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An evolutionary computational theory
of prefrontal executive function in
decision-making

Etienne Koechlin

Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie,
Ecole Normale Supérieure, 29 rue d’Ulm, 75005 Paris, France

The prefrontal cortex subserves executive control and decision-making, that is,

the coordination and selection of thoughts and actions in the service of adaptive

behaviour. We present here a computational theory describing the evolution

of the prefrontal cortex from rodents to humans as gradually adding new infer-

ential Bayesian capabilities for dealing with a computationally intractable

decision problem: exploring and learning new behavioural strategies versus

exploiting and adjusting previously learned ones through reinforcement learn-

ing (RL). We provide a principled account identifying three inferential

steps optimizing this arbitration through the emergence of (i) factual reactive

inferences in paralimbic prefrontal regions in rodents; (ii) factual proactive

inferences in lateral prefrontal regions in primates and (iii) counterfactual reac-

tive and proactive inferences in human frontopolar regions. The theory clarifies

the integration of model-free and model-based RL through the notion of strat-

egy creation. The theory also shows that counterfactual inferences in humans

yield to the notion of hypothesis testing, a critical reasoning ability for approxi-

mating optimal adaptive processes and presumably endowing humans with a

qualitative evolutionary advantage in adaptive behaviour.
1. Introduction
The prefrontal cortex subserves executive control and decision-making for coordi-

nating and selecting thoughts and actions in the service of adaptive behaviour.

Present in all mammals [1], the prefrontal cortex in rodents mainly reduces to

paralimbic brain regions including the orbitofrontal cortex (OFC) and anterior-

cingulate cortex (ACC) [1]. In primates, the prefrontal cortex has evolved with

the development of lateral prefrontal regions (LPC) [2]. In humans, the LPC has

further evolved with the emergence of the left–right asymmetry yielding to the

notion of Broca’s area [3,4] subserving human language [5] and bilaterally, in

its most anterior portion, a polar region [6,7] (lateral frontopolar cortex, lFPC)

which apparently has no homologues in monkeys [8,9] and subserves human

reasoning [10].

The prefrontal cortex forms loop circuits with basal ganglia. These subcor-

tical brain nuclei are common to vertebrates and include especially the striatum,

which subserves reinforcement learning (RL) [11–14]. RL and, more specifi-

cally, temporal-difference RL algorithms are basic online adaptive processes

that adjust a behavioural strategy mapping stimuli onto actions according to

the discrepancy between actual and expected rewards. Importantly, RL is

both a very simple and robust adaptive process that can learn a variety of com-

plex tasks even in uncertain environments. In particular, when rewards only

depend upon current states and actions and each state is encountered suffi-

ciently often, RL converges towards the behavioural strategy maximizing

rewards [15]. Evidence in rodents, primates and humans indicates that the ven-

tral striatum processes reinforcing signals such as reward prediction errors that

serve to adjust stimulus–response associations, whereas the dorsal striatum in
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Figure 1. Factual reactive inferences in the rodent prefrontal cortex. (a) Inferential system arbitrating between actor learning and creation from long-term memory.
Q, selective and P, predictive models forming behavioural strategies stored in the long-term memory repertoire (superscript i). Subscript t (trial number) indicates
actor strategy driving ongoing behaviour and learning external contingencies through reinforcement learning (RL) and action outcome frequencies. lt, actor absolute
reliability inferred online (right inset: Gt, default-likelihood). t ¼ 0, time when the actor becomes unreliable (lt , 1 2 lt) and a new actor is created by mixing
stored strategies weighted according to predictive models. Green, confirmation events when the actor becomes reliable (lt . 1 2 lt). (b) Presumed system
implementation in paralimbic prefrontal regions (rodents). DS, dorsal and VS, ventral striatum filtering out non-actor strategies and learning external contingencies.
PM, ACC and OFC, premotor, anterior-cingulate cortex and orbitofrontal cortex, respectively. Red, actor creation triggered in ACC; actor filtering in the striatum is off
and allows mixing strategies stored in OFC and PM. See text for explanation.
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relation to the premotor cortex processes stimulus–response

associations guiding action selection [13,16–18].

However, RL has severe adaptive limitations. The most evi-

dent and crucial limitation is that learning new behavioural

strategies erases previously learned ones. Indeed, the ability

to store and re-use previously learned strategies confers an

evolutionary advantage in environments exhibiting external

contingencies that change and reoccur periodically (i.e. recur-

rent situations). In open-ended environments, however, where

additionally new external contingencies may always appear,

arbitrating between exploring/learning new behavioural strat-

egies versus exploiting/adjusting previously learned ones

raises an intractable computational problem. Here, we propose

a computational theory postulating that the prefrontal cortex

has evolved as primary solving this arbitration problem.

The statistically optimal solution involving Dirichlet pro-

cesses mixtures [19] is computationally intractable for the

two following reasons. First, arbitrating between creating new

strategies versus adjusting previously learned ones is in essence

non-parametric. This requires optimal adaptive processes to

systematically re-evaluate offline past arbitrations whenever

new information is acquired and consequently, to revise the

repertoire of previously learned strategies in a backward

fashion. Second, optimal adaptive processes require monitoring

online the whole repertoire of learned strategies that con-

tinuously increase when new strategies are created. These

computational requirements for optimal arbitrations rapidly

yield to intractable computations, suggesting that the prefron-

tal cortex has evolved as implementing online only forward

inferences over a small portion of the repertoire of learned strat-

egies. Accordingly, our theory postulates that under these

constraints, the development of prefrontal regions from lower

mammalians to humans gradually adds new inferential/

computational capabilities beyond RL, which increasingly

optimize the arbitration between exploring/learning new be-

havioural strategies versus exploiting/adjusting previously

learned ones. Assuming that basal ganglia implement the

ongoing strategy that adjusts to external contingencies through

RL and guides behaviour (referred to as the actor strategy
or simply the actor), the prefrontal cortex may have evolved

as arbitrating online between these two options: (i) staying

with the current actor strategy, which adjusts through RL to

external contingencies and (ii) switching away from the current

actor strategy and creating a new one from the previou-

sly learned strategies stored in long-term memory for driving

subsequent behaviour.
2. Reactive inferences, memory recollection
and the paralimbic prefrontal cortex

Arbitrating between these two options first requires inferring

when external contingencies change and require switching

away from the current actor strategy. Our theory assumes that

the development of paralimbic prefrontal regions in lower mam-

mals implements a first inferential step: namely, inferring such

changes based on the inconsistency between actual action out-

comes and the outcome contingencies the actor has learned so

far. Such inferences are factual as they only bear upon the out-

come predictive model the actor strategy has learned, and

reactive as they operate only after observing action outcomes.

To make such inferences, the actor thus learns both a

selective and predictive model: the former maps stimuli onto

actions, adjusts through RL and enables selection of the most

rewarding actions in response to stimuli; the latter maps stimu-

lus–action associations onto expected outcomes and learns

by simply registering outcome frequencies given responses

to stimuli. Critically, the predictive model enables inference

online of the actor absolute reliability, i.e. the posterior prob-

ability the current external contingencies match those the

actor has learned (figure 1a). Updating online actor absolute

reliability according to actual action outcomes involves for-

ward Bayesian inferences and requires comparison of the

likelihood of actual action outcomes derived from the actor pre-

dictive model with their likelihood according to any potential

alternative models. The latter cannot be exactly computed,

because the range of possible external contingencies is presum-

ably infinite and unknown. However, that likelihood can be
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estimated as reflecting the maximal predictive entropy, namely

as the equiprobability of action outcomes produced by the actor.

We referred to this estimate as the default outcome-likelihood.

Actor absolute reliability lt in every trial t serves to arbitrate

between staying versus switching from the current actor

strategy. When the actor remains more likely reliable than

unreliable (lt . 1 2 lt), no changes in external contingencies

are likely to have occurred. The same actor strategy is then

kept and continues to adjust through RL. The system thus oper-

ates in an exploitation mode. When conversely the actor

becomes unreliable (lt , 1 2 lt), external contingencies have

likely changed. A new actor is then built from optimally

using the whole repertoire of previously learned strategies

stored in long-term memory, which correspond to the former

actor strategies (including the one that has just become unreli-

able). The new actor selective (predictive, resp.) model is thus

formed as the mixture of selective (predictive, resp.) models

stored in the repertoire possibly weighted according to current

action outcome given strategies’ predictive models (figure 1a).

In this mixture process, importantly, selective models may

be recalibrated according to current rewarding values of action

outcomes through a model-based RL process [20]: selective and

predictive models serve as action and outcome predictors,

respectively, for implementing covert RL, whereby outcome

rewarding values are possibly altered with respect to current

animal needs (e.g. satiety effects). This model-based RL process

calibrates the new actor selective model according to current

animal needs.

As the new actor is created from the strategies repertoire,

its initial absolute reliability corresponds to the repertoire

absolute reliability, i.e. the probability the current external

contingencies match those associated with one stored strat-

egy, or equivalently, the probability that the animal faces a

previously encountered situation. This absolute reliability is

inferred using Bayes’ law, which requires evaluating the like-

lihood of the current action outcome in every previously

encountered situation and separately, in any possible new

situations (figure 1, inset). In the former case, this likelihood

is simply derived from the mixture of stored predictive

models (corresponding to the new actor predictive model).

In the latter case, the likelihood is estimated as the default

outcome-likelihood associated with the presumably new situ-

ation. It is actually equal to 1, because in this situation, only

one outcome has been observed. As a result, the new actor

guiding behaviour is initially inferred as being unreliable

(figure 1, inset). The system thus operates in an exploration
mode that promotes actor learning by preventing switching

again, while the actor remains unreliable. When the actor

becomes reliable, the system returns to the exploitation

mode, whereby switching away from the actor strategy

(when it again becomes unreliable) and creating a new one

may occur again. Note that the lower the initial actor

reliability is, the longer exploration will last: initially, the

new actor less likely matches the new situation and, consist-

ently, more trials are required for the new actor to learn the

new external contingencies.

Under its intrinsic computational constraints (forward,

factual and reactive inferences only), this model is an optimal

adaptive system in environments featuring both new and

recurrent situations. The model especially exhibits three key

functional properties, which are consistent with empirical

data. First, the model shows abrupt rather than gradual be-

havioural changes, when following variations in external
contingencies, the actor strategy becomes unreliable, and a

new one is created. Such abrupt behavioural changes are rou-

tinely observed in rodents, primates and human experiments

[21–24]. Second, the long-term repertoire of behavioural

strategies expands whenever new actors are created, so that

the reoccurrence frequencies of external situations have a

major influence on shaping new actors. Whenever external

situations reoccur, new actors are created with selective and

predictive models learning again the associated external con-

tingencies, thereby replicating in the repertoire the selective

and predictive models previously learned from previous

occurrences: the more external situations reoccur, the more

these models are then replicated in long-term memory.

Consequently, external contingencies learned from situations

that more frequently reoccur contribute more to the for-

mation of new actor strategies. This computational model

thus exhibits a basic feature of Dirichlet processes [19]. Col-

lins & Koechlin [25] showed that the model accounts for

increasing human performances associated with recurrent

situations. Third, actor creation involves model-based RL,

whenever ongoing actors driven by standard (model-free)

RL become unreliable. Arbitrating between adjusting the cur-

rent actor versus creating a new one thus yields to a decision

between model-based and model-free RL, which accounts for

behavioural changes observed in rodents (e.g. extinction

effects) following outcome devaluation manipulations [20].

As generally agreed, the premotor cortex along with the

dorsal striatum encodes and stores selective models of behav-

ioural strategies [26–28], whereas the dorsal and ventral

striatum implement RL adjusting the actor selective model

(see above). Our hypothesis is that operating beyond RL, the

factual and reactive inferential system is implemented in para-

limbic prefrontal regions (figure 1, right). The OFC (especially

the medial OFC in humans) encodes strategies’ predictive

models and updates actor absolute reliability according to

action outcomes. Empirical data in rodents, monkeys and

humans show that, consistently, this region responds to action

outcomes in relation with outcome predictions [29–33].

Moreover, human neuroimaging studies showed that the

medial OFC is involved in monitoring the ongoing course of

action [34] and inferring changes in external contingencies [33].

By contrast, the ACC is assumed to detect when the actor

becomes unreliable for triggering the creation of new actors.

Rodent studies show that in the ACC, neuronal activity con-

sistently exhibits abrupt phase transitions in relation to

behavioural switches [24]. Moreover, monkey electrophysio-

logical and human neuroimaging studies indicate that the

ACC is involved in monitoring when to switch from exploita-

tion to exploration behaviours [35,36], whereas adjacent medial

(pre)supplementary motor regions are involved in inhibiting

established behavioural responses [37] and promoting explora-

tory responses [38]. More generally, the ACC is involved in

responding to surprising outcomes triggering behavioural

switches [39] and in starting the execution of new tasks [40].

Empirical data (review in [41]) further suggest that pre-

frontal–striatal loop circuits involving the ACC and OFC

[42] may subserve actor creation. The ACC may prevent the

striatum from filtering out non-actor strategies and allow

stored strategies to mix for forming new actors: the ventral

striatum, which for every stored strategy then receives the

outcome-likelihood from the OFC, may return these likeli-

hoods to both the ACC and OFC; assuming that the ACC

further conveys these pieces of information to the premotor
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Figure 2. Factual reactive and proactive inferences in the primate prefrontal cortex. (a) Same inferential system shown in figure 1 but adding proactive inferences
arbitrating between actor learning and creation according to current external cues (red, actor creation following proactive inferences). T, contextual models learning
likelihoods of external cues associated with strategies and allowing revising actor absolute reliability before acting (inset). (b) Presumed implementation of proactive
inferences in lateral prefrontal regions (LPC, primates) in addition to reactive inferences in OFC shown in figure 1. Detailed legend in figure 1.
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cortex, the mixture of selective and predictive models given

current action outcomes may then occur in the premotor

cortex and OFC, respectively. The ACC may concomitantly

initialize actor reliability.

The theory indicates that new actors are initially unreliable

(exploration mode) and when they become reliable, the system

returns to the exploitation mode. This event may correspond to

an internal reinforcing signal consolidating new actor selective

and predictive models in long-term memory. This event may

thus be detected in the ventral striatum, which processes be-

havioural reinforcers and receives projections from the OFC

presumably inferring actor reliability. The theory thus predicts

that the ACC triggers exploration, whereas the ventral striatum

signals when to return to exploitation.
3. Proactive inferences and contextual control in
the lateral prefrontal cortex

The above-described inferential system has two critical limit-

ations. First, its adaptive capability is only reactive: new actor

strategies are created only after experiencing action out-

comes, which may be detrimental with adverse outcomes.

Second, actor creation ignores the context in which stored

strategies were learned. Accordingly, our theory assumes

that the development of LPCs in primates implements

a second inferential step overcoming these limitations:

namely, further inferring from external cues when to switch

away from the actor strategy. In contrast to action outcomes,

external cues occur independently of subjects’ behaviour

but their occurrences may also inform about changes in exter-

nal contingencies. The resulting inferential system thus

exhibits proactive behaviours, because external cues typically

alter the arbitration between adjusting versus creating actor

strategies before acting.

For making such proactive inferences, the actor strategy

learns an additional internal model, which we refer to as the

contextual model. The actor contextual model simply registers

the frequencies of external cues and is stored in long-term

memory along with selective and predictive models (figure 2).

When external cues occur, the actor absolute reliability is then
updated through forward Bayesian inference, which requires

comparison of the likelihood of these external cues derived

from the actor contextual model with their likelihood according

to any potential alternative models. The latter is again not

exactly computable. External cues are however independent

of subjects’ behaviour. This likelihood can therefore be esti-

mated as the frequency of current external cues observed in

the past, which simply derives from the mean of contextual

models stored in long-term memory. This estimate is referred

to as the default context-likelihood. Consequently, external cues

that are less likely to occur in the current than past situations,

degrade the actor absolute reliability and may yield to pro-

actively switch away from the current actor strategy for

creating a new one.

Whenever new actors are created following reactive and/

or proactive inferences, their selective (predictive and contex-

tual, respectively) model is again computed as the mixture of

selective (predictive and contextual, resp.) models stored in

long-term memory. The mixture however is now weighted

according to current action outcomes and/or external cues

given predictive and/or contextual models (figure 2).

Accordingly, actor creation may now depend upon current

external cues along with action outcomes and the frequency

of recurrent situations. In particular, strategies learned

within more distinct contexts than the current one contribute

less to actor creation.

New actor initial reliability again corresponds to the reper-

toire absolute reliability, but the latter is now evaluated

according to current action outcomes and external cues

(figure 2, inset). This absolute reliability is computed as above

based on new actor predictive and contextual models in relation

to the default outcome- and context-likelihood. Importantly,

new actor strategies may now be formed as being immediately

reliable; this happens when current external cues match those

under which strategies already in the repertoire were learned.

In that event, new actor strategies may then be rejected as

soon as they serve as actor according to subsequent cue- and

outcome-based counterevidence. Proactive inferences thus pro-

vide the ability to control behaviour according to the context,

i.e. to rapidly recreate and switch across behavioural strategies

according to external cues.
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Under its intrinsic computational constraints (forward

and factual inferences only), this computational model opti-

mally uses external cues and action outcomes for adapting

to environments featuring both new and recurrent situations.

Our hypothesis is that the lateral prefrontal cortex (LPC)

learns and encodes contextual models and updates the actor

absolute reliability according to external cues (figure 2).

Monkey and human studies show that, consistently, the LPC

subserves the formation and selection of behavioural strategies

according to contextual cues [43–45]. The neuronal connec-

tions between the LPC, OFC and premotor cortex [46] are

further assumed to link the contextual, predictive and selective

models associated with the same strategy. More specifically,

the LPC revises the actor absolute reliability conveyed from

the OFC according to external cues and returns the updated

reliability to the OFC (and vice versa). The ACC again detects

when the actor becomes unreliable for triggering actor creation.

Actor creation requires mixing of selective (predictive and

contextual, resp.) models over stored strategies according to

outcome and cue likelihoods. This may be achieved as

described above through the architecture of cortical–cortical

and striatal–cortical connections within the frontal lobes

[42,46] (figure 2). The ACC prevents the striatum from filtering

out non-actor strategies, so that for every strategy, the ventral

striatum returns the outcome-likelihood to the OFC and

ACC, whereas the dorsal striatum returns the cue likelihood

to the LPC. The new actor predictive model requires mixing

of predictive models, which may occur in the OFC through

LPC-to-OFC projections conveying cue likelihoods. The new

actor contextual model requires mixing of contextual models,

which may occur in the LPC through ACC-to-LPC projections

conveying outcome likelihoods. Finally, the new actor selec-

tive model requires mixing of selective models, which

may occur in the premotor cortex through LPC-to-premotor

projections conveying both outcome and cue likelihoods.
4. Counterfactual inferences, hypothesis testing
and the frontopolar cortex

In the above-described inferential system, the critical limit-

ation is that inferences remain factual: the decision to adjust

versus change the ongoing behavioural strategy, i.e. the
actor, bears upon the actor reliability only. Accordingly, the

theory assumes that the development of the frontopolar

cortex (lFPC) in humans implements a third inferential step

overcoming this limitation: namely, inferring when to change

the current actor strategy from concurrently monitoring the

reliability of multiple behavioural strategies. The human execu-

tive system thus develops counterfactual inferences bearing

upon alternative behavioural strategies that are not guiding

ongoing behaviour. These counterfactual inferences enable the

inference online not only of when to change the actor strategy,

but also which strategy may replace it. Ideally, counterfactual

inferences should bear upon the whole repertoire of stored

strategies. This seems however computationally costly and

biologically implausible. Our theory therefore assumes that

counterfactual inferences develop only over a limited number

of stored strategies, referred to as the inferential buffer.

One might consider the inferential buffer as forming a

global actor strategy, whereby action selection and strategy

learning result from mixing online monitored strategies

over the buffer according to their relative reliability [47].
Collins & Koechlin [25] showed that this view is inconsistent

with human behavioural performances in sequential decision

tasks. This is also theoretically problematic, because the

global actor may be inferred as being reliable with only unre-

liable strategies: the mixture of monitored strategies may

therefore be strongly suboptimal when another strategy

stored in long-term memory is potentially reliable. More opti-

mally, the executive system may concurrently infer the

absolute reliability of every monitored strategy and when

none are inferred as being reliable, a new strategy is created

from long-term memory (as described above) and added to

the inferential buffer. When, conversely, one is inferred as

being reliable, the others are necessary unreliable, even when

considered collectively (absolute reliabilities sum up to 1 or

less). Accordingly, the reliable strategy becomes the actor strat-

egy selecting actions and learning external contingencies (i.e.

adjusting its selective, predictive and contextual models). The

buffer is thus assumed to comprise the actor strategy driving

behaviour plus a number of alternative strategies, which for

clarity we refer to as counterfactual strategies.

The actor strategy may thus be changed rather than

adjusted through RL by either retrieving and switching to a

reliable counterfactual strategy or creating a new strategy

from long-term memory (figure 3a). In the former case, the

system operates in the exploitation mode, because the new

actor remains reliable. In the latter case, the new actor may

be created as being unreliable; in that case the inferential

system switches into the exploration mode. The system sub-

sequently returns to the exploitation mode in two ways.

Either a counterfactual strategy becomes reliable, while the

newly created actor remains unreliable. The former then

becomes the actor, and the latter is rejected from the buffer

and disbanded. Or the newly created actor becomes reliable,

whereas the counterfactual strategies remain unreliable. The

former is then confirmed and stored in long-term memory

along with others. Exploration periods thus correspond to

hypothesis testing on strategy creation. Accordingly, counterfac-

tual strategies are the former actors that have been reliably

assigned to an external situation that previously occurred.

When newly created actors are confirmed, however, the

number of strategies monitored in the buffer increases and

possibly reaches its capacity limit. In that event, the theory

assumes that the strategy used the least recently as actor is dis-

carded from the buffer. The rationale is that older situations are

less frequent and less likely to reoccur in the short-run. The

buffer therefore keeps monitoring counterfactual strategies

which will more likely match the next external situation.

The computations implementing this counterfactual infer-

ential system are essentially the same as those described

above. Reactive and proactive inferences are simply extended

to counterfactual strategies. The differences are as follows

(figure 3, inset): first, absolute reliability is inferred for the

actor and counterfactual strategies, so that the default outcome-
likelihood is now better estimated as the equiprobability of

outcomes produced by the actor and counterfactual strategies.

Second, the absolute reliability of actor and counterfactual strat-

egies directly weights their relative contribution in creating new

actors from long-term memory. Collins & Koechlin [25] showed

that this computational algorithm predicts human choices in

recurrent and new situations featuring uncertain and variable

contingencies possibly associated with the occurrences of con-

textual cues. Moreover, all the model components appeared

necessary for accounting for human performances. The best
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to c in the shown example) occurs when one counterfactual strategy becomes reliable. Actor creation (red) occurs when all monitored strategies become unreliable.
(b) Presumed implementation of counterfactual inferences through the human frontopolar cortex, LPC ( proactive component) and OFC (reactive component). The
frontopolar cortex encodes counterfactual absolute reliabilities, while the OFC encode actor reliability. Actor switching presumably originates from the LPC and
diffuses in the prefrontal network in a top-down fashion (blue arrows). Actor creation is not shown for clarity (identical to figures 1 and 2). Detailed legend
in figure 1.
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account was found when the buffer capacity corresponds to

two/three counterfactual strategies. This size matches the

capacity previously proposed for human (declarative) working

memory [48].

The hypothesis is that the lFPC encodes the absolute

reliability of counterfactual strategies (figure 3b). Consisten-

tly, neuroimaging studies show that the lFPC is engaged in

cognitive branching, that is, holding on the execution of one

task during the performance of another task [10,49] and in

monitoring the opportunity to switch to alternative courses

of action [34]. The lFPC has also major reciprocal connec-

tions with the OFC and LPC [9,46]. Accordingly, the (medial)

OFC may update counterfactual strategies’ reliabilities

encoded in the lFPC according to action outcomes (given pre-

dictive models presumably stored in the OFC). Similarly,

the LPC may update them according to external cues (given

contextual models presumably encoded in the LPC).

In contrast to actor creation, retrieving counterfactual

strategies as new actors when they become reliable requires

selecting and reactivating the corresponding selective, predic-

tive and contextual models from long-term memory to drive

behaviour. The LPC may be the best candidate for this func-

tion (figure 3b). Adjacent to the lFPC, the LPC is the only

prefrontal region strongly connected to both the premotor

cortex and OFC, presumably storing selective and predictive

models, respectively [46]. Thus, selecting a reliable contextual

model in the LPC may concomitantly induce the selection of
associated models in the premotor cortex and OFC. Consist-

ent with the hypothesis, the LPC is involved in retrieving

action sets through top-down selection from LPC to premotor

regions [44,50].
5. Discussion
We propose here that the prefrontal cortex has primary evol-

ved from lower mammalians to humans by gradually adding

new inferential capabilities beyond RL, which progressively

optimize the arbitration between exploring/learning new be-

havioural strategies versus exploiting/adjusting previously

learned ones. This arbitration is optimized assuming that the

environment varies according to both recurrent and new

causes, which are indirectly observable, independent and

potentially infinite. Optimization has occurred under the com-

putational constraint that the brain implements only forward,

online inferential processes bearing upon a limited portion of

behavioural strategies stored in long-term memory.

With these assumptions, optimal arbitration is based on

inferring online the absolute reliability of every monitored strat-

egy, that is, the posterior probability that given external

evidence, the current external contingencies match those the

strategy has learned. Monitored strategies may therefore be

inferred as being reliable (more likely matching than differing)

versus unreliable (the converse). When one is reliable, the
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others are individually and collectively unreliable. We indicate

a solution indicating how the brain may compute absolute

reliabilities through estimates of default-likelihoods, that is, like-

lihoods of external cues and action outcomes when the current

external contingencies presumably match no monitored strat-

egies. The concepts of default-likelihood and absolute

reliability generalize the notion of expected/unexpected uncer-

tainty proposed by Yu & Dayan [51] and provide the

computational foundations of the present theory. They may

be related to the psychological notions of metacognitive

processes and confidence judgements [52].

Based on this computational framework, we identify three

critical inferential capabilities associated with the development

of specific prefrontal regions. The OFC and ACC appearing in

rodents provides the ability to make factual, reactive reliability

inferences; reliability inferences are based on action outcomes

and only bear upon the actor strategy guiding action and learn-

ing external contingencies. The OFC is predicted to encode

strategies’ internal models predicting action outcomes and to

revise actor absolute reliability according to action outcomes.

Critically, the actor strategy learns actions through RL so that

the more outcomes are rewarding, the more the reliability

reflects the predicted occurrence of these outcomes. The

ACC, by contrast, detects when the actor strategy becomes

unreliable for triggering the creation of new actor strategies

from long-term memory. The LPC appearing in primates pro-

vides the additional ability to make factual, proactive inferences.

The LPC is predicted to encode strategies’ internal models

predicting external cues and to revise actor absolute reliability

according to external cues typically occurring before action.

Finally, the lFPC appearing in humans provides the ability

to further make both reactive and proactive counterfactual infer-

ences. The lFPC is predicted to encode the absolute reliability of

a few counterfactual strategies stored in long-term memory;

along with actor reliability, counterfactual reliabilities are

revised in OFC and LPC according to action outcomes and

external cues, respectively.

Counterfactual strategies along with the actor strategy

form an inferential/monitoring buffer essentially equivalent to

the psychological notion of procedural working memory

[48,53,54]. The notion of actor is consistent with the idea of

attentional focus within working memory [53–55]. When one

monitored strategy becomes reliable, this strategy becomes

the actor. When the actor becomes unreliable with no reliable

counterfactual alternatives in the buffer, a new actor is created

from long-term memory. Actor creation consists of optimally

mixing strategies stored in long-term memory according to cur-

rent outcome-based and/or cue-based evidence. Actor creation

is thus a model-based construct of actor strategies involving

model-based RL [20]. The theory predicts that this model-

based construct of actors occurs through striatal–frontal loop

circuits. As newly created actors subsequently adjust through

model-free RL, the actor strategy gradually results from the
hybridation between model-based and model-free RL, whereby

model-free RL progressively dominates with time. This hybrida-

tion resulting from abrupt and intermittent model-based

constructs of new actors, when model-free RL adjustments of

ongoing actors become unreliable, is optimal with forward infer-

ential processes operating online and bearing upon a limited

number of counterfactual strategies.

Newly created actors may be inferred as being initially

unreliable indicating that the environment is likely in a state

that was not previously observed. The prefrontal executive

system then switches into an exploration period corresponding

to hypothesis testing: this unreliable actor guides behaviour and

may be subsequently confirmed or rejected. Confirmation

occurs when this actor become reliable before any counterfac-

tual strategies. The ventral striatum is predicted to detect this

confirmation event yielding to the actor consolidation in

long-term memory. Conversely, rejection occurs when a coun-

terfactual strategy become reliable before this actor. The LPC is

predicted to retrieve this reliable counterfactual strategy to

serve as actor. Critically, hypothesis testing prevents the

capacity-limited buffer from monitoring unnecessary strategies

emerging from long-term memory. Hypothesis testing, more-

over, is a primitive form of backward inferences, because

every decision to create new strategies may be subsequently

revised on the basis of subsequent information. Backward

inferences are actually critical in optimal adaptive systems

operating in open-ended environments for dealing with the

non-parametric nature of strategy creation [19]. Thus, counter-

factual inferences and hypothesis testing associated with

the development of the lFPC appear as critical reasoning capa-

bilities endowing humans with a qualitative evolutionary

advantage in adaptive behaviour.

The present theory provides a unified, principled model of

the overall inferential architecture of the human prefrontal

cortex. The model makes testable predictions outlined above

[56]. This overall model, however, masks the computational

complexity of neuronal processing involved in learning strat-

egies’ internal models coding the likelihoods of action

outcomes and external cues in the OFC and LPC. Indeed,

action outcomes and external cues may vary within high-

dimensional, continuous spaces possibly including the time

dimension. Accordingly, the OFC and LPC regions are likely

to operate in lower-dimensional spaces through categorization

and extra/interpolation processes based on relative space

metrics [57] for representing action outcomes and external

cues and computing their likelihood in relation to behavioural

strategies. As recently proposed [57], these coding processes

may have concurrently emerged through the development of

multiple subregions in OFC and LPC in association with

posterior associative cortical regions.
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