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Bacterial infections remain a major cause of morbidity and mortality in the neonatal

period. Therefore, many neonates, including late preterm and term neonates, are

exposed to antibiotics in the first weeks of life. Data on the importance of inter-individual

differences and disease signatures are accumulating. Differences that may potentially

influence treatment requirement and success rate. However, currently, many neonates

are treated following a “one size fits all” approach, based on general protocols and

standard antibiotic treatment regimens. Precision medicine has emerged in the last

years and is perceived as a new, holistic, way of stratifying patients based on large-

scale data including patient characteristics and disease specific features. Specific to

sepsis, differences in disease susceptibility, disease severity, immune response and

pharmacokinetics and -dynamics can be used for the development of treatment

algorithms helping clinicians decide when and how to treat a specific patient or a specific

subpopulation. In this review, we highlight the current and future developments that could

allow transition to a more precise manner of antibiotic treatment in late preterm and

term neonates, and propose a research agenda toward precision medicine for neonatal

bacterial infections.

Keywords: neonatal bacterial infection, diagnostics, antibiotic stewardship, precision medicine, late preterm and

term neonates

BACKGROUND

Neonatal Bacterial Sepsis and Infections
Bacterial infection can lead to sepsis, a state in which dysregulation of the hosts’ response to
the infection leads to potentially fatal organ dysfunction (1). Consensus on specific criteria to
define this state in neonates is still lacking, and hitherto the most common proxy definition of
neonatal sepsis is the presence of a positive blood culture (indicating bacteremia), or a positive
cerebrospinal fluid culture (indicating meningitis). This paper will acknowledge the limitations of
this proxy definition by incorporating the uncertainties it carries when making clinical decisions,
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demonstrating how precision medicine can help with those
decisions and highlighting how a future consensus definition can
further advance precision medicine in treating neonatal sepsis
(2, 3).

Neonatal bacterial infections (bacterial infections presenting
in the first 28 days of life) affect an estimated 3.0 million
neonates yearly, resulting in significant morbidity and mortality
(4–6). Early-onset sepsis (EOS), defined as bacteremia within
the first 72 h after birth, affects an average of 10 per 1,000
live births among neonates born below 33 weeks of gestation.
Lower incidences of 0.73 and 0.56 per 1,000 live births are
seen among late preterm neonates [gestational age (GA): 34–
36 weeks] and term neonates (GA ≥ 37 weeks), respectively
(7). Although the incidence and mortality remain much higher
among extreme preterm neonates, the absolute number of cases
of EOS is higher among late preterm- and term neonates,
since prematurity (GA < 37 weeks) affects about 11% of total
live births of which 85% occurs in the late preterm period
(GA 32–37 weeks) (8). Pathogens associated with EOS include
both Gram-positive and -negative pathogens with significantly
higher rates of Gram-negatives, especially Escherichia coli (E.
coli) infections among preterm neonates compared to term
neonates. In contrast, Group B Streptococcus (GBS) infections
seem to affect term neonates more frequently (7). Late-onset
sepsis (LOS) involves infections occurring >72 h after birth.
However, the onset of late-onset GBS infection is frequently
defined in literature as an infection that occurs >7 days after
birth (9). LOS develops due to contact of the host with
environmental organisms and includes both hospital-acquired
infections (nosocomial infections) and community-acquired
infections. Causative pathogens include skin commensals such
as coagulase-negative staphylococci (CoNS) and Staphylococcus
aureus, and gut-associated microbiota such as E. coli. The
latter is thought to reach the bloodstream through translocation
across the immature intestine (10). CoNS can be pathogenic,
especially for preterm neonates, and these infections are therefore
often seen in hospitalized preterm neonates undergoing invasive
procedures or with intravenous catheters (5, 11).

Host Susceptibility
The neonatal immune system is a complex network, constantly
adapting and undergoing an age-dependent maturation
during gestation and after birth. It is shaped by intra- and
extra uterine exposures such as antigens, medication, and
environmental factors, necessitating both immunotolerance
(to prevent immunoreactivity between mother and fetus) and

Abbreviations: EOS, early-onset sepsis; GA, gestational age; E. coli, Escherichia

coli; GBS, group B Streptococcus; LOS, late-onset sepsis; CoNS, coagulase-

negative staphylococci; NICU, neonatal intensive care unit; CRP, C-reactive

protein; HRV, heart rate variability; HRC, heart rate characteristics; MIC,

minimal inhibitory concentration; MIPD, model-informed precision dosing;

PK, pharmacokinetics; PD, pharmacodynamics; Cmax, maximum concentration;

AUC, area under the curve; %fT, percentage of time fraction of the free, unbound

concentration; TDM, therapeutic drug monitoring; IgG, immunoglobulin G;

IVIG, iv immunoglobulins; PTX, pentoxifylline; PCT, procalcitonin; RNA,

ribonucleid acid; MMP8, metalloproteinase-8; TNF-α, tumor necrosis factor-

alpha; PROM, premature rupture of membranes; ETEC, enterotoxigenic e.coli;

SMS, Sepsis MetaScore.

pro-inflammation (infection protection) (12). Reviewing the
neonatal immune system and the development of neonatal
sepsis is beyond the scope of this review. Several excellent
reviews have been published elaborating on this topic (13–15).
In summary, in the presence of a pathogen, the host’ immune
system dysregulates; alternating phases of hyper inflammation
(“cytokine storm”), potentially causing multi-organ failure, and
immunosuppression (window for opportunistic infections).
As pathogen exposure in utero is limited, and thus memory
function is lacking, neonates primary rely on innate immunity
and maternal transplacental immunoglobulin G (IgG) in early
life (13).

Consequently, neonates are vulnerable for infections. The
differences between preterm and term neonatal immune
development do partly explain the differences observed in
infection and sepsis incidence and severity between both
groups. However, this does not explain interpatient variability
in infection susceptibility seen within each group. Many late
preterm and term neonates, fortunately, develop only mild
symptoms when exposed to a pathogen. But a small group of late
preterm and term infants, without any apparent co-morbidities,
does develop severe infection (16).

Balancing Under- and Over-Treatment
In case of a clinical suspicion of neonatal bacterial infection,
empirical therapy using intravenous administration of broad-
spectrum antibiotics is generally started without further delay.
Although lifesaving in case of a true infection, unnecessary and
inadequate antibiotic use has many downsides for both patient
and health care system including gut microbiome alterations,
multi-drug resistance and costs (17, 18). The balance between
timely and proper diagnosis and overtreatment of neonatal
infections remains a daily clinical challenge. This is illustrated
by the fact that, in most cases, antibiotics can be discontinued
after 36–48 h when clinical and laboratory signs are reassuring, or
are continued in the presence of clinical and laboratory signs of
infection, despite culture negativity (culture-negative infection)
(19, 20). As a result, a substantial number of late preterm- and
term neonates are exposed to intravenous antibiotics in their first
weeks of life and antibiotics are among the most prescribed drugs
on the neonatal medium and intensive care units (NICU) (11).
Wide variation in neonatal antibiotic exposure between countries
and hospitals, unexplained by infection rates, demonstrates the
difficulty in ascertaining neonatal infection This, together with
the differences in susceptibility, highlights the need for precision
medicine in neonatal sepsis (21, 22).

Precision Medicine
The term precision medicine has emerged in the last years. Yet,
no consensus definition exists and many other terms such as
“personalized” or “stratified” medicine are used interchangeably.
However, experts view precision medicine as a novel, improved
concept that goes beyond the personal doctor-patient relation
(23). Precision medicine is viewed as a way to identify, stratify,
and treat patients using large-scale data that relate to the
underlying causes of their disease (24). It implicates deep
phenotyping of patients in which information is gathered at
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different levels (“big data”) and involves the use of clinical-
and life style data, omics and biomarkers. Collected data are
used for the development of algorithms and models for disease
or therapy risk assessment, screening, diagnosis, treatment
selection, prognosis, prevention, and surveillance or monitoring.
Those tools allow a more tailored and targeted therapy (24).
Precision medicine is not yet widely practiced in the field of
neonatal sepsis. However, recent studies evaluating different
tools for neonatal sepsis have been performed and results could
be a step toward better understanding of the disease-specific
pathophysiology (25).

This could be achieved through the use of newer techniques,
such as “omics,” in addition to conventional methods. The suffix
-omics generally refers to the biotechnology that characterizes
and quantifies biological molecules and structures at different
levels of an organism. It compromises genomics, transcriptomics,
proteomics, and metabolomics and allows detection of a “unique
barcode” that could predict the underlying response to infection
for an individual patient (26).We will discuss some of the current
“omics” findings applicable to late preterm and term neonates.

Genomics
Variation in the host genetics could partly explain the variability
in disease susceptibility. Genetic signatures or polymorphisms
have been discovered for several infectious diseases. One of the
well-known examples is malaria, where patients suffering from
haemoglobinopathies are protected against malaria because of an
altered erythrocyte structure (27). Another example, applicable
to the pediatric population, is the PAI-1 polymorphism in
meningococcal sepsis. PAI-1 is an acute phase protein and
elevated concentrations correlate with disease severity and
mortality. The 4G/4G PAI-1 polymorphism is associated with
higher concentrations of PAI-1, and thus worse prognosis,
compared to other genotypes (28). Sex has also been found to
influence sepsis susceptibility and outcome as reflected in the
increased vulnerability to infections and higher sepsis mortality
in male neonates compared to females. The X-chromosome
encodes multiple genes related to the immune system. Moreover,
it is involved in the generation of the sex hormones, of
which estrogen has showed to influence several pathways of
innate immunity, possibly explaining a better sepsis outcome in
females compared to males (29–31). Finally, pharmacogenomics
allows us to study genetic polymorphisms associated with
pharmacokinetics or –dynamics (drug response).

Transcriptomics
Transcriptomics refers to the study of the ribonucleic acid (RNA)
transcripts allowing to study changes in gene expression over
time or under certain circumstances, such as sepsis. Studies
using next-generation sequencing and RNA-sequencing have
showed that differences are present in gene expression between
septic and non-septic neonates with overexpression of genes
related to innate immunity and inflammation [CD177; Matrix
metalloproteinase-8 (MMP8); tumor necrosis factor-alpha (TNF-
α)] (25, 32). Moreover, Cernada et al. reported that genome wide
expression profiles differ between Gram-negative and Gram-
positive sepsis (32). A recent published study by Ng et al. reported

whole blood transcriptomic profiles of very preterm infants (n=

18) with proven, possible, and no sepsis. Significant differences
were seen in gene expression between proven and no sepsis cases.
Altered genes were associated with cytokine signaling, pattern
recognition and metabolism (33). With regard to gestational age,
Cernada et al. (32) reported no differences in gene expression
between very preterm- and late-preterm and term neonates.
However, the proportion of late preterm and term neonates
included in the study is low, and those are, in most cases,
suspected sepsis episodes, not culture proven sepsis. Wynn et al.
(34) reported significant differences between the transcriptome
of septic neonates and that of septic infants and older children,
illustrating an association with developmental age (35).

Proteomics
Protein-coding genes eventually lead to the expression of specific
proteins, and the structure, function and interaction of those
proteins can be studied revealing potentially useful biomarkers
for neonatal sepsis. One of the advantages of proteomics
is that these new biomarkers can be discovered through a
hypothesis-free approach as more than a thousand proteins and
modifications can be screened using mass spectrometry (25).

Metabolomics
The metabolome includes all low molecular weight molecules
produced by the human body and is considered to be a reflection
of a patient’s phenotype and real-time physiological condition
(36). Metabolomic perturbations due to a higher energy demand
and oxidative stress during sepsis can therefore be used as
possible predictors or biomarkers for neonatal sepsis (37, 38).
Only a few studies have used metabolomics in neonatal sepsis
revealing different metabolic pathways involved in neonatal
sepsis. Levels of metabolites of energy and glucose metabolism
(glucose, glutamine, and lactate) were significant altered in septic
neonates (39, 40).

Microbiome
The microbial community of the gut (“gut microbiome”) is
shown to be an important influencer of health and disease. It
protects from potential pathogens through both the development
of barrier function and by shaping the immunological and
metabolic pathways. Alterations in early life have been associated
with several diseases, such as asthma and obesity, at a later
age (41, 42). Significant differences are seen between the
gut microbiome of preterm neonates compared to that of
term neonates, independent of other environmental factors
(“exposome”) that influence bacterial colonization such as
the mode of delivery, type of feeding or the administration
of antibiotics (43). Decreased bacterial diversity in preterm
neonates is associated with LOS, although the microbiome was
reported to be highly variable in time (44, 45). Moreover,
the causative pathogen retrieved in blood culture is often the
most dominant species present in the gut microbiota. A recent
prospective study by El Manouni et al. (46) showed that the
causative pathogen could already be detected 3 days prior to LOS
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FIGURE 1 | Concept of precision medicine and -omics techniques and its potential for neonatal bacterial infections. ApoSAA score, Serum Amyloid A (SAA) and

Apolipoprotein (Apo)C2 score; LOS, late-onset sepsis. Figure (with all the icons) is created using https://www.flaticon.com/.

onset in fecal samples. These finding support the hypothesis of
bacterial translocation, gut dysbiosis, and the occurrence of LOS.

In the next paragraphs, we will elaborate on the current and
future options to move toward a more stratified approach in
the antibiotic management of proven and probable bacterial
infection, focusing on late preterm and term neonates. These
options include a wide variation of antibiotic stewardship
programs and guidelines, clinical decision tools, pharmacological
advances, biomarkers, and prevention strategies. We separate
these options for each stage of decision-making that can
be personalized: prevention, treatment initiation, treatment
modality and optimization, and treatment duration. Figure 1
shows the concept of precision medicine and the use of
-omics techniques with some recent findings relevant for
neonatal bacterial infections. Figure 2 illustrates opportunities
for precision medicine in neonatal bacterial infections during
different phases of disease management. Finally, Table 1 presents
a research agenda toward more precise medicine for neonatal
bacterial infections.

PREVENTION

Current Strategies
Mother-to-child transmission is considered to be the main route
of transmission for EOS. In the presence of risk factors such as

premature rupture of membranes (PROM) and signs of sepsis
before birth, broad spectrum antibiotics are usually administered
to the mother. To date, intrapartum prophylactic antibiotic
therapy is only used in mothers with risk factors for GBS and has
showed to be an effective way to decrease the transmission and
incidence of GBS by 50–80% (47). However, several components
and effects of this strategy are under debate, especially in the
context of late preterm and term pregnancies.

First, considerable variation exists in maternal GBS
colonization testing strategies (21). For instance, the American
Academy of Pediatrics recommends universal antenatal GBS
colonization testing in all pregnant women, and the use of
intrapartum antibiotic prophylaxis in case of GBS colonization
(48). In contrast, countries like the United Kingdom, Switzerland,
and the Netherlands, opt for a risk-based management and only
screen and treat high risk pregnancies (49). A disadvantage of
the risk-based approach can be that cultures may be obtained too
late to allow timely prophylaxis, whereas universal screening in
the third trimester may not reflect the actual colonization status
at birth. Second, the evidence with regard to optimal dose and
timing of intrapartum antibiotics is evolving; it appears that the
duration prior to birth is less important than previously thought
(50). Third, there are concerns and uncertainties about potential
adverse effects of intrapartum antibiotics on the neonate, such
as perturbations of the developing microbiome (51, 52). A
promising development for precision medicine in preventing
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FIGURE 2 | Overview of opportunities for precision medicine in treatment of (suspected) neonatal bacterial infection, at different stages of disease. ApoSAA score,

Serum Amyloid A (SAA) and Apolipoprotein (Apo)C2 score; E. coli, Escherichia coli; EOS, early onset sepsis; GBS, Group B streptococcus; IM, intramuscular; MIC,

minimal inhibitory concentration.

neonatal EOS has been the application of point-of-care molecular
testing for GBS colonization (53), which is likely to allow for
quick and reliable qualification of maternal GBS colonization
status and thereby facilitating more precise prophylaxis on
admission. Validation and confirmation studies evaluating
timing and dosage of intrapartum antibiotic prophylaxis as
well workflows involving molecular testing are necessary to
further improve this prevention strategy and minimize any of its
adverse effects.

Future Opportunities
Vaccination
Vaccination is traditionally used as a preventive measure
targeting the general population and applied at a universal scale.
However, there is increasing interest on the use of “precise
vaccination,” targeting specific subpopulations and tailoring
vaccination on a more individual level, taking into account
factors such as age, sex, and disease susceptibility. Adjusting
formulation, dosage and timing to patient factors could help
maximize the effects of vaccination while reducing the risks
(54). In the specific setting of neonates, immunization through
vaccination of subpopulations of pregnant women could be an
elegant manner to protect the neonate against invasive infections
in the first 3 months of life, including bacterial infections.
Vaccine-specific IgG can be transferred across the placenta
during late-second to third trimester and provides a time window
for effective and safe vaccination (55). To illustrate feasibility
and relevance of this approach, safety, and efficacy has been
documented for maternal pertussis vaccination which resulted
in higher antibody concentrations in newborns in the first 3
months of life and a maternal vaccination program has already

been implemented in several countries (56, 57). Similar efforts
are ongoing for GBS and E. coli.

Several phase I/II trials in non-pregnant and pregnant women
have evaluated the safety and tolerability of a multivalent GBS
vaccine. Studies have shown the vaccine to be safe and did
not report related major adverse events in vaccinated women.
GBS-specific antibody responses were significantly higher among
vaccinated women compared to controls (58). A phase II study
reported that vaccination reduced the vaginal and rectal GBS
colonization in healthy non-pregnant women (59). Only a few
studies evaluated safety for the fetus and no severe events have
been reported in offspring. Women are vaccinated in their third
trimester and therefore toxicity for the fetus is considered to
be low (60). Unfortunately, this also means that vaccination
would mainly be effective to prevent invasive GBS infection in
late preterm and term neonates. Earlier vaccination, during the
second trimester, would be needed to protect preterm neonates,
although transplacental antibody transport is reduced before the
third trimester, resulting in lower anti body concentrations in
general following preterm birth (61). To our knowledge, there are
no phase III trials currently ongoing but maternal immunization
could be a potential additional strategy to further reduce the
burden of GBS infection (55, 62).

As E. coli infections are associated with substantial morbidity
and mortality among newborns it would be tempting to evaluate
whether maternal immunization, as discussed for GBS, could be
beneficial for E. coli infections as well. Till date, trials on E. coli
vaccination mainly focus on vaccination against Enterotoxigenic
E. coli (ETEC), which is associated with childhood and travelers’
bacterial diarrhea with a high mortality (63). A rodent study
examined the use of Outer membrane protein A (OmpA) based
vaccine for E. coli. Gu et al. were able to generate an artificial
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protein (OmpAVac) which was subsequently injected in adult
and neonatal mice. They report an increased specific antibody
response and better survival in immunized mice, including
neonatal mice (64). A first in human phase 1b randomized
clinical trial evaluated the safety and immunogenicity of a
bioconjugate vaccine containing the O-antigens of four E. coli
serotypes (ExPEC4V) in healthy, non-pregnant women with
recurrent urinary tract infections. Authors reported no vaccine
related adverse events and elevated antibody responses were
detected against all four serotypes compared to placebo (65).
These studies highlight the potential for further research on E.
coli vaccination against invasive infection, with special focus on
maternal immunization and neonatal protection.

TREATMENT INITIATION

Current Strategies
National guidelines, taking into account both maternal and
neonatal risk factors and the clinical condition of the patient,
have been developed to provide support for recognition and
optimization of diagnosis and treatment of neonatal infections,
especially for EOS (11, 21). Much less guidance is present for
suspected LOS; therapy is usually initiated when clinical signs
are present. Overall, guidelines for EOS on treatment initiation
show similarities: antimicrobial treatment is often initiated
based on the presence of risk factors or non-specific clinical
symptoms. With regard to treatment initiation, some guidelines,
such as the Swiss guideline, recommend clinical observation
with monitoring of vital signs every 4 h for a period of 48 h in
asymptomatic neonates with risk factors while other guidelines
recommend treatment initiation even in the presence of risk
factors only (21, 48, 66).

Due to low specificity of mentioned risk-factors as well
as clinical signs at onset of possible bacterial infection, a
quest for biomarkers to assist in the decision-making regarding
initiation of antibiotics has been ongoing for years. A long list
of hematologic parameters, interleukins, endothelial molecules,
and various other biomarkers have been or are currently being
evaluated for the early detection of neonatal sepsis (67, 68).
There is, in general, consensus that classic and well-researched
biomarkers such as the complete blood count and C-reactive
protein (CRP) are insufficient to guide the initial decision
on antibiotic initiation (69). For EOS, this is largely due to
physiological fluctuation of thrombocytes, leukocytes, and CRP
after birth (11, 67). For LOS, low specificity as well as a
delay of hours between infection and rise of biomarker levels
currently limits the usability of biomarkers at moment of
infection suspicion (67). Further research is needed to analyze
if biomarkers, especially those reflecting inflammation early in
the sepsis course, such as interleukin-6, may be used to inform
precise treatment decisions beyond the start of antibiotics, such
as start of adjuvant therapies, transferal to higher levels of care,
or inotropic support (70).

Several developments may allow transition to a more precise
risk assessment without the need for biomarker analysis as a
basis for the decision to start antibiotics or not. The neonatal
EOS Calculator (kp.org/eoscalc) has been developed based on

a dataset of over 600,000 term and late-preterm neonates. It
provides an individual quantitative risk estimate calculated from
five quantitative objective risk factors at birth (exact gestational
age, highest intrapartum maternal temperature, duration of
ruptured membranes, and maternal GBS colonization status),
and an assessment of the neonate based on objective clinical
parameters (71, 72). Although several characteristics of the EOS
Calculator affect the accuracy of the individual risk estimates
(73), it has proven markedly useful for risk stratification. Studies
have shown that its implementation is associated with a marked
reduction (relative risk reduction 44%) in neonates receiving
empiric antibiotics, without occurrence of adverse effects such as
increases in sepsis incidence or worse clinical outcome (74, 75).
Although the EOS Calculator does provide an individual risk
estimate, such risk stratification remains imperfect, meaning that
clinical vigilance remains mandatory even for low-risk neonates
(73, 76).

An approach completely depending on the clinical vigilance
is the use of serial clinical observations in term neonates. It
encompasses structured and repetitive examinations of selected
or all newborns by a skilled and trained nurse or physician,
for the first 24–48 h postpartum (77, 78). It deliberately restricts
antibiotic treatment initiation to clearly symptomatic neonates,
and can reduce the rate of antibiotic treated neonates for
suspected EOS to as low as 1.3% (compared to 2.9% pre-
implementation) (79). Protocols for serial clinical observations
differ greatly but require intensive individual medical assessment,
such as hourly physical examinations. This approach has, until
now, only been evaluated in a few, mostly well-staffed settings
(79, 80). As a result, safety data are still limited, and the approach
may not easily be implemented in settings unable to provide
repeatedly assessments by clinical professionals.

For neonates admitted beyond the 1st days of life, clinicians
may face similar clinical decision dilemmas if signs of a bacterial
infection become present but may be explained by other factors
or diagnoses. This may lead to both unnecessary treatment of
uninfected neonates, as well as delayed treatment initiation in
sick neonates.

Future Opportunities
The use of physiomics such as heart rate variability (HRV)
can possibly contribute to earlier infection recognition. The
autonomic nervous system plays an important role in the
maintenance of body homeostasis and regulates, among other
processes, the beat-to-beat variability of the heartbeat (81). HRV
in turn, is linked to other vital signs such as respiration and
blood pressure. Sepsis, especially the presence of endotoxins, can
induce autonomic dysfunction which leads to a decreased HRV,
which in turn has been associated with a higher disease severity
and mortality among septic patients (82, 83). Moreover, HRV is
commonly used to monitor fetal condition during labor using
cardiotocography and a decreasedHRV can be used as a predictor
for fetal distress such as intra-uterine infections (84, 85).

In preterm neonates, a decrease in HRV in combination with
the presence of transient decelerations has showed to be an early
predictor for sepsis and has consequently led to the development
of a heart rate characteristics (HRC) monitor. This monitor can
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be used to identify patients at risk for developing LOS in the
next 24 h, allowing timely initiation of antibiotic therapy (86).
A large randomized clinical trial showed a significant reduction
in mortality among (22% relative reduction from 10.2 to 8.1%)
preterm neonates in whom HRC scores were displayed to the
treating physician. Authors did however report an increase in
sepsis workups and days on antibiotics (87). A retrospective study
in which scores were available twice daily reported a limited
usability of the HRC score as many elevated scores were not
related to a LOS episode (poor specificity) (88). It is known that
non-infectious conditions such as medication (dexamethasone,
paralytics, and anesthetics), surgery, initiation of mechanical
ventilation, and bronchopulmonary dysplasia can also influence
the HRC score (86, 89, 90). Although the use of HRV does not
seem to be limited to preterm neonates, the HRC monitor has
not yet been validated in late preterm and term neonates, nor for
sepsis episodes that occur in the first 72 h of life (88, 91).

The Sepsis MetaScore (SMS) is diagnostic test aiming to
diagnose sepsis based on gene expression. The SMS has been
developed using a multicohort analysis and consists of an 11-
gene set that can discriminate non-infectious inflammation from
acute infection. It has been validated in several transcriptomic
cohorts of adults and pediatric patients (92). It has recently
been validated in three genome-wide expression based neonatal
cohorts and has a high diagnostic accuracy for the discrimination
of non-septic from septic neonates. Moreover, when combined
with “traditional” biomarkers (white blood count, CRP, and
neutrophil count) it improved the diagnostic accuracy of all
three biomarkers, mainly because it led to a rule-out of
sepsis (specificity) among low-risk patients. Moreover, and very
relevant for the late preterm and term population, the SMS
is capable of distinguishing neonates with suspected sepsis
from those with confirmed sepsis (AUC: 0.90). Although the
SMS needs to be further evaluated in prospective studies,
it underscores the potential for transcriptomics to guide
treatment (93).

Micro-ribonucleic acids (miRNAs) are involved in different
cell processes such as cell signaling and immune activity and
could therefore serve as potential biomarker for the diagnosis
of sepsis. Specifically, miRNA-23b has been associated with the
regulation of innate immunity and its expression is related to
inflammation. In adults with sepsis, lower levels of miRNA-23b
were associated with sepsis and mortality among septic patients.
Within the sepsis group, lower levels were seen among non-
survivors (94). This illustrates its usability for both diagnosis
and severity grading of sepsis. It has therefore been evaluated
in a small cohort of preterm and term neonates with EOS and
LOS (95). Reduced miRNA-23b expression compared to controls
was seen in both preterm and term neonates who died from
EOS. Among EOS survivors, miRNA-23b expression was higher
compared to controls, thus expression seems to correlate with
sepsis progression. In LOS cases, miRNA-23b expression was
lower in all septic neonates (both survivors and deaths) compared
to non-septic controls.

Proteomic studies led to the development of the ApoSAA
score, which combines serum amyloid A (SAA) and
Apolipoprotein (Apo)C2. A case control study among preterm

neonates showed that the ApoSAA score can differentiate
non-septic infants from LOS or necrotizing enterocolitis
cases (96).

Another proteomic study by Buhimschi et al. (97) revealed
haptoglobin and haptoglobin-related protein immunoreactivity
as a potential additional biomarker for EOS. In this study,
cord blood of presumed and proven EOS patients was
profiled, identifying significantly elevated levels in neonates with
EOS. Further research is needed to evaluate the usability of
miRNAs, the ApoSAA and haptoglobin as new biomarkers for
neonatal sepsis.

TREATMENT OPTIMIZATION

Antimicrobial stewardship programs have been developed
aiming to optimize clinical outcomes while reducing the negative
consequences of antimicrobial use (17). These contribute to
further tailoring of antibiotic therapy and have shown to be
beneficial in the reduction of unnecessary antibiotic use and
prevention of antimicrobial resistance (19). Principles of these
programs are appropriate selection, appropriate administration,
and timely de-escalation (20).

Current Strategies
The predominantly causative pathogens are the main
determinant for correct choice of antibiotic therapy. For
both EOS and LOS, it holds true that, at moment of infection
suspicion, the possible causative pathogen of the infection and
the antibiotic susceptibility test are not yet known. For EOS,
empiric therapy usually consists of a combination of a penicillin
with an aminoglycoside. For LOS a wider variety of combinations
is used (98). Importantly, the choice of the antibiotic regimen
highly depends on causative pathogens and antimicrobial
resistance rates which differ substantially throughout Europe
and worldwide (99). In the absence of strong evidence and in
part related to differences in product availability and preferences,
variability in daily practice between units, especially for LOS, is
extensive (98).

After identification of a pathogen, its susceptibility for
a specific antibiotic is defined by the minimal inhibitory
concentration (MIC) which is the lowest antibiotic concentration
needed to prevent further replication of the pathogen and
is thus of importance for the determination of the dosing
regimen (100). In order to facilitate precise antibiotic treatment,
several pharmacological components should be considered. Drug
dosing regimens have commonly been extrapolated from adult
studies and practices, thus the majority of drugs prescribed
to neonates are off label (101). However, neonates differ
substantially from older children or adults, thereby influencing
the pharmacokinetics (PK; what the body does to the drug)
and pharmacodynamics (PD; pharmacological response of the
body to the drug) of a drug. Simplistic extrapolation from adults
and children to neonates could lead to under- (compromising
efficacy) or overexposure (risking toxicity) (102). Consequently,
drug dosing regimens should ideally be based on integrated
knowledge concerning the disease to be treated, the physiological
characteristics of the neonate, and the PK/PD of a given drug.
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Pharmacokinetics/Pharmacodynamics of Antibiotics
Efficacy of antibiotics strongly depends on the mode of action of
the chosen class. This can be time-dependent killing (Time >

MIC; beta-lactam antibiotics), concentration-dependent killing
[maximum concentration (Cmax)/MIC; aminoglycosides] or
combined time- and concentration-dependent killing [area
under the curve (AUC)/MIC; vancomycin] (91). Besides these
targeted effects, antibiotic exposure also results in off target
effects like alterations in the gut microbiome. Intriguingly, these
alterations themselves can also alter enteral drug and first pass
metabolism (103).

PK compromises the process of absorption, distribution,
metabolism, and elimination and both maturational and non-
maturational covariates can impact a dosing regimen (get
the dose to target). The distribution of antibiotics is driven
by maturational differences in body composition (water %),
by presence of disease or by treatment modalities, like
extra-corporeal membrane oxygenation (104). Plasma protein
concentration and binding capacity may also be of relevance for
some protein bound antibiotics, like cefazolin or vancomycin.
This because the fraction of time during which the free,
unbound (%fT), antibiotic concentration is above a given MIC
(%fT > MIC) is the efficacy target (105, 106). Subsequent
elimination of antibiotics is almost exclusively by renal
elimination, and to a smaller degree through metabolism
or biliary elimination. The main factors involved in the
development of renal function are GA, postnatal age and
birth weight (107). This results in rather complex dosing
regimens within the neonatal population, as reflected in different
recent reviews on this topic (108, 109). Only for specific
antibiotics, drug metabolism by cytochrome P450 (CYP) or
glucuronidation) is involved in its clearance. Consequently, the
clearance of erythromycin (CYP3A), clindamycin (CYP3A), or
chloramphenicol (glucuronidation) clearance is driven by the
maturational activity of these enzymes, further affected by non-
maturational changes like genetic polymorphisms or disease
characteristics (e.g., inflammation affects CYP3A activity) (110).

Future Opportunities
Therapeutic Drug Monitoring and Model Informed

Precision Dosing
Therapeutic drug monitoring (TDM) is used to optimize
antibiotic dosing and is especially of interest in case of a
narrow therapeutic window. Moreover, it can be informative
for drugs that show a large interpatient variability, as serum
concentration predictions can be difficult. TDM has historically
been developed to prevent toxicity. However, nowadays it is also
used to guide therapy. It can be applied in drugs for which
a correlation is present between serum concentrations and the
pharmacological effect of the drug, thus the concentration in
the target tissue. Moreover, the pharmacological effect should
not be easily measurable through less invasive methods and a
quantification method should exist (111).

TDM is not commonly used for dosing of beta-lactam
antibiotics. They have a broad therapeutic window and are,
in general, perceived to be not very toxic. However, given the
increase in antimicrobial resistance and reported increase inMIC

of certain pathogens, and thus narrowing of the therapeutic
window in time, it could be beneficial to use TDM for other
antibiotics to confirm target attainment. Moreover, most of beta-
lactam antibiotics are renally cleared, and thus as previously
discussed, the concentration-time profiles can be influenced by
maturational and non-maturational covariates (107).

Finally, the most appropriate pharmacokinetic target remains
a point of discussion. In neonates, who are perceived as relatively
immunocompromised, a T > MIC of at least 40–50% of the
dosing interval is recommended (112). However, on the adult
ICU, targets for critically ill patients range from 100% T > MIC
up to 100% T > 4 × MIC so one could question whether 40–
50% is enough in neonates (113). It is important to notice that
the used concentration is the free unbound concentration, which
is the antimicrobial active part of the drug. This fraction varies
between neonates and adults and most centers measure total
concentrations, therefore a correction should be applied when
interpreting the concentrations (100, 113). The relevance of this
free fraction and protein binding has recently been explored for
the free vancomycin AUC target to consider in neonates (105).
The higher unbound vancomycin fraction in neonates can result
in a lower dosing regimen.

Model-informed precision dosing (MIPD) is an obvious
next step for TDM and has recently gained more attention
as it may serve as a powerful tool to help individualize
dosing. MIPD is a next generation dosing paradigm in
which mathematical models, in combination with individually
measured patient characteristics (e.g., drug concentration,
genotype, organ function) and disease characteristics (e.g.,
pathogen susceptibility), are used to calculate the optimal dose
(114). Bedside integration of combined data on exposure and
effect would allow a quick/real-time individualization of dosing
and target attainment (115). For neonates, this has yet been
evaluated for amikacin and vancomycin. A prospective study on
amikacin evaluated a model-based dosing regimen in neonates
reporting optimized concentrations in almost all neonates with
use of the model (116). A retrospective study on vancomycin also
reported improved target attainment in neonates when using a
model-based dosing approach (117).

Routes of Administration
Antibiotics are most commonly administered intravenously to
hospitalized newborns in the 1st weeks of life. It allows precise
and direct drug disposition into the circulation, but it requires
intravenous access. Moreover, dissolving all drugs and flushing
the lines in between administrations may contribute to a fluid
overload (118). Late preterm and term neonates, in general, are
not dependent on central access for feeds and fluid and receive
the venous access solely for the administration of antibiotic
therapy. As intravenous therapy is generally only provided in
hospital, this leads to prolonged hospitalization of an otherwise
relatively healthy newborn.

Intramuscular administration has been evaluated in several
large trials, especially in low- and middle-income countries, as
an alternative in case referral to a hospital is not possible and can
be an effective alternative when intravenous administration is not
possible (119). A study showed that, although parents recognize
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intramuscular administration to be more painful, they may still
prefer this modality as to their opinion, it allows better bonding
and breastfeeding compared to intravenous administration (120).

Oral administration of antibiotics is not commonly performed
in newborns in the 1st months of life because of uncertainties
on absorption, bio-availability and target exposure. However,
several small pharmacokinetic studies have evaluated the use of
oral antibiotics in neonatal infections and although absorption
is slower compared to that of older children and adults and
inter-individual variation is seen, target levels can be reached
following oral administration (121). With regard to efficacy,
several large trials have evaluated the use of an oral regimen
in low- and middle-income countries. No increase in mortality
or adverse outcome was reported. Unfortunately, results are not
applicable to a high-income setting as pathogen distribution and
the availability of diagnostics differs substantially (119, 121). A
randomized clinical trial evaluating the effectiveness and safety
of intravenous-to-oral antibiotic switch therapy in neonates with
a probable bacterial infection is currently ongoing and results are
expected by the end of 2021 (NCT03247920) (122).

Add-On Therapies and Immunomodulation
Antibiotic therapy solely targets the causing pathogen but
does not target the host’ immune system and the subsequent
inflammatory responses (123). Immunomodulation, targeting
specific cellular and molecular processes involved in the
development of neonatal sepsis, could be a very promising
add-on therapy. Unfortunately, many trials have failed to show
efficacy in neonatal sepsis (124, 125).

The transplacental transport of immunoglobulin G (IgG)
occurs for the greater part, in the third trimester (GA
> 32 weeks), thus very preterm neonates are considered
immunoglobulin deficient. Therefore, several clinical trials have
evaluated the use of iv immunoglobulins (IVIG), both for
prevention and treatment of infection in neonates. A recently
updated Cochrane Review evaluating the additional benefit of
IVIG in neonates (<28 days of age) with suspected or proven
bacterial infection reported no significant difference in mortality
between IVIG treated patients and placebo (126). When only
looking at studies in preterm neonates (GA < 37 weeks) at risk
for LOS, a small, but significant reduction in the incidence of
sepsis was reported (3%; number needed to treat: 33). However,
no significant reduction in mortality from infection, necrotizing
enterocolitis, bronchopulmonary dysplasia or intraventricular
hemorrhage was seen. With regard to safety, no major adverse
reactions following iv administration of IVIG were reported
(127). As a clear benefit of IVIG is lacking, it may be hypothesized
that pathogen-specific immunoglobulins could contribute to
sepsis management. However, a clinical trial evaluating the
use of anti-staphylococcal human immunoglobulins showed no
significant differences in S. aureus and CoNS sepsis rates, nor in
mortality rates, between treatment and placebo (128).

Pentoxifylline (PTX) could be a promising drug; it is a
vaso-active drug, originally developed for the treatment of
claudicatio intermittens in adults. It has anti-inflammatory
effects that influence cytokine production possible attenuating
the hyper inflammatory response associated with neonatal sepsis.

Moreover, it also influences the microcirculation, which is often
impaired in neonatal sepsis (129, 130). A large international
randomized placebo-controlled trial in currently ongoing in
which the survival of preterm neonates (GA < 29 weeks)
following additional treatment with PTX when LOS is suspected,
is evaluated (ACTRN12616000405415). Next, and very relevant
as PK studies on the use of PTX for neonatal sepsis are currently
lacking, a single center dose optimization study is currently
ongoing in which the optimal dose is studied (NCT04152980).

TREATMENT DURATION

Current Strategies
Treatment duration depends on several aspects and is ideally
based on the causative pathogen. However, in many cases,
cultures remain negative and therapy is continued because
laboratory or clinical signs of infection remain present. In that
case, guidelines recommend continuation of antibiotic therapy
for 5–7 days (49). For proven bacterial infections, there appears
to be little evidence for current treatment durations. For now,
the questionable “magic numbers” for treatment duration are 7,
10, 14, and 21 days, depending on the cultured microorganisms.
A trial for radiologically proven neonatal pneumonia (without
bacteremia) did not indicate a difference in treatment success
between a 4 and 7-day treatment (131). For uncomplicated GBS
infections, intravenous treatment for 10 days is recommended.
A retrospective analysis showed however that, in some cases, a
shorter course (≤8 days) is prescribed. Patients receiving a short
IV course were older compared to patients receiving prolonged
IV therapy. Recurrence rates were not higher in the short IV
therapy group (132). A systematic review on the evidence of short
vs. long duration of antibiotic treatment for neonatal bacterial
infections is currently underway (133).

Future Opportunities
In contrast to tools providing individual risk assessments to
guide the initiation of antibiotics, only a few tools allow
truly individualized decision making with regard to treatment
duration in neonatal infections. These decisions therefore mostly
rely on clinical judgment, but data from recent studies provide
opportunities for improving tailored decision making. As blood
cultures remain the best proxy for a definitive diagnosis (134),
average time-to-positivity can be an important variable when
considering (dis)continuation of treatment. Recent data show
this time-to-positivity is <36 h for at least 94% of positive blood
cultures obtained for suspected EOS, and <24 h for at least 68%
of those (135, 136). Depending on a priori risk, clinical course,
and infection parameters, this may facilitate discontinuation of
antibiotics at these time points. Molecular techniques using DNA
amplification are promising as they can detect bacterial, viral, and
fungal material and have a shorter turnaround time of on average
6 h in comparison to culture-based methods. Unfortunately,
at this moment, these techniques can only be used as add-
on diagnostics as contaminant detection and negative results
in culture positive infections have been reported. Moreover,
pathogen susceptibility testing, crucial for targeted therapy, is not
possible using these techniques (134).
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Automatic stop orders enforce proactive decisions on
continuation, which may induce more personalized decision-
making, and can be highly effective in reducing unnecessary
continuation of antibiotic treatment (137, 138). Such
personalized decisions may be further improved if guided
by combining risk stratification and age-dependent reference
values for biomarkers such as procalcitonin (PCT) and or CRP
(139–141). Serial low CRP values, normal PCT values, or the
combination of CRP and PCT can support discontinuation of
antibiotics (142). The use of PCT as guidance for antibiotic
treatment in late preterm and term neonates has been evaluated
in a large clinical trial (NeoPInS study) (143). The study showed
that PCT-guided decision making can reduce the duration of
antibiotic therapy (55 h intervention group vs. 65 h control
group) in neonates treated for suspected EOS (139). The
algorithm has recently made available as a mobile application
(NeoPInS app; Apple app store/Android) and can be used in
daily clinic as support tool in late preterm and term neonates
with suspected EOS.

A RESEARCH AGENDA TOWARD
PRECISION MEDICINE

Millions of late-preterm and term neonates are born each year
and are potentially at risk for bacterial infections. A “one size
fits all approach” is inappropriate for this population, which is
susceptible to consequences of both under- and overtreatment.
The relatively low incidence of sepsis in this group is a key
research challenge and calls for concerted and widespread
collaborations. Aiming for a future in which precision medicine
mitigates the risks of these consequences using a tailored
approach, we propose the following research agenda. Specific
research opportunities for this agenda are listed in Table 1.

Step 1: Reaching Consensus Definitions
As mentioned before, a consensus definition of neonatal sepsis
is critically lacking. The lack of agreement on the definition of
what consists a “sepsis case” not only hampers clinical diagnosis,
but also hinders research aiming to provide tailored approaches.
The myriad of terms such as “culture-negative sepsis,” “probable
sepsis,” or “clinical sepsis” makes comparing studies and their
outcomes difficult, renders implement research findings into
clinical workflow challenging, and sustains discussions that
prevent research progress. Efforts that provide objective and
measurable criteria to define a case of neonatal sepsis and/or
define the need for (sustained) antibiotic treatment constitute a
first step in progressing precision medicine, because such criteria
will be highly beneficial to the development and implementation
and evaluation of precision medicine tools as described in
this paper.

Step 2: Implementing Current
Opportunities
In spite of the limitations of hitherto used proxy definitions,
an array of current opportunities to tailor medicine for
neonatal bacterial infections are readily available for clinical

implementation today. For example, the EOS calculator is
endorsed by academic societies and widely being implemented
(22, 144). Likewise, automatic stopping orders are facilitated
by most of today’s electronic health care information systems.
Interdisciplinary efforts are envisioned to make MIPD widely
available in clinical practice (145). Despite their imperfections,
careful implementation of currently available tools presents a
large first step toward precision medicine and can directly
impacts today’s patients.

Step 3: Addressing the Understudied
Population
Relatively few clinical trials involving precision medicine have
focused on late preterm or term neonates. Consequently, several
of the tools developed for preterm neonates have not yet been
evaluated in term neonates. Although preterm neonates are
more at risk for severe disease and bad outcomes, the absolute
numbers of late preterm and term neonates render these an
understudied group for precision medicine, with large potential
for reductions of antibiotic use, hospitalization rates, economic
costs and improvements of quality of life. Validation and
development of precision medicine tools should therefore regain
priority, recognizing key differences from preterm neonates.
Examples of these include differences in pathogen distribution,
maturation-specific pharmacokinetics (volume of distribution,
renal excretion), and specific immune responses (such as mild
disease course of CoNS infections).

Step 4: Leveraging New Research Fields
Omics
The use of multi-omics is an exciting development in the field
of neonatal bacterial infections. It has the potential to reveal a
patients’ unique disease signatures in response to a pathogen,
allowing tailored therapy and disease management. However,
additional clinical studies on the development and integration of
these -omics derived biomarkers into daily clinic are required.

Computational Power
Medical data analysis and decision-making can be done
by humans without technology, by humans assisted by
technology, or completely machine-guided. Today, this decision-
making spectrum contains a myriad of possibilities including
straightforward decision aiding tools based on traditional
statistics, up to and beyond complex variations of machine
learning and artificial intelligence (146). Improvements in
computational power of recent decades allow for analysis of
massive amounts of data, and leveraging this power is projected
to fundamentally alter medical practice (147). Machine learning
models to improve precision in neonatal sepsis management
are being developed, but it will take adaptation of the
medical electronic infrastructure, evaluation cycles, and scientific
research to allow the promises of true clinical impact to become
reality (147–149).
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TABLE 1 | Current and future opportunities for precision medicine in neonatal bacterial infection management, with potential improvements, challenges, and specific

research agenda items.

Area of opportunity Potential improvement Main challenges Research agenda

Prevention

Intrapartum

antibiotics

Reduced incidence of neonatal

sepsis

Appropriate and timely indication RT-PCR implementation

Vaccination Reduced incidence of neonatal

sepsis

Achieving effective antibody

levels

Phase II/III trials

Treatment initiation

EOS calculator Reduced overtreatment Local implementation and

evaluation

Cluster-randomized trials;

integration in electronic

healthcare systems

Serial physical

examination

Reduced overtreatment; early

sepsis identification

Few large studies;

labor-intensive; lack of uniform

practice

Development and testing of

unified approach in large

studies

Heart rate variability Early sepsis identification;

reduced mortality/morbidity

Very few validation studies; not

validated for late preterm/term

neonates

Validation studies, particularly

for late preterm/term neonates

“Omics” Improved diagnostics Lack of validation; integration of

systems biology into clinic

Validation studies of promising

omics data; development of

point-of-care biomarkers

derived from omics data;

studies focused on clinical

decision-making

Computational power

(machine learning)

Better identification of neonatal

sepsis

Data collection and processing;

validating models

Improving digital

infrastructure; validation and

implementation studies

Treatment optimization

Oral administration Less invasive treatment Few data regarding

safety/efficacy

Randomized trials for oral vs.

intravenous treatment

IM administration Availability in low-resource

settings or in absence of

intravenous access

Reducing pain;

pharmacokinetic/pharmacodynamic

uncertainties

Randomized trials for IM vs.

intravenous treatment

Immunomodulation Improved treatment efficacy:

less mortality/morbidity

Limited knowledge on

mechanism and efficacy

Randomized clinical trials

Therapeutic drug

monitoring/model-

informed precision

dosing

Optimal pharmacological effect

for individual

Lack of reliable/validated models Model development and

prospective validation

MIC guidance Effective treatment Lack of PK/PD data for neonates PK/PD studies for (preterm)

neonates

Treatment duration

Automatic stop

orders

Reducing overtreatment Changing clinical paradigm Quality improvement initiatives

Biomarker algorithms Reducing overtreatment; better

identification of sepsis

Limited or variable reference

limits for biomarkers; limited

sensitivity

Studies combining clinical

parameters and multiple

biomarkers; machine learning

approaches

Blood cultures Reducing overtreatment Obtaining adequate volume;

real-time blood culture reporting

Studies reporting

time-to-positivity, Studies

researching blood volume

sensitivity; studies evaluating

additional detection

techniques

General

Neonatal sepsis

definition

Reliable and clinically relevant

diagnosis

Defining criteria for organ

dysfunction; defining long-term

outcomes

Systematic reviews on organ

dysfunction

Researching

understudied

populations

Improvements for relatively

large population

Low sepsis incidence Large cohort studies in late

preterm and term populations
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CONCLUSIONS

The global burden of suspected neonatal infections remains
high in both preterm and term neonates. This results in a high
antibiotic exposure in the first weeks of life. The heterogeneity
of disease, together with increasing evidence with regard to
the negative effects of antimicrobials and emerging resistance
rates, ask for a holistic disease approach and improved treatment
strategies. Precision medicine is a promising development
involving improved stratification of neonates at every stage of
management, thereby facilitating precise balancing of under-
and overtreatment.

Key challenges in finding that balance consist of selective
but timely administration of antibiotics to those who need
treatment, and discontinuation or de-escalation of antibiotic
therapy when possible. Fortunately, continuous effort on the
development of prediction tools has shown to be beneficial and
led to a reduction of antibiotic prescriptions. Further research
on potential biomarkers, using omics, could lead to a combined
risk stratification tool. Moreover, in case of a true infection, those
tools would give insight in the patient specific immune signatures
triggered by the interaction of the host and the causative
pathogen and possibly even predict disease severity, thereby
allowing early, targeted initiation of supplemental therapy next
to antibiotics.

In addition, therapy should be safe and effective and
one should be well aware of the negative side-effects of
treatment such as microbiome perturbations. As the host-
pathogen interaction (“disease signatures”) is unique, treatment
should be guided using biomarkers and TDM instead of
being standardized for all patients. Add-on therapies such
as immune modulation should be considered based on these
disease signatures and should be administered timely and only
when indicated.

To achieve these objectives in a field with scattered but
promising developments, there is a need for focused and
concerted research efforts. For this, we propose a research
agenda (Table 1) with distinct implementation and development
opportunities toward a reality of precision medicine in neonatal
bacterial infections. This agenda is certainly not exhaustive, but
may serve as guidance in upcoming research efforts and can be
adapted with complementary and promising developments.

In conclusion, the field of precision medicine is an
exciting development offering many opportunities for better
management of neonatal bacterial infections. Some tools,
especially decision-making tools and algorithms are readily
available for implementation, whereas other tools such as
therapeutic drug monitoring and the use of omics still require
further development or validation. Research may focus on
the late preterm and term population and how they respond
to infection early in life as this group remains relatively
understudied. Finally, in the near future, advances in data science
and analysis are likely accelerate developments in precision
medicine for neonatal bacterial infections.
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