transfected into the
easily transfectable HEK 293T cells. The luciferase signal of cells
co-transfected with both empty vectors served as point of
reference. Forced expression of miRs-22 and -211 with the
UTR construct significantly inhibited the luciferase signal while
the inhibitory effect was abolished when the UTR-MUT construct
was tested (Fig. 3b). On the other hand, no significant difference
in luciferase activity was detected for miRs-138-5p and -185-5p.
This suggests that miRs-22-3p and -211-5p bind directly to the
3′-UTR of ITGB3. Out of the two potential candidates, which are
mostly known as tumor suppressors and as key regulators of
invasion38,40,43,44,47,48, we decided to further investigate miR-22,

mainly due to its unknown role in melanoma and its unique
genomic location49.

To study the effect of miR-22 in melanoma, we used the
melanoma cell lines 624, 003, A375, and WM-266-4, which
express relatively low levels of endogenous miR-22. The
melanoma lines were transiently transfected with mimic-miR-22
oligonucleotides or with control oligonucleotides. MiR-22 was
efficiently overexpressed (Supplementary Fig. 3a), while the
expression of ITGB3 was significantly reduced both at protein
and RNA levels (Fig. 3c–e). This suggests that miR-22 regulates
the stability of the mRNA of ITGB3, but inhibition of protein
translation cannot be entirely excluded. Functionally, miR-22
significantly inhibited invasion in all tested cell lines (Fig. 3c, d).
Importantly, the enhanced ITGB3 expression and invasive
function following ADAR1-KD were restored by overexpression
of miR-22 in the same cells, as demonstrated in all four
melanoma lines (Fig. 3c and Supplementary Fig. 2). Moreover,
the reduced ITGB3 expression and invasion function conferred
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Fig. 2 ADAR1-regulated invasion is mediated by ITGB3. a Normalized ADAR1 and ITGB3 expression level in 38 low-passage primary cultures of metastatic
melanoma presented as 1/ΔCt. Correlation was calculated using Pearson test. b ITGB3 mRNA levels (qRT-PCR) after silencing of ADAR1 with shRNA
(ADAR1-KD) or negative control (control) in four melanoma lines. Results are expressed as fold above negative control. The mean ± SE of three
experiments on independent RNA purifications, each performed in triplicates, is shown. c Surface levels of ITGB3 expression, tested by flow cytometry in
ADAR1-KD or control of each of the indicated cell lines. Background is isotype control; ADAR1-KD increased invasion is inhibited by blocking of ITGB3
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by ITGB3-specific KD with siRNA were restored by treatment
with anti-miR-22, as demonstrated in all four melanoma lines
(Fig. 3d). Similar results were also obtained with stable over-
expression of miR-22 cloned into pQCXIP expression vector
plasmid (Supplementary Fig. 3b–d). Collectively, these results
show that miR-22 directly regulates ITGB3 expression and
consequently the invasiveness of melanoma cells.

The expression of pri- and mature forms of miR-22 was tested
in all four ADAR1-KD melanoma cell systems with qRT-PCR
using form-specific primers. Silencing of ADAR1 led to a
reduction in both pri- and mature miR-22 forms (Fig. 3f),
suggesting that ADAR1 controls miR-22 expression at the
transcription level. Alternatively, post-transcriptional at level of
the pri-miR is possible, as it was previously shown that ADAR1
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can influence miRNA biogenesis by binding to DGCR8, Dicer, or
directly to pri-miRs27,28,33.

FoxD1 regulates miR-22 expression. miR-22 is transcribed from
exon 2 of a long non-coding gene (host gene)—miR-22HG49.
MiR-22HG expression is regulated by transcription factors that
specifically bind to their designated sites at the predictive pro-
moter area50–54. A segment of 1306 bp (−1262 to +44) of miR-
22HG promoter51 was cloned into pGL4.14 luciferase reporter
construct and transfected into all four melanoma lines with
ADAR1-KD or control. An additional plasmid carrying Renilla
gene (pRL) was co-transfected as internal control, and signal

intensity was measured 48 h later. Importantly, the normalized
luciferase activity was significantly reduced in all melanoma lines
following ADAR1-KD (Fig. 4a). This provides strong positive
evidence that the regulation of miR-22 is at the transcription
level.

The cloned promoter was analyzed using MAPPER (computa-
tional identification of transcription factor-binding sites) to
identify putative binding sites for transcription factors. Remark-
ably, FoxD1 was the only transcription factor common to both
the MAPPER-generated list and the list of genes that were
downregulated following ADAR1-KD27. Importantly, FoxD1
expression was reduced following ADAR1 silencing in all four
melanoma ADAR1-KD lines in the mRNA and protein levels
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(Fig. 4b, c). It should be noted that the reduction of FoxD1
expression at the protein level is modest, but consistent across cell
lines and experiments. Next, we transduced the four parental
melanoma cell lines 624, 003, A375, and WM-266-4 with
pQCXIP-FoxD1 (FoxD1-OX) or empty pQCXIP (Mock) that
served as control. FoxD1 overexpression was confirmed in all cell
lines both at the mRNA (Supplementary Fig. 4a) and protein
levels (Fig. 4d). The ability of FoxD1 to regulate the promoter of

miR-22HG was tested using the promoter system described
above, but with the addition of three neutralizing point mutations
that were introduced into the putative FoxD1-binding site (pMut)
(Supplementary Fig. 4b). All four melanoma lines (FoxD1-OX or
Mock) were transiently co-transfected with the luciferase
construct and an additional pRL that served as internal control.
Signal intensity measured 48 h later. Supporting the hypothesis
that FoxD1 activates the promoter of miR-22HG, luciferase
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activity was significantly increased when the naive promoter was
expressed in the FoxD1-OX cells as compared to Mock cells,
without any similar effect when the mutated promoter was tested
(Fig. 4e). Indeed, overexpression of FoxD1 enhanced the
expression of miR-22 in all four melanoma lines (Fig. 4f). Taken
together, these results confirm that FoxD1 enhances miR-22
expression at the transcription level. Finally, we show that
overexpression of FoxD1 congruently affects the entire miR-22-
dependent chain of events described above, e.g., a reduction in
ITGB3 expression in the RNA and protein levels (Fig. 4f) and
consequently, the invasiveness of these cells (Fig. 4g and
Supplementary Fig. 2).

ADAR1 regulates ITGB3 expression via PAX6. As we show the
ADAR1 controls the expression level of multiple transcription
factors27, we hypothesized that ADAR1 controls the transcription
of ITGB3. A segment of 1270 bp (−1120 to +50) of ITGB3
promoter6 was cloned into pGL4.14 luciferase reporter construct
and transfected into all four melanoma lines with ADAR1-KD or
control. An additional pRL was co-transfected as internal control,
and signal intensity was measured 48 h later. Importantly, the
normalized luciferase activity was significantly increased in all
melanoma lines following ADAR1-KD (Fig. 5a). This provides
strong positive evidence that ADAR1 controls the transcription of
ITGB3.

The cloned ITGB3 promoter was analyzed using MAPPER to
identify putative binding sites for transcription factors. Remark-
ably, PAX6 was the only transcription factor common to both the
MAPPER-generated list and the list of genes that were
upregulated following ADAR1-KD27. The increased expression
of PAX6 following ADAR1 silencing was verified both in the
RNA and protein levels (Fig. 5b, c). Next, the four parental
melanoma cell lines 624, 003, A375, WM-26-4 were transfected
with PAX6 siRNA (siPAX6) or control siRNA (siCNT).
Decreased PAX6 expression was confirmed in all cell lines both
in the mRNA (Supplementary Fig. 5a) and protein levels (Fig. 5d).
The ability of PAX6 to activate the ITGB3 promoter was tested
using the promoter system described above, but with the addition
of three neutralizing point mutations that were introduced into
the putative PAX6-binding site (p.mut) (Supplementary Fig. 5b).
All melanoma lines (siPAX6 or siCNT) were transiently co-
transfected with the luciferase construct and an additional pRL
that served as internal control. Signal intensity measured 48 h
later. Supporting the hypothesis that PAX6 activates the promoter
of ITGB3, luciferase activity was significantly decreased when the
naïve promoter was expressed in the siPAX6 cells as compared to
siCNT cells, without any similar effect when the mutated
promoter was tested (Fig. 5e). Indeed, KD of PAX6 congruently

reduced endogenous ITGB3 expression in the mRNA and protein
levels (Fig. 5f) and consequently, the invasiveness of these cells
(Fig. 5g and Supplementary Fig. 2). Chromatin immunoprecipi-
tation (ChIP) with anti PAX6 or control antibodies was
performed on 624mel and 003mel cells (ADAR1-KD or control).
ITGB3 promoter sequence includes the PAX6-binding site was
quantified by quantitative PCR (qPCR) and normalized to
downstream sequence derived from its coding region. Remark-
ably, significantly higher levels of promoter sequences were
measured in the ADAR1-silenced cells as compared to control
cells (Fig. 5h). Taken together, these data reveal a new role for
PAX6 as a positive regulator of ITGB3 expression and invasion.

The clinical relevance of the ITGB3 regulation pathways by
ADAR1 was tested in a patient-paired progression tissue
microarray. Importantly, the expression of ADAR1 and FOXD1
decreased, while the expression of ITGB3 increased, along
melanoma development. While PAX6 was congruently increased
in some patients, it did not reach statistical significance (Fig. 5i, j,
Supplementary Fig. 6). This information indicates on the clinical
relevance of the ADAR1-ITGB3 pathway in human melanoma
progression.

ADAR1 controls invasion independently of RNA editing. We
have previously described an RNA-editing-independent role for
ADAR1 in the control of melanoma cell proliferation by using a
system of 624 melanoma cells transfected with: ADAR1-P110 in
its wild-type form (ADAR1-OX); ADAR1-P110 bearing specific
point mutations in the catalytic site (CAT-MUT-P110) or devoid
of the deamination domain (ΔCAT-P110); and empty plasmid as
control (Mock)27. We focused on ADAR1-P110 due to its
dominant constitutive expression (Fig. 1a, b). The reduced A-to-I
RNA editing in these mutants was established previously27. An
ADAR1 construct with neutralizing mutations in all three RNA-
binding sites was also created and transfected into 624mel cells.
To elucidate whether ADAR1-controlled invasion is dependent or
independent of RNA editing, or at least on RNA binding, we
tested this system for invasion rate and ITGB3, miR-22 (both pri-
and mature), FoxD1, and PAX6 expression levels. Mock cells
served as negative control, the OX-P110 cells served as positive
controls, and cells transfected with a heterologous RNA-binding
protein (Staufen1) served as control for RNA-binding effect.
Expression was confirmed by western blot with anti-ADAR1 or
anti-Stau1 antibodies (Fig. 6a). ADAR1 levels were quantified
with densitometry and normalized to actin levels. Then, ADAR1
levels of all transfectants were normalized to Mock (Fig. 6b).
Concurring with the KD experiments, overexpression of ADAR1
(OX-P110) inhibited melanoma cell invasion (Fig. 6c). Impor-
tantly, a similar inhibitory effect was observed with the RNA

Fig. 5 Silencing of PAX6 leads to decreased melanoma invasion. The impact of reduced ADAR1 expression (ADAR1-KD) on a ITGB3 promoter was
evaluated by normalized luciferase activity of ADAR1-KD (KD) cells as compared to control cells (control, CNT) expressing naive promoter (pNaive) or
mutated promoter (pMut) with point mutations at the FoxD1-binding site. Expression of PAX6 in ADAR-KD melanoma cell lines, as indicated in the figure,
as compared to control cells was determined by b qRT-PCR and c western blot; d the expression of PAX6 in four melanoma cell lines, transfected with
PAX6 siRNA (siPAX6 and siPX6) or control siRNA (siCNT and siCT), was examined by western blot. In c and d we used antibodies against vinculin as
loading control. The impact of decreased PAX6 expression on e ITGB3 promoter was evaluated according to normalized luciferase expression in siPAX6 as
compared to siCNT-treated cells expressing naive promoter (pNaive) or mutated promoter (pMut) when point mutations were made at the PAX6-binding
site; f expression of ITGB3 was determined by qRT-PCR and by extracellular staining of ITGB3, followed by flow cytometry analysis. g Invasive behavior of
the indicated cells using standardized Boyden chamber assay. The number of cells was evaluated for 24 h post seeding. Numbers in the bars represent the
absolute cell count of invading cells; h chromatin immunoprecipitation for PAX6 followed by qPCR measurements of ITGB3 promoter region that contains
the PAX6-binding site and of a control downstream sequence from the ITGB3 coding region. The Y-axis denotes the ratio between the qPCR
measurements; i progression tissue microarray (TMA) was stained the indicated proteins. The staining for nuclear proteins is denoted as percent (bars
represent the mean for each progression stage) while surface ITGB3 is denoted as staining intensity (individual cases for each progression stage are
shown); j staining results of a representative patient. Results for a, b and e–h represent the mean ± SE of three biologically independent experiments, each
performed in triplicates. Results for c and d are of a representative experiment out of three performed. TMA included triplicate cores for each case and
analyzed with Wilcoxon signed rank test. Asterisks represent P values: *P < 0.05; **P < 0.01; ***P < 0.001 (two-tailed t-test)
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editing handicapped CAT-MUT-P110 ΔCAT-P110 cells (Fig. 6c).
Similar observations were made with or without correction of
migration capacity to ADAR1 expression (Fig. 6c). Inhibition of
invasion was corroborated by a reduction in ITGB3, both in the
mRNA and protein levels (Fig. 6d, e). This correlated with an
increase in miR-22 and FoxD1 expression, as well as with a
decrease in PAX6 expression (Fig. 6f–h). Noteworthy, we
observed an upregulation in miR-22 expression in OX-P110 cells
as compared to CAT-MUT-P110 and ΔCAT-P110. This differ-
ence could suggest an effect of A-to-I RNA editing. Indeed, it has

previously been reported that the pri-miR-22 transcript is sub-
jected to A-to-I editing in a number of human and mouse tis-
sues24. However, direct sequencing of cDNA segments of pri-
miR-22 isolated from Mock, OX-P110, CAT-MUT-P110, and
ΔCAT-P110 transfectants, using primers corresponding to the
transcript subjected to A-to-I RNA editing, revealed that none of
the susceptible adenines were edited (Supplementary Fig. 7).
These results are confirmed by another previously published
study analyzing high-throughput sequencing of a large set of
miRNAs from various human tissues23. Importantly, mutations
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in the RNA-binding sites completely abrogated the ability of
ADAR1 to inhibit invasion (Fig. 6c) or affect the expression of
ITGB3, miR-22, FOXD1, and PAX6 (Fig. 6d–h). The corrected
invasion capacity of RNA-binding mutant is reduced due to the
higher levels of ADAR1 detected by the antibody. Overexpression
of another RNA-binding protein, Staufen1, had no effect
(Fig. 6b–g). In conclusion, these experiments show that ADAR1
regulates ITGB3 expression and therefore invasion of melanoma
cells independently of RNA editing, but the mechanism still
depends on the specific RNA-binding capacity of ADAR1.

Discussion
We have previously reported that downregulation of ADAR1 in
melanoma contributes to melanoma growth independently of its
RNA-editing activity. Here we show that downregulation of
ADAR1 in metastatic melanoma cells causes an increase in
ITGB3 expression through RNA-editing-independent transcrip-
tional and post-transcriptional mechanisms, leading to an
increase in invasion rate. On the other hand, it was shown that
murine models of ADAR1 gene deletion or knock-in of an
incapacitating mutation into the catalytic domain, result in lethal
autoimmunity55 associated with aberrant IFN response and
facilitated apoptosis mediated by the protein melanoma differ-
entiation antigen 5 (MDA5)56,57. MDA5 is an innate dsRNA-
sensing molecule that does not have a specific role in melanoma.
The discrepancy between these reports and our results may be
explained by: (a) The murine models of embryonic lethality may
not necessarily point on the same mechanism as established
cancer cells. We focused on the biology of malignant cells, which
may respond differently than non-malignant cells, especially as
malignant cells must inherently overcome mechanisms of apop-
tosis in order to develop from the first place. (b) The increase in
IFN-stimulated genes56,57 was observed in whole embryos, which
include different cell populations with potentially mixed sensi-
tivity to ADAR1 deletion. We analyzed melanoma cell lines,
which may be more homogenous with this regar. (c) In the
murine studies, ADAR1 function was completely eliminated,
while in our studies the ADAR1 was downregulated but still
clearly expressed, which might be sufficient to prevent apoptosis.
(d) MDA5 is mainly regulated by ADAR1-p150, the inducible,
cytoplasmic form of ADAR1. In melanoma, we demonstrate that
the dominant form is ADAR1-p110 (Fig. 1), and that the
downregulation along melanoma development is indeed mainly
of the ADAR1-p110 protein27. Noteworthy, it was recently
demonstrated in certain cell stress cases, ADAR1-p110 can be
exported to the cytoplasm and exert anti-apoptotic effect by
inhibiting Staufen1-mediated mRNA decay58.

In the current study, we identified ITGB3 as mediator of
ADAR1 regulation of melanoma cell invasion. We found inverse
correlations between ADAR1 and invasion capacity or ITGB3
expression, which is consistent with their previously reported
altered expression pattern during melanoma progression from
primary to metastatic melanoma, when the cells gain their motile
and motility invasive phenotype2,27. Accordingly, blocking of
ITGB3 ligand-binding site in ADAR1-silenced cells, resulted in
reduced invasion. Interestingly, a higher titer of blocking anti-
bodies was required for achieving significant effect on invasion of
the control cells, most probably due to stoichiometric differences
between the amount of molecules that contribute to the effect and
the amount of the blocking antibodies out of the polyclonals. Our
data not only outline ADAR1 and ITGB3 interrelations but more
importantly demonstrate ITGB3 key role in ADAR1-induced
invasion in melanoma.

We provide evidence that ITGB3 is controlled by ADAR1 at
transcriptional and post-transcriptional levels, which emphasizes

the potential importance of this process in the acquisition of the
invasive phenotype following loss of ADAR1. Post-transcriptional
regulation of ITGB3 expression by ADAR1 is mediated by two
miRNAs that target directly ITGB3, miR-22, and miR-211
(Fig. 3). As miR-211 is known to have a role in melanoma
aggressiveness and migration40, here we focused on the regulation
and role of miR-22. MiR-22 is deregulated in many types of
cancers and known to be involved in various cellular processes
related to carcinogenesis38,47,59. Reduced expression of both pri-
and mature miR-22 in ADAR1-silenced melanoma lines was
demonstrated, however, as oppose to Luciano at al.24, and
according to our data and previous studies23,26 no ADAR1-
mediated RNA editing of miR-22 precursor was observed.
Moreover, previous studies suggest transcriptional regulation of
miR-22 by Sp153 and AKT51. This supports an RNA-editing-
independent modulation of miR-22 expression.

ADAR1 interaction with cellular transcription regulatory pro-
teins, both by A-to-I editing of GLI1, a known transcription
factor, leading to leading to modulation of transforming growth
factor-β signaling pathway60 and by binding to NF90, a known
transcription regulator, via their dsRBDs, causing alterations in
gene expression independently of deamination activity. Accord-
ingly, we revealed that ADAR1 silencing alters the expression of
two transcription factors—FoxD1 and PAX6, leading to ITGB3
upregulation in two parallel mechanism. FOXD1 is a member of
the of the forkhead box (FOX) transcription factors family.
Mutated or deregulated FOX genes are often associated with a
variety of cancers as tumor suppressors and oncogenes. In
addition, it is a strong indicator of successful progression of the
gene expression in cell reprogramming61. We provide here evi-
dence for a role of FoxD1 in indirect regulation of ITGB3
expression and cell invasion capacity by controlling miR-22
expression (Fig. 4). PAX6 is a member of the Paired Box (PAX)
transcription factors family62 and has been associated with
multiple cancer types, either as tumor suppressor or oncogene63.
Until now, there are no data regarding PAX6 role in melanoma
progression, however, it has been strongly linked to a feed-
forward regulatory loop with MITF during the onset of mela-
nogenesis64,65. We provide here evidence for the direct role of
PAX6 in the regulation of ITGB3 transcription, expression, and
cell invasion capacity (Fig. 5). The clinical relevance of the
ADAR1-ITGB3 pathway was demonstrated in a small cohort of
patient-paired melanoma progression tissue microarray. Indeed,
statistically significant downregulation of ADAR1 and FoxD1, as
well as upregulation of ITGB3, were observed congruently along
human melanoma progression (Fig. 5i, j). In line this data,
Shoshan et al.33 has recently demonstrated that ADAR1 inhibits
melanoma metastasis in murine models, albeit through a different
mechanism, as discussed below. The differences in PAX6 did not
reach statistical significance, potentially due to the limited sample
size of this small cohort.

Our data indicate that the expression and functional output of
both PAX6 and FOXD1 are independent of RNA editing. Indeed,
while GLI1 is predicted to be edited in several genomic locations,
in addition to the specific non-synonymous editing, leading to its
altered function60, no editing events are predicted66 or reported
for both PAX6 and FOXD1. It is possible that ADAR1 controls
their expression via post-transcriptional regulation, as it depends
on the RNA-binding activity of ADAR1 (Fig. 6). Therefore, the
significant impact of ADAR1 activity either by RNA-editing-
dependent or -independent ways on diverse biological process in
the cell67 can be intensified by the regulation of transcription
factors that add another layer of complexity to its activity.

We show that ADAR1 regulates ITGB3-mediated invasion and
its transcriptional and post-transcriptional regulation indepen-
dently of RNA editing, but dependently of RNA binding. The
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effects exerted by ADAR1 truncation mutants lacking the cata-
lytic domain or with mutated catalytic domain were similar to the
full-length ADAR1, while mutated RBD abrogated the effects of
ADAR1 (Fig. 6). This points on the importance of the RNA-
binding activity of ADAR1 for these functions, which are not
exerted by another RNA-binding protein, such as Staufen1
(Fig. 6). Both ADAR1-p110 and Staufen1 can bind 3′-UTR-alu
dsRNA58 and could potentially share other RNA substrates,
however they differ strictly by subcellular localization (nuclear
and cytoplasmic, respectively), dsRNA-binding dynamics (static
and dynamic, respectively), and Z-DNA-binding domains (pre-
sence and absent, respectively)58. RNA binding is crucial for RNA
editing, but regulation of transcription factors such as NF90 by
RNA binding independently of RNA editing can occur by
creating an RNA bridge, resulting in interactions with other
proteins29. A recently published study demonstrated a novel role
for ADAR1-mediated RNA editing in melanoma progression33.
This effect of ADAR1 silencing on melanoma tumor growth and
metastasis was further confirmed by an in vivo model, suggesting
is not confined to invasion in vitro. It was revealed that the
editing status of miRNA-455-5p controls melanoma tumor
growth and metastasis. Importantly, Shoshan et al. also suggested
that ADAR1-mediated regulation of miR-455-5p biogenesis could
occur either in an RNA-editing-dependent or -independent
manner. While our results demonstrate the RNA-binding-
dependent RNA-editing-independent role of ADAR1, the sys-
tems we used do not rule out the RNA-editing-dependent
mechanisms. Therefore, the combined data suggest a unified
model of complex regulation of melanoma cell invasiveness by
ADAR1 by multiple mechanisms in multiple layers. For example,
here we observed that cells expressing full-length ADAR1
demonstrate higher expression of mature miR-22 as compared to
ADAR1-truncated or mutated catalytic domain. While this
implies on an editing-dependent effect, no direct editing of miR-
22 could be detected, suggesting that this alteration might be due
to an indirect effect of RNA editing of additional regulatory
elements.

Finally, it was recently shown that ADAR1-p110 can translo-
cate from the nucleus into the cytoplasm under certain cell stress
conditions and exert anti-apoptotic effects by inhibiting Staufen1-
mediated mRNA decay58. The implications of the subcellular
localization of ADAR1 on the control of the invasive phenotype
and the underlying mechanisms reported here cannot be con-
cluded from this report and require further investigation.

In summary, here we provide substantial evidence for a model,
in which ADAR1 controls the expression of ITGB3 in melanoma
cells in several distinct RNA-editing-independent mechanisms,
and thereby their invasive phenotype. These results complete the
previous findings on RNA-editing-dependent roles of ADAR1 in
melanoma, setting the stage for a unified contribution to the
metastatic phenotype of melanoma cells.

Methods
Cells and antibodies. The melanoma lines 624mel (NCI Surgery Branch, Dr. Steve
Rosenberg), A375 (American Type Culture Collection), WM-266-4 (ATCC), G361
(ATCC), WM-115 (ATCC), MeWo (ATCC), MEL-02 (home made32), C8161
(ATCC), C81-61 (ATCC), HEK 293T (ATCC), and 003mel (home made32) were
used. The 38 primary cultures derived from surgically removed metastatic mela-
noma specimens were established and cultured as described32. All cell lines were
routinely tested for mycoplasma contamination and were authenticated using mass
spec proteomics. Stably transfected cell lines were cultured with 1 μg/ml puromycin
(Calbiochem) or 2 mg/ml G418 (Alexis Biochemicals). Incubation of cells with
IFN-α (Merck) for 24 h was used to induce the expression of ADAR1-p150.

The following antibodies were used: mouse anti-human-ITGB3 fluorescein
isothiocyanate (FITC; BD, Catalog #555753); mouse anti-human-isotype control
IgG1 FITC (BD, Catalog #555753); rabbit anti-human ADAR1 (Sigma-Aldrich,
SAB4200541); mouse anti-human β-actin (MP Biochemicals Catalog Number:
691001); rabbit anti-human PAX6 (Abcam ab5790); rabbit anti-human Staufen1

(Abcam ab50914); rabbit anti-human FoxD1 (Abcam ab49156); rabbit anti-human
ITGB3 (Millipore, AB2984); mouse anti-human ITGB3 (Millipore MAB1957Z);
mouse IgG1 (BioXcell, BE0297); and horseradish peroxidase-conjugated secondary
antibodies against rabbit IgG or against mouse IgG (Jackson Immunoresearch code
111-035-144).

RNA isolation and reverse transcription. Total RNA was isolated using Tri
Reagent (Sigma) extraction method. Briefly, the cell pellet first homogenized in
Trizol, and then 0.2 ml chloroform/ml Tri reagent was added, samples were cen-
trifuged and the aqueous phase collected. Then 0.5 ml isopropanol/ml Tri reagent
was added and the sample was again centrifuged. After discarding the supernatant,
the pellet was re-suspended in 75% ethanol, centrifuged, and re-suspended in
RNase-free water. Integrity of the RNA was determined by spectrophotometry and
electrophoresis. The cDNA pools were generated with a Transcriptor high-fidelity
transcriptor kit (Roche) using random hexamer primers or Universal cDNA
synthesis kit Exiqon® microRNA cdna kit (Exiqon).

Real-time quantitative PCR analysis. Primers (Sigma-Aldrich) were designed
according to Primer-Express® software guidelines (Applied Biosystems). Forward
and reverse primers were designed from different exons to eliminate possible DNA
contamination27. miRNA expression was tested with custom Exiqon® primers
(Exiqon). The real-time PCR (qPCR) reactions were normalized to GAPDH or U6
endogenous control. Fold of expression was calculated with the accepted ΔΔCt
method, as reported previously27.

Expression constructs and stable transfections. The expression systems used in
this work were pSuper.puro, pCDNA3.neo, pQCXIP.puro, psiCheck2 (Promega),
and pGL4.14 (Promega). The various primers that were designed for cloning and
introduction of mutations are described in Supplementary Data 2. Transfections
were performed with Turbofect® (Fermentas) according to the manufacturer’s
instructions. Retroviral transductions were performed as previously described27.
Site-directed mutagenesis was performed using QuickChange® kit (Stratagene)
according to the manufacturer’s instructions.

Anti-miR, oligos, and transient transfection. 27-mer siRNA oligos specifically
targeting PAX6 along with the proper negative control oligos (OriGene) or ITGB3
along with the proper negative control (Dharmacon). Anti-miR-22 oligos along
with proper negative control (Dharmacon). The various oligos were transiently
transfected (80 nM for siRNAs and 20 nM for anti-miR) with JetPrime® (polyplus)
in 96-well microplates, and the cells were tested for miRNA and protein expression
48 h post transfection.

Western blot. Lysates of 5 × 106 cells were washed with phosphate-buffered saline
(PBS) and lysed in RIPA (Sigma-Aldrich) lysis buffer and protease inhibitor
cocktail (Roche) on ice for 20 min. Insoluble material was removed by cen-
trifugation at 14 000 rpm for 10 min at 4 °C. Protein concentration was measured
using Pierce™ BCA protein kit (Thermo Scientific). Proteins were separated by
10–12% SDS-polyacrylamide gel electrophoresis, transferred onto nitrocellulose
membranes, and incubated with specific antibodies (see Cells and antibodies sec-
tion). The antigen–antibody complexes were visualized by standard enhanced
chemiluminescence reaction (Biological-Industries). Densitometry with ImageJ
(NIH) was used for protein quantification.

Evaluation of RNA editing. Primers were designed to the genomic sequence in the
vicinity of mir-22 sequences in the miRNA registry68, using NCBI primer design
tool69. PCR primer design was optimized to give PCR products of approximately
300 bp with at least 100 nucleotides either side of the predicted stem-loop structure.
First, PCR was performed on cDNA from three samples of each cell line, then the
PCR product was sequenced using additional set of primers. A miRNA was con-
sidered to be successfully sequenced if a good-quality sequence of the PCR product
was obtained. Sequences were visualized and compared using Chromas (sequence
viewer) and NCBI blast, respectively.

Invasion assay. Melanoma cells (2 × 105) were seeded into the upper wells of
Transwell invasion system44 onto Matrigel (BD Biosciences)-coated ThinCerts®

PET membranes containing 8-μm pores (Greiner-bio-one) in RPMI 1640 with
0.1% fetal bovine serum (Gibco). In the lower well RPMI 1640 with 10% fetal
bovine serum (Gibco) was added. After 24 h of incubation at 37 °C, the cells in the
upper well, which didn’t invade, were collected, while the number of cells that
invaded each membrane was measured by XTT staining as previously described.
Percent of invasion was calculated as: (total number of invading cells)/(total
number of seeded cells) × 100. The values were adjusted to the relative growth ratio
of cells within 24 h evaluated by Net proliferation (standardized XTT), as pre-
viously described46. In independent experiments, after time allowed for invasion,
fluid and cells were removed from upper well and the thincert were fixed and
stained with Geimza. The membranes were air dried, removed, and mounted on
glass slides. Microphotographs were obtained using bright-field light microscopy
(Olympus).
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For blocking experiments, 10 or 30 μg/ml of ITGB3 function-blocking antibody
or control antibody (see Cells and antibodies section) was added to 2 × 105

melanoma cells before beginning the assay. Following 1 h of incubation at 4 °C, the
cells were seeded in the upper well and the assay was performed as
abovementioned. The cells used to examine net proliferation of cells, required for
relative growth control, were likewise incubated prior to the beginning of the
proliferation assay70.

Flow cytometry. Staining for extracellular antigens was performed on 1 × 105 cells
with the appropriate fluorochrome-conjugated antibodies (see Cells and anti-
bodies section) diluted in fluorescence-activated cell sorting (FACS) medium (PBS,
0.02% sodium azide, and 0.5% bovine serum albumin) on ice for 30 min. Following
incubation, cells were centrifuged (5 min, 500 × g, 4 °C), washed, and re-suspended
in 200 µl FACS medium and collected for FACS analysis. All experiments were
performed using a FACSCalibur® instrument (BD Biosciences) and data analysis
using FlowJo® software (Tree Star Inc.)27.

Luciferase reporter assay. HEK 293T cells were co-transfected with 1 μg of
psiCheck2-ITGB3 3′-UTR (UTR), different psiCheck2-ITGB3 mutated 3′UTR seed
sequences (UTR-mutA, UTR-mutB, and UTR-mutAB) corresponding to the miR-
binding site(s) or psiCheck2-empty vector (no UTR) and 0.1 μg of the pQCXIP-
miRs-22, -211, -138, and -185 or pQCXIP-empty vector (Mock) as control. Cells
were harvested 48 h post transfection and assayed with Dual Luciferase Reporter
Assay System® (Promega) according to the manufacturer’s instructions.

Melanoma cell lines 624mel, 003mel, A375, and wm-266-4 were transfected
with 20 μM of siPAX6 or siCNT (control) as previously described (see Anti-miR,
oligos, and transient transfection section). Twenty-four hours post siRNA
transfection, the cells were additionally transfected with 96 ng of pGL4.14-ITGB3
promoter plasmid (promoter-naive), pGL4.14-ITGB3 mutated promoter
(promoter-mut) or pGL4.14-empty vector (control), and 4 ng pRL for evaluating
pGL4.14 transfection efficiency. Cells were harvested 48 h post transfection and
assayed with Dual Luciferase Reporter Assay System® (Promega) according to the
manufacturer’s instructions27.

Chromatin immunoprecipitation. ChIP was performed using Pierce Agarose ChIP
kit (Thermo Scientific, USA) according to the manufacturer’s protocol. Briefly,
formaldehyde was added to culture medium at a final concentration of 1% for 10
min at 25 °C, and crosslinking was stopped by incubating in 0.1 M glycine for 5
min. Cells were rinsed with PBS, lysed, and nuclear fraction was isolated. Nuclei
were subjected to Micrococcal Nuclease (MNase) digestion (10 U/μl) in 37 °C water
bath for 15 min and pelleted by centrifugation; supernatant containing digested
chromatin was then collected. Chromatin was incubated with Protein G beads with
either 10 µg of rabbit anti-human PAX6 Ab (ab5790; Abcam) or normal rabbit IgG
as negative control (supplied with a kit), or rabbit anti-human RNA polymerase II
antibody (supplied with a kit) as a positive control, according to the manufacturer’s
recommendations. After overnight at 4 °C incubation, beads were washed and
immunoprecipitation (IP) complex was recovered and treated with proteinase K
for 2 h at 65 °C. DNA was recovered using DNA clean up columns supplied with
the kit and eluted with 50 µl of PCR-grade water. qPCR amplification was done
using 2 µl of ChIP DNA and specific primers for Integrinβ3 promoter PAX6-
binding region, Integrinβ3 non-specific downstream gene region, and GAPDH
promoter (supplied with a kit). Crosslinked chromatin prior to IP was used as a
positive control (input) for PCR amplification.

Patient-paired tissue microarray. Progression tissue microarray of paired sam-
ples from the same patient was designed in-house. Formalin-fixed, paraffin-
embedded paired tissue samples of primary tumors, lymph node metastases, and
distant metastases were collected from 12 patients (clinical features in Supple-
mentary Table 1), along with 7 normal liver tissue samples and 3 normal muscle
tissue samples, which were used for orientation and control. Each tissue sample was
initially stained with hematoxylin and eosin (H&E) and representative areas of
tumors were marked by an expert pathologist (I.B.) morphologically. Accordingly,
three 2 mm diameter tissue cylinders were punched out from each tumor block and
deposited into a recipient block using Manual Tissue Arrayer MTA-1 (Beecher
Instruments Inc., Sun Prairie, WI, USA). Tumor sample triplicates were used as a
means of overcoming tumor heterogeneity. Post array construction, a 4 µm section
was H&E-stained to confirm the histological quality. A consecutive 4 µm section
was used for immunohistochemical staining. Each spot was scored by a blinded
expert pathologist (I.B.). Uninterpretable cores due to loss of the tissue or excessive
background staining were excluded from the analyses. This study was approved by
the Institutional Review Board of Sheba Medical Center (Protocol SMC-2406).

Statistical analysis. Data were analyzed using the unpaired two-tailed Student’s t-
test. Correlations were examined with Pearson’s correlation test. The tissue
microarray data were analyzed using Wilcoxon signed rank test. Two-tailed P-
value ≤ 0.05 was considered significant.

Data availability. The authors confirm the availability of the “minimal data set”
necessary to interpret, replicate, and build on the findings reported in the paper.
Previously generated gene and microRNA datasets in ADAR1-KD cells are avail-
able at https://doi.org/10.1172/JCI62980DS1.
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