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A major consequence of the world industrialized lifestyle is the increasing period of

unnatural light in environments during the day and artificial lighting at night. This major

change disrupts endogenous homeostasis with external circadian cues, which has

been associated to higher risk of diseases affecting human health, mainly cancer

among others. Circadian disruption promotes tumor development and accelerate its

fast progression. The dysregulation mechanisms of circadian genes is greatly affected

by the genetic variability of these genes. To date, several core circadian genes, also

called circadian clock genes, have been identified, comprising the following: ARNTL,

CLOCK, CRY1, CRY2, CSNK1E, NPAS2, NR1D1, NR1D2, PER1, PER2, PER3, RORA,

and TIMELESS. The polymorphic variants of these circadian genes might contribute

to an individual’s risk to cancer. In this short review, we focused on clock circadian

clock-related genes, major contributors of the susceptibility to endocrine-dependent

cancers through affecting circadian clock, most likely affecting hormonal regulation.

We examined polymorphisms affecting breast, prostate and ovarian carcinogenesis,

in addition to pancreatic and thyroid cancer. Further study of the genetic composition

in circadian clock-controlled tumors will be of great importance by establishing the

foundation to discover novel genetic biomarkers for cancer prevention, prognosis and

target therapies.

Keywords: polymorphism, circadian clock genes, endocrine cancer, breast cancer, ovarian cancer, prostate

cancer, pancreatic cancer, thyroid cancer

INTRODUCTION

Circadian clocks have been defined as endogenous oscillators that synchronize daily both
physiological and behavioral rhythms with local time cues (1, 2). In mammals, this evolutionary
adaptation provides a survival advantage to anticipate environmental changes and allowing them to
modify their daily rhythms in the most efficient way to meet these environmental changes (1, 3, 4).

Consequences of modern lifestyle as sleep deprivation, shift work time schedule, altered
mealtime or excessive artificial light exposure at night promote metabolic imbalances that can alter
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the circadian system. Interestingly, dysfunction of the molecular
clock is linked to uncontrolled cell proliferation in human cancer
(5–7). Changes in circadian clock increase risk of different
cancers in endocrine tissues which require daily proliferation to
carry out their activity. Thus, a considerable part of endocrine
signals are clock-controlled (8). The dysregulation mechanisms
of the circadian clock genes is greatly affected by polymorphic
variants of circadian clock-related genes, which can raise human
cancer risk through different physiological systems (9).

This mini-review focused on the role of single polymorphisms
of circadian clock genes that similarly to environmental factors
might increase the risk of developing human endocrine cancers.

CIRCADIAN CLOCK MECHANISM, CLOCK
GENES, AND CANCER

The circadian clock regulates both physiology and behavior
according to the daily cycle of light and dark. In mammals,
it is hierarchically organized and integrates the master clock,
which is located in the suprachiasmatic nucleus (SCN) within
the hypothalamus, and the peripheral clocks as well, ubiquitously
found virtually in all peripheral tissues and cells (10). SCN clock is
constantly coupled to environmental cues, mainly photoperiod,
through the photic signals from the retina (11), daily rhythms
in temperature, diet and social phenomena through a complex
downstream neurohumoral pathways. Oscillators located in
brain nuclei and peripheral tissues are also connected by SCN
clock (12).

Circadian rhythms are controlled by circadian pathway
genes. The molecular circadian clock is originated by a
transcriptional/translational loop of circadian clock genes with
autoregulatory feedback. The primary loop involves the genes
CLOCK, BMAL1 (also known asARNTL1), PER1–3, and CRY1-2.
During the day, the complex integrated by CLOCK and BMAL1
stimulates the expression of negative regulators period genes
(PER1–3) and cryptochrome genes (CRY1-2). Heterodimers
constituted by PER and CRY operate as co-repressors, binding
to the CLOCK-BMAL1 complex and inhibiting CRY and PER
gene transcription induced by CLOCK-BMAL1. Furthermore,
in the dark phase, CRY and PER expression decrease to the
CRY-PER repressor complex. This leads to a new cycle of the
transcription activation of the CLOCK-BMAL1 complex, which
completes the basic auto regulatory loop (8, 13). Otherwise,
different modulators display fine tuning of output signals in
molecular clock.

Currently, several core circadian genes, also known as
circadian clock genes, have been identified in humans (13):
ARNTL (aryl hydrocarbon receptor nuclear translocator like,
also identify in brain and muscle as Arnt-like protein-1,
BMAL1) (14, 15), CLOCK (clock circadian regulator) (16), CRY1
(cryptochrome circadian clock 1),CRY2 (cryptochrome circadian
clock 2) (17), PER1 (period circadian clock 1), PER2 (period
circadian clock 2), PER3 (period circadian clock 3) (18–20),
CSNK1E (casein kinase I epsilon) (6, 21), NPAS2 (neuronal PAS
domain protein 2) (22, 23), NR1D1 (nuclear receptor subfamily
1 group D member 1 also called Rev-Erb alpha) (24, 25), NR1D2

(nuclear receptor subfamily 1 group D member 2 also referred to
Rev-Erb beta) (26), RORA (RAR related orphan receptor A) (27)
and TIMELESS (timeless circadian clock) (28, 29).

In addition, there is a large amount of circadian genes from
other clock-related pathways.

Ground-breaking works in the field of molecular cancer
epidemiology have unveiled a large quantity of polymorphisms
affecting the clock genes (Table 1). Studies on the relationship
between clock genes polymorphisms and cancer susceptibility
have established that variants of ARNTL, CLOCK, CK1ε, CRY1-
2, NPAS2, and PER1-3 are frequently associated to human
reproductive tissues and pancreatic cancers (1).

BREAST CANCER

Epidemiological studies have concluded an association between
shift work and breast cancer risk (42–44). However, currently
available experimental/epidemiological data are characterized by
a great heterogeneity and some findings are in disagreement with
previous observations about relationship between shift work and
breast cancer risk (45).

A recent study in breast cancer showed that circadian
genes CRY2 and PER1-3 were down-regulated, while CLOCK
and TIMELESS were over-expressed (46). This study confirms
previous results where PER1, PER2, and PER3 exhibited changes
associated with the tumor suppressor activity (47, 48). In breast
epithelial cells, an altered estrogen receptor signaling has been
related to breast cancer and two circadian clock genes, PER2 and
ARNTL, both required for breast epithelial acinar morphogenesis
in vitro (49).

Therefore, polymorphism studies in circadian clock-
related genes and breast cancer, most of them have focused
on the evaluation of the polymorphisms in core circadian
genes, melatonin biosynthesis and signaling pathways. In this
line, polymorphisms affecting CLOCK (rs3805151), CRY1
(rs1056560), CRY2 (rs1401417), and PER2 (rs934945) (33) have
been associated to breast cancer risk in a Chinese population.
Concerning CLOCK gene, it was found that carrier subjects CT
and CT+TT genotypes exhibited an increased risk of breast
cancer in comparison to CC carriers. However, the GT genotype
of the CRY1 gene was the genetic variant with the lower risk
of suffering cancer, as well as for those subjects carrying CC
genotype of the CRY2 gene having an even lower risk. Finally,
simultaneous presence of CLOCK CC and PER2 AA genotypes
resulted in a higher risk of developing breast cancer (33).

An alternative study supporting the involvement of the
CLOCK gene in the development of breast cancer came from
a Bonn (Germany) population of shift workers. This case-
control study analyzed the associations between breast cancer
and polymorphisms in circadian clock genes (ARTNL, CLOCK,
CRY2, NPAS, and PER2) and in genes of the melatonin pathway
as well (AANAT andMTNR1B). In these workers with the rs8150
polymorphism from AANAT gene, as well as for the rs10462028
polymorphism from the CLOCK gene, was observed an increased
frequency of breast cancer, while a lower risk was observed
for the rs3816358 from ARNTL gene (30). Interaction analysis
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TABLE 1 | Genetic association between circadian clock polymorphisms and different endocrine-related cancers.

Circadian gene dbSNP ID Cancer types Phenotype References

ARNTL rs3816358 Breast Reduced risk (30)

rs7950226 Prostate Increased risk (31)

rs142435152 Risk associated (4)

rs10732458 Ovarian Increased risk (32)

rs117104877 Decreased risk

CLOCK rs11133373 Prostate Decreased risk (31)

rs3805151 Breast Increased risk (33)

rs10462028 Increased risk (30)

CRY1 rs12315175 Prostate Increased risk (34)

rs7297614 and rs1921126 Fatal disease (35)

rs10778534 Increased risk (36)

rs1056560 Breast Heterozygous variant genotype decreased risk (33)

CRY2 rs1401417 Breast Decreased risk (33)

rs1401417 Prostate Increased risk (37)

rs2292912 Decreased risk (31)

CSNK1E rs135750 Ovarian Increased risk (32)

rs1534891 Prostate Increased risk (31)

NPAS2 rs2305160 Prostate Decreased risk (lower insulin resistance) (37)

rs895521 and rs1369481 Decreased risk (31)

rs17024926 Increased risk

rs23051560 Breast increased risk (38)

PER1 rs885747 Heterozygous variant genotype decreased risk (31)

rs2289591 Heterozygous variant genotype increased risk

PER2 rs7602358 Prostate Increased risk (31)

rs934945 Breast Increased risk together with CLOCK homozygous variant genotype (33)

PER3 rs1012477 Prostate Increased risk (31)

rs228697 Decreased risk (36)

RORA rs17191414 Prostate and breast Risk associated (4)

rs1482057 and rs12914272 Breast Risk associated (39)

rs12913421 Pancreatic Decreased risk (40)

TIMELESS rs2291738 Breast Decreased risk (41)

rs7302060 Breast Decreased risk

was performed in two-ways, detecting interactions between shift
work and CLOCK gene. Therefore, interactions were found for
shift work andMTNR1B, ARNTL, and NPAS2 genes (50).

Additionally, a combined analysis of three genome wide
associations studies (GWAS) was performed, including a total
285,984 SNPs (Single Nucleotid Polymorphisms) in an European
population of 2.702 women with invasive breast cancer, in
comparison to 5,726 subject controls. The most important
association to breast cancer was found for genes implicated
in the circadian clock (51). Monsees et al. conducted a study
on 1,825 women finding common variants across 15 circadian
system genes that were tested for association with breast cancer
risk. The interaction study was designed in a subset of 1,318
women, showing interactions between genotype and rotating
shift-work. NPAS2 gene was strongly associated to the risk of
developing breast cancer, and the rs23051560 variant was related
with potential effects. The estimated risk value for the minor
allele (A) was lower among women with <2 years of shift-work
compared to women with more than 2 years of shift-work (38).

In Europe, among a French population analyzed, 577 SNPs
were found in 23 circadian clock genes associated with breast
cancer risk in more than 1,000 cases and control subjects. RORA
SNPs rs1482057 and rs12914272148 were also associated with
breast cancer (39). Furthermore, a significant association has
been shown between two SNPs in the TIMELESS gene (rs2291738
and rs7302060) (33, 41). In this study, C allele and CC genotype
from rs7302060 polymorphism were associated with lower breast
cancer risk. In rs2291738 polymorphism, GG genotype was
related to decreased breast cancer risk.

On the other hand, limitations of the selected studies include
the stratification of the populations according to different
conditions among the different studies, such as shift work
duration, menopausal status and expression levels of hormonal
receptor in tumor tissues. Moreover, the polymorphism
associations to breast cancer risk remain controversial,
since some of these results were not able to be replicated in
other populations or significance of associations is lost after
adjusting for confounding factors. Furthermore, the described
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investigations included other limitations which will be further
discussed in more detail.

PROSTATE CANCER

Prostate cancer exhibits the highest cancer prevalence in
men, being the second cause of cancer-related deaths (52).
Normal prostate cancer development is dependent on androgens
levels. Circadian clock genes regulate androgen production
(53), affecting prostate cancer evolution (54). On the other
hand, a balanced regulation of the circadian clock genes might
modulate and even suppress tumor growth by controlling
DNA replication, repair mechanisms and cell proliferation (55).
Although a limited number of epidemiologic studies have been
realized, several circadian genes have been implicated in prostate
cancer regulation: ARNTL, CLOCK, CRY1-2, CSNK1e,MTNR1A
and MTNR1B, NPAS2, NR1D1, PER1-3, RORA, RORB, and
TIMELESS (4, 31, 56, 57).

One of the first epidemiologic studies performed on prostate
cancer and their associated SNPs, Chu et al. identified five
polymorphisms in five circadian genes. This case-control study
was conducted in a Chinese population with 187 cases and 242
control subjects (37). These polymorphisms encompassed CRY2
rs1401417, CSNK1E rs1005473, NPAS2 rs2305160, and PER1
rs2585405. The C allele fromCRY2 presented an elevated prostate
cancer risk compared to GG genotype carriers. Higher risk was
found in men whom also sustained elevated insulin resistance
(IR) compared to these with the GG genotype and lower IR.
Moreover, the A allele fromNPAS2 polymorphismwas associated
with a reduced risk of developing prostate cancer in men with
reduced IR when compared to the GG genotype carriers.

Zhu and colleagues also investigated the link between
circadian gene with prostate tumors. The case-control study
in a Caucasian men population included 1,308 cases and
1,266 control subjects. In this study was genotyped 41 variants
in ten genes related with circadian clock (31). At least one
polymorphism in nine clock circadian genes was significantly
associated with prostate cancer risk. Specifically, it was found
the variants rs7950226 in ARNTL, rs11133373 in CLOCK,
rs12315175 in CRY1, rs2292912 in CRY2, rs1534891 in CSNK1E,
rs1369481, rs895521, and rs17024926 in NPAS2, rs885747
and rs2289591 in PER1, rs7602358 in PER2 and rs1012477
in PER3. They observed that the estimate risk for variants
rs885747 and rs2289591 in PER1, rs1012477 in PER3, and
rs11133373 in CLOCK significantly changed depending on
disease aggressiveness.

Lin et al. carried out studies in prostate cancer using
two populations, from Seattle and Sweden, respectively) (36).
They genotyped 937 polymorphisms corresponding to 156
genes in 1,309 men with prostate cancer in a Seattle cohort.
They identified 22 variants associated to prostate cancer-
specific mortality (PCSM), and validated them afterward in a
Swedish cohort (2,875 patients. In the Swedish cohort, five
polymorphisms out of the 22 SNPs identified in the Seattle
cohort, were found to be significantly associated with PCSM, with
a statistical significance variant in the CRY1 gene (rs10778534).

The study also identified another variant in the Seattle cohort,
rs228697 in PER3, associated with PCSM, which was not further
tested in the Swedish cohort due to genotyping drawbacks.

Another study evaluating the association between mortality
in prostate cancer and circadian clock-related genes was carried
out by Markt et al. (35). Authors tested 96 variants in 12
circadian-related genes using 3 patient cohorts (24, 40, and 105
cases/respectively). It was also analyzed the association with
lower levels of melatonin (measured by 6-sulfatoxymelatonin).
This study showed no variants significantly associated with
overall risk of prostate cancer, however in all cohorts was
observed that variation in the CRY1 gene was associated with
mortality in prostate cancer This study of individual cohorts
revealed that two polymorphisms from CRY1, rs7297614, and
rs1921126 were associated to increased mortality in 2 out 3
prostate cancer cohorts, and a similar association was proved for
rs12315175 in the CRY1 gene in a single cohort. Finally, their
analysis of the 6-sulfatoxymelatonin levels showed that patients
with metabolite levels lower than the median had an increased
risk of advanced disease, where polymorphisms in CSNK1E,
NPAS2, PER3, and TIMELESSwere associated to changes in these
6-sulfatoxymelatonin production. Future investigations should
be designed including a large population compared to the one
used in this study, and similar clinicopathological factors as well
to ensure statistical power and allow for results comparisons.

Recently, Mocellin et al. performed an analysis using adaptive
rank truncated product (ARTP)-based gene and pathway analysis
to discern the relevance of the variation in circadian clock genes
and cancer susceptibility (4). In this analysis using previously
published dataset of prostate cancer (58), they found a highly
significant association between genetic variation of circadian
pathway and susceptibility to prostate cancer. This result was
founded on data regarding 17 SNPs located in seven genes, with
the most significant SNP rs142435152 from ARNTL gene. Their
analysis of subgroups revealed that the risk of suffering aggressive
prostate cancer was also highly associated with circadian pathway
variation. This finding was based on 28 SNPs located in seven
genes, where the most significant gene was RORA with the
rs17191414 SNP.

OVARIAN CANCER

Ovaries express circadian genes at high levels to regulate
hormonal levels during reproductive cycles, and the disruption
of this expression is associated to different risk factors for ovarian
cancer (e.g., endometriosis).

An association between nightshift work and elevated risk of
invasive and borderline ovarian cancers have been described in
women aged over 50 years (59). A GWAS and a replication
study for epithelial ovarian cancer (EOC) analyzed variants
of several circadian genes (ARNTL, CRY2, CSNK1E, NPAS2,
PER3, REV1, and TIMELESS) and two transcription factors
(KLF10 and SENP3) (32). The study examined 3,761 EOC
patients and 2,722 control subjects. A replication stage was
evaluated with ∼44,000 subjects with European ancestry. This
study indicates that circadian clock genes could act in the
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development of EOC, particularly ARNTL rs10732458, CSNK1E
rs135750, SENP3 (rs6608), and REV1 rs3792152 variants. SNPs
in KLF10 (rs2513928, rs2511703, rs3191333, and rs2513927) were
also associated with serious risk of EOC. Interestingly, the most
significant association was the rs117104877 variant in ARNTL.
Ablation of ARNTL in mice causes ovary tumors via reduction
of p53 expression (60) and dysregulation response to anti-cancer
drugs (61). In addition, lowerARNTL andCRY1 expression levels
in EOC cells were found after comparison to normal ovarian
tissue (62).

Nevertheless, an alternative study has evaluated
polymorphism association in nine circadian clock-related
genes (ARNTL, CKIE, CLOCK, CRY1-2, CSNKIE, NPAS2, and
PER1-3), but however, it did fail finding any association between
genes of the circadian rhythm pathway and ovarian cancer (63).

PANCREATIC AND THYROID CANCER

Pancreatic cancer is a major cause of cancer mortality in western
countries population. Several studies have shown disruption
of circadian genes expression associated to pancreatic cancer
(64–68). However, only one study was able to show an
association between circadian genes and pancreatic cancer. It
found association between the SNP rs12913421 in RORA gene
and pancreatic cancer, but the significance disappeared after
correcting formultiple comparisons (40). Nevertheless, this study
was not specifically designed to evaluate association between
polymorphisms in genes of the circadian rhythm pathway and
pancreatic cancer. Additional studies of polymorphisms in the
circadian pathway are urgently needed, with systematical studies
of fine mapping and sufficient sample size.

On the other hand, the disruption of circadian clock genes has
been associated to a higher risk of thyroid tumors (69, 70).

Despite this result, no studies have examined the association
between polymorphism in circadian genes and thyroid cancer.

DISCUSSION AND FUTURE
PERSPECTIVES

A better understanding of molecular mechanisms in endocrine-
related cancers may facilitate early diagnosis, prognosis and
therapies development. Therefore, studies should be improved
in several aspects. The reviewed studies about the association
of circadian gene polymorphisms to cancer risk have been only
conducted in European an East Asian population. Additional
studies should be implemented in other ethnic groups to validate
epidemiological data.

On the other hand, selection of genetic polymorphisms and
experimental and statistical analysis approaches were different
among cancer studies and thus, they were not comparable in
most cases. These differences might consequently influence the
associations found between germline variants and cancer risk.

In future studies, functional implications of the circadian
pathway polymorphisms associated to endocrine cancer should
be also evaluated. Polymorphisms localized in the 3′UTR could
regulate gene transcription. However, the majority of the studied

polymorphisms are located in intron regions, thus it is unknown
how polymorphisms modulate their functions resulting in a
higher or lower cancer risk.

Our review reports that the polymorphisms of some circadian
genes are related to cancers of reproductive tissues, where some
genes are associated and implicated in three types of tumors
(ARNTL gene in prostate, breast and ovary), two types of tumors
(CLOCK, CRY1, CRY2, NPAS2, and PER2 genes in breast and
prostate and CSNK1E gene in prostate and ovary) or alternatively
they are more specific to one type of cancer (PER1 and PER3
genes in prostate and TIMELESS gene in breast). Other circadian
genes are associated and implicated by several endocrine-related
cancers (RORA gen in prostate, breast and pancreas).

The current findings suggest that some genesmust be involved
in the predisposition to cancer development of reproductive
tissues, other genes must be specific to a type of cancer,
and other genes should affect tissues modulated by endocrine
hormones. The effect of these genes is probably showed up at
the hormone pathways level, as in the CLOCK gene. The activity
of the CLOCK gen product regulates estrogenic and androgenic
hormonal pathways (71, 72). This could be related to the fact that
polymorphisms of this gene alter the regulation of these pathways
and produce an uncontrolled proliferation of prostate, breast and
ovarian tissue cells.

We reckon that a screening of polymorphisms related with
the circadian clock could provide valuable information regarding
predisposition of suffering a particular type of cancer, thus
facilitating its prognosis. When cancer is already present,
malignancy intervention strategies could be immediately applied
due to earlier detection.

CONCLUDING REMARKS

Compelling evidence supports the notion that loss of circadian
homeostasis promotes endocrine cancer development. Genetic
component is a key factor that contributes to dysregulation of
the circadian clock. Polymorphisms of circadian clock genes
are associated to the risk of suffering an endocrine cancer and
poor performance to of therapies with anticancer treatments,
particularly, these related to reproductive tissues. The findings
detailed in this review indicate an exciting research line in order
to investigate clock-controlled tumor suppression, also in other
organs regulated by circadian rhythms that need high levels
of cell proliferation to support their functions, such as thyroid
or pancreas.
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