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Abstract: Polyphenols and representative small phenolic acids and molecules derived from larger
constituents are dietary antioxidants from fruits, vegetables and largely other plant-based sources
that have ability to scavenge free radicals. What is often neglected in polyphenol metabolism is
bioavailability and the role of the gut microbiota (GMB), which has an essential role in health and
disease and participates in co-metabolism with the host. The composition of the gut microbiota is in
constant flux and is modified by multiple intrinsic and extrinsic factors, including antibiotics. Dietary
or other factors are key modulators of the host gut milieu. In this review, we explore the role of
polyphenols and select phenolic compounds as metabolic or intrinsic biochemistry regulators and
explore this relationship in the context of the microbiota–gut–target organ axis in health and disease.

Keywords: polyphenols; microbiota; small phenolic acids; mass spectrometry; green tea; resveratrol;
catechins; eugenol; whole genome sequencing

1. Introduction

Polyphenolic antioxidants from dietary sources are frequently a topic of interest,
largely due to widespread scientific agreement and increased findings that they may help
lower the incidence of certain diseases, such as cancers, heart and cardiovascular disease,
type 2 diabetes (T2D) and neurodegenerative diseases. While the mechanisms remain
multifactorial, they include properties affecting nucleic acid, lipid and protein damage,
such as non-enzymatic glycation or gloxidative stress, and even may have antiaging
properties [1]. Polyphenols are effective for a number of diseases such as those stemming
from inflammation, oxidative stress [2], pyretic activity [3], reproductive disorders, nervous
system disorders, elevated blood glucose [4], microbial and viral infections, cholesterol
irregularities, cellular proliferation and tumorigenesis, hypertension, pain management and
digestive complications [1]. Neurodegenerative diseases, which exhibit distinct etiologies,
are largely protracted and constitute constant deterioration in neuronal function, neuronal
loss, brain atrophy and memory impairment. Oxidative stress and inflammation are
common in Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease and
amyotrophic lateral sclerosis [5], and many other diseases [6].

Dietary polyphenolic antioxidants are frequently a topic of interest due to widespread
scientific agreement they can help lower the incidence of certain cancers, cardiovascular
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and neurodegenerative diseases and DNA damage, and may have possible antiaging prop-
erties. Many studies have indicated that polyphenols have protective effects against chronic
diseases, including obesity, type 2 diabetes, cardiovascular disease, neurodegenerative
diseases and some types of cancer [7]. Moreover, the increased risk for these age-related
diseases, along with the decreased cellular functions or improper gain of function involving
damage to cellular macromolecules, such as lipids, proteins and nucleic acid, are associated
with the hallmarks of aging. These include epigenetic changes, genomic instability, altered
intercellular communication, loss of proteostasis, mitochondria dysfunction, deregulated
nutrient sensing, stem cell exhaustion, cellular senescence and apoptosis and more [8].
Polyphenols can attenuate these hallmarks of disease, in part, by preventing damage to
by exogenous and endogenous cellular stressors including oxidative stress, inflammatory
stress, endoplasmic reticulum stress and reduce innate ability of cellular recovery. The
health benefits of polyphenol are related to bioavailability, which partly depends on indus-
trial and domestic food processing and digestibility in the gastrointestinal tract. Moreover,
cellular metabolism of the food components and the co-metabolism with the microbiota can
improve the uptake of these components, but do not necessarily improve parent compound
bioavailability. Efforts to modulate, as proof of principle, that oxidative stress and concomi-
tant inflammation, demonstrate modulation of oxidative stress, especially by using dietary
mitochondria augmenting antioxidants. This represents a promising approach to prevent
or treat diseases, such as Parkinson’s disease and Loue Gehrig’s disease (amyotrophic
lateral sclerosis) [5,9]. However, most mitochondria-targeted antioxidants with beneficial
effects, in associated models, have often failed to demonstrate clinical therapeutic benefit.
Several questions remain to be clarified, such as the role of the microbiota–gut–brain axis
in these poor outcomes, and little has been done to consider the microbial species in these
study subjects [1,5,10]. Any role played by oxidative stress in neurodegeneration, such as
Parkinson’s and Alzheimer’s disease pathogenesis, emphasize mitochondria as generators
of deleterious reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are
both targets for oxidative stress-related pathobiological mechanisms. Polyphenols and phe-
nolic compounds, such as catechins, quercetin and curcuminoids, are actively researched
modulators of PD and hold promise in treating or preventing several neurodegenerative
diseases [9].

2. Bioavailability of Dietary Polyphenols

Polyphenols and phenolic acid food components must be bioavailable to exert any
so-called biologic effects. That said, the medicinal potential of small phenolic acids and the
precursor polyphenols, such as curcumin (Curcuma longa) and green tea (Camellia sinensis),
and its catechins can be severely affected by limited systemic and target tissue bioavailability
and rate of metabolism. Many of these beneficial compounds only reach the systemic
circulation though limited gut absorbance [1,9,11]. Nevertheless, the health benefits of
polyphenols are related to bioavailability, which depends on the food processing as well
as digestion in the gastric intestine and subsequent bacterial metabolism in the gastric
intestine and cellular metabolism of these food components. Data regarding polyphenol
absorption and tissue distribution are derived largely from animal studies [1,9,11].

Green tea is a particularly attractive candidate to study and trace bio-transformations
by the gut microbiota [10,12]. In this regard, composition and metabolism have been well
characterized by the four main tea catechins: (-)-epigallocatechin-3-O-gallate (EGCG), (-)-
epicatechin-3-O-gallate (ECG), (-)-epigallocatechin (EGC), (-)-epicatechin (EC) (See Figure 1)
account for 92% of all the flavonoids found in brewed green tea according to the Flavonoid
Content of Selected Foods in the USDA Database [1]. Most of these catechins are also
known as tannins, which are largely secondary plant metabolites that were originally
discovered because of a strong interaction with collagen both in situ and in vivo. They are
used frequently in the so-called “tanning” process, which converts animal hides to leather.
Tannins are defined as high-molecular-weight polyphenol polymers that can precipitate
proteins from solution. Key to their importance is the bioavailability of lack thereof of these



Curr. Issues Mol. Biol. 2022, 44 4154

compounds in vivo, ultimately depends on their degree of polymerization. The difficulty
in bioavailability with oligomeric forms of these compounds were found to be variant and
the more bioavailable they are the higher the demonstrated high antioxidant activity when
compared to their monomeric or polymeric forms. These were found to be, in the order
of radical scavenging effectiveness, as follows: ECG > EGCG > EGC > EC > catechin (See
Figure 1).
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Similarly, proanthocyanidines undergo depolymerizations generally by thiolysis,
which involves cleavage of interflavonoid linkages and then nucleophilic attack by thiol
groups largely at the C4 position on the molecule [13]. Depolymerization also has been
reported using other nucleophiles such as L-cysteine and phloroglucinol [1].

3. Bacterial and Host Co-Metabolism of Polyphenols and Phenolic Acid Metabolites

A vegan diet (VD) is known to demonstrate beneficial health effects; however, the role
of the gut microbiota is unclear and largely underexplored. What we know is that flavonoids
constitute the largest group of dietary polyphenols [14], which despite their heterogeneity,
are metabolized through a limited series of common metabolic steps in part mediated by
the MG [15,16]. However, in order for phenolic acids to have their affects they must be
processed by the microbiota-gut, which we and other have established [17]. In that regard,
a 4-week dietary study, vegan diet vs. meat-rich diet (MD) was conducted in a monocentric,
randomized, controlled trial with a parallel group. Here, fecal samples from 53 healthy,
omnivore, normal-weight participants (62% female, mean 31 years of age), were collected
pre- and post-trial, and were analyzed using 16S rRNA gene amplicon sequencing [18].
These authors showed that alpha and beta diversity did not differ significantly between
MD and VD subjects. Baseline and end samples emphasized a highly intra-individual
microbial composition, which unlike animals housed together are much more diverse but
similar to human gut microbial content. In that regard, the overall gut microbiota phyla
were not remarkably altered between VD and MD after the trial. These same authors
noted Coprococcus was found to be increased in VD, whereas it was decreased in MD.
Faecalibacterium and Roseburia were increased in MD whereas they were decreased in VD.
In MD, the signatures of Bacteroides, Faecalibacterium, Clostridium sp. and Roseburia were
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enriched and in VD were depleted after the trial. Moreover, multiple amplicon sequence
variants of genera Bacteroides, Blautia, Dialister, Faecalibacterium, and Ruminococcus, however,
were depleted in MD but enriched in VD after the trial [14].

The previous work and unpublished observations in Clostridioides difficile patient
populations led to the hypotheses around mechanisms of pathogenesis, which suggests
that Clostridioides difficile and its course of infection may be affected by altering the diet,
particularly by omitting meat, when actively affected. Perhaps this suggests that adding
polyphenols to the diet could be tried to lessen severity of the disease course or lessen
adverse effects of infection. Alternatively, adding antimicrobial polyphenols such as those
found in curcumin, cinnamon or green tea may also affect the course of c. difficile infection
and outcome, as it is observed that in Indian populations that c. difficile infection is less
common than in western countries (anecdotal observations); moreover, we do not assume
that any differential antibiotic stewardship contributes to these observations [10].

Previously, it was demonstrated that treatment with Clindamycin or Piperacillin/
Tazobactam weakened what we call colonization resistance that the protective enteric
bacteria that inhibit overgrowth by Clostridioides difficile [10,19]. Moreover, changes in
MG can be reflected in the urinary metabolome. Clearly, many MG-generated chemicals
are the product of plant dietary polyphenols. In regard to teas an oral administration
challenge should amplify MG-dependent changes in urinary small phenolic acid and
other metabolites. Indeed, differential changes in murine urinary downstream polyphenol
metabolites of green tea, namely, pyrogallol levels identified antibiotic treatment (clin-
damycin, piperacillin/tazobactam) previously associated with a weakening of colonization
resistance to Clostridioides difficile and were affected by these antibiotic treatments. Fur-
thermore, there are specific micro-organisms that are involved in EGCG biotransformation
and metabolism, namely, Clostridium orbiscindens, Enterobacter aerogenes, Raoultella planticola,
Bifidobacterium longum and Eubacterium ramulus in rodent studies [20] and in human subjects
as well [21], suppressed levels were found of at least three small phenolic acids, namely,
3,2-hydroxyphenylpropionic acid (3,2-HPPA), 3,4-HPPA, 3,3-hydroxyphenylpropionic acid
(3,3-HPPA and 3,4-hydroxyphenylpropionic acid [16,20]. Furthermore, 3-hydroxy-3-(3-
hydroxyphenyl) propanoic acid (3,3-HPHPA). These small molecules are known to be at
least partially derived by the gut microbiota through dietary flavonoids C-ring cleavage on
the molecules [22,23].

3-hydroxy-3-(3-hydroxyphenyl) propanoic acid (3,3-HPHPA) was previously charac-
terized and quantified in human urine, serum and cerebrospinal fluid samples [20] and
was evaluated in rodent tissue samples [10]. This small phenolic acid is implicated in
autism and other diseases and suggested to be caused by bacterial metabolism of precursor
compounds [24].

In a qualitative survey of polyphenol cleavage generation from green tea in mice, and
to a lesser extent in human urine (unpublished observations), was explored using a modifi-
cation to a published mass spectrometry method [25]. Applying a targeted metabolomics
method, 9 isomers, commercially available, were separated from 12 known isomers of
HPHPA (See Figure 2). As a screening tool, the unequivocal separation of these metabolites
was accomplished separated 9 of the available isomers from a mixture of standards using a
Phenomenex Kinetex® F5 core shell technology column. Another isomer from a previous
study was identified for the first time in mouse brains [25]. Previously, we studied how the
addition by oral administration of polyphenol-rich green tea in mice affected the profiles of
3,3-HPHPA and 3,4 HPHPA Unpublished Obsersavions)and its other isomers in the mouse,
which suggests the strong potential use of green tea as a metabolic tracer for many of these
isomers. Furthermore, these cleavage products of polyphenols demonstrate that bacterial
co-metabolism is a key player in the production of bioactive molecules in mammals. This
will extend microbiomic and metabolomic studies, particularly as applied to infectious
disease and to the microbiota–gut–brain axis. Our novel approach supports identification,
separation and quantification of currently available 3,3-HPHPA isomers and should be
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applicable to the remaining three commercially unavailable isomers, should they become
available in the future [12].
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propanoic acid (3,3-HPHPA), 3-hydroxy-2-(3-hydroxyphenyl)propionic acid (3OH-2,3-HPPA), dihy-
droxyhydrocinnamic acid (DHHCA), hydroxyphenyllactic acid (HPLA). * Currently available only
by custom synthesis.

The intestinal microbiota, which consists of a diverse number of bacteria, archaea,
viruses and even fungi [26], inhabits the gastrointestinal tracts of animals, including hu-
mans [10,27]. These microbial communities contribute to food and nutrient digestion and
absorption and help in the development of the host immune system [26]. Recent rapid
advances in DNA sequencing technology have allowed researchers to conduct in-depth
studies of the structures of intestinal microbiota and their effects on host physiology. Pre-
vious studies have reported that intestinal microbial dysbiosis could be a risk factor for
several diseases, including obesity, diabetes, atherosclerosis, neurodegenerative and mood
disorders, immune system disorders, colon and hepatic cancers [28].

4. Oxidative Stress, Immunomodulatory and Anti-Inflammatory Properties

Polyphenolic phytochemicals are dietary antioxidants that have the ability to scavenge
free radicals by donating hydrogen atom or electrons or by chelating metal cations [29,30].
ROS or RNS are free radicals and are involved in the oxidative damage of proteins, nucleic
acids and lipids [31]. One could say that this is a paradoxical part of aerobic metabolism;
however, oxidative stress appears to play a role in the pathobiogenesis of nearly every
disease process [32]. However, the human body has a complex endogenous antioxidant
defense system, such as the glutathione systems, glutathione peroxidase, and superoxide
dismutase and catalase, which scavenge many free radicals. Interrupting these defenses can
contribute to irreparable DNA damage, cellular membrane alterations, damage to cellular
components and eventually leads to cellular death or apoptosis.

Polyphenols and their small phenolic compounds are secondary metabolites found
most abundantly in plants, which also occur as bacterial transformations but not in animals,
and thus explain why the aromatic amino acids are essential amino acids. However,
since tyrosine can be converted from phenylalanine, tyrosine is not an essential amino
acid in humans. However, without a metabolic tracer, it is difficult to determine what
amount of tyrosine is bacteria-derived versus host converted. The intermediates are most
often derived from the shikimate pathway (See Figure 3) These aromatic molecules have
important roles, such as antioxidants, pigments, structural elements signaling factors and
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as defensins against pathogens, parasites, and infectious agents or from biotic and abiotic
stress such as radiation. The phenolic acids and polyphenols are formed in higher plants
and microorganisms from shikimic acid, which is a central metabolite, through an aldol-
type condensation of phosphoenol-pyruvic acid and the glycolytic pathway via sugars and
the pentose phosphate cycle, to produce 3-deoxy-D-arabino-heptulosonic acid 7-phosphate.
The key branch-point on the production of phenolic compounds in plants is chorismic
acid [33].
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In microorganisms, these secondary metabolites are formed through the shikimate
pathway (See Figure 3) to produce several aromatic amino acids, namely, L-tyrosine, L-
phenylalanine and L-tryptophan [34], which are essential molecular building blocks for
protein biosynthesis. In plants, these amino acids are crucial components for the synthesis
of protein they also serve as precursors that are important for these diverse secondary
metabolites and (SPMs) for the molecules we elucidate. Most notable are the aromatic
phenolic compounds synthesized from L-Tyr, L-Phe such as HPHPA, cinnamoyl glycine,
cinnamic acids, cinnamic esters, coumarins, phenylpropenes, flavonoids, isoflavonoids, ne-
oflavonoids, stilbenes such as resveratrols, anthraquinones, chalcones and lignans [35]. The
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shikimic acid pathway involves chorismite enzyme catalyzed conversion of shikimic acid
to chorismic acid, the enzyme catalyzed Claisen rearrangement of which gives prephenic
acid. Prephenic acid, in a sequence of reactions, involving oxidative decarboxylation and
transamination gives L-tyrosine, which is a precursor of various polyphenolic compounds
that are formed as secondary metabolites in the gut microbiota [34,36–38].

Polyphenols, alone or as contained in whole foods and beverages, have been shown
to prevent and alleviate oxidative stress-related metabolic disorders and damage [39]
and some enzymatic mechanisms underlying these effects. The Shikimic acid pathway
leading to the formation of L-phenylalanine and L-tryptophan in plants also undergo gut
microbial metabolism to form various polyphenolic secondary metabolites. The gut micro-
biota can transform the ingested polyphenolic compounds, such as flavonoids (including
anthocyanins, flavanones, and flavanols), to a plethora of polyphenol-based secondary
metabolites. Although polyphenolic compounds exert positive outcome in health, some of
the polyphenolic compounds may be involved in the expression of enzymes that mediate
the pathways responsible for the onset of gut disorders, including colon cancer [40]. It
has been well documented that alterations in inflammatory pathways are involved in
development of gut disorders including colon cancers. When cytokine-stimulated human
colonic fibroblasts were used to assess anti-inflammatory activity of dietary phenolic acids,
some phenolic acids, including Gallic acid and Gentisic acid, demonstrated potential pro-
inflammatory activity, whereas most others including Cinnamic acid, Vanillic acid, and
Caffeic acid demonstrated anti-inflammatory activity [41].

Oxidative stress and inflammation largely drive proliferation, carcinogenesis and
apoptotic processes. The apoptotic, cellular anti-proliferative, anti-inflammatory and anti-
carcinogenic effects of polyphenols are best illustrated with the cinnamates, Cummins
(free-radical sequestrating compounds) and has multiple mechanisms of action along
with eugenol or 4-allyl-2-methoxyphenol all have been studied for ability to modulate
cancer, diabetes, neurodegeneration and inflammation. Curcumin and resveratrol (3,5,4′-
trihydroxy-trans-stilbene) both exert their effects, in part, by inhibiting NF-kB, TNF-a,
IL-1b, IL-6, and COX-2 gene expression and downstream signaling [42]. Of these, eugenol
is the quintessential compound in the group with many diverse uses to date. Eugenol
and the cinnamates are present in widely diverse plant families including cloves (Eugenia
caryophyllata), turmeric (Curcuma longa) [43], ginger (Zingiber officinale) and the bark leaves
of cinnamon (Cinnamomum verum), among others [44,45]. Polyphenols such as curcumin
have metal chelating properties, particularly for iron (Fe3+ and Fe2+ ions) and superoxide
trapping activity [1].

Inflammation is part of the adaptive immune response, which can be triggered by
deleterious stimuli, infection or injury, whether chronic or acute. Furthermore, oxidative
stress and inflammation are mechanistically linked [1]. It is important to understand
that free radical damage is inevitable, but there are many endogenous and protective
antioxidant enzyme systems in healthy, euglycemic and younger individuals and damage
accumulates with advancing age and under diabetic conditions [46]. In response to the
inflammatory agents, the body induces many inflammatory molecules, such as cytokines
and cytochrome oxygenase-2 (COX-2) enzyme. Several small polyphenolic acids, including
sinapic acid, p-coumaric acid, cinnamic acid, vanillic acid, caffeic acid and ferulic acid,
bind to the active site of COX-2 enzyme and thereby decrease the potentially neoplastic
prostanoids and prevent the onset of some cancers and gastro-intestinal disorders, such as
colon cancer. These small molecules work to suppress inflammation and cytokine stress.
On the other hand, some polyphenolic acids, such as gentisic acid or gallic acid, may be
pro-inflammatory or even upregulate cytokine stress and signal transduction pathways
that could lead to the upregulation of COX-2 [40].

Nevertheless, eugenol, curcumin and cinnamon have few side effects and tremen-
dous anti-inflammatory and antioxidant effects. Curcumin has the same potential to
be of medicinal value [47]. When eugenol’s anti-inflammatory activity was explored in
lipopolysaccharide-induced lung injury, decreased proinflammatory cytokines, such as
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TNF-α were noted [48], as was NF-κB-mediated pathway activation [42] and eugenol
inhibits TNF-α and cyclooxygenase-2 (COX-2) expression [46] and also suppresses NF-
κB-stimulating activation of macrophages due largely to TNF-α [48]. Moreover, ROS
and RNS-mediated oxidative stress results in cellular, membrane and lipid peroxidation
damage and increased COX-2, iNOS, and cytokine tumor necrosis factor α (TNF-α) expres-
sion [48–50]. Eugenol suppresses proliferation of MCF-7 cells in a time and dose dependent
manner [51,52] and has demonstrated antiproliferative action with its biphenyl (S)-6,60-
dibromo-dehydrodieugenol derivative by initiating apoptosis. Thus, eugenol is a very
interesting SPM, with diverse biological activities and very effective natural compound.
Moreover, eugenol can biotransformed to many compounds such as vanillin through
coniferyl alcohol and ferulic acid [53]. Furthermore, cinnamon promotes several bacterial
species including kkermansia, Bacteroides, Clostridium III, Psychrobacter [54].

5. Antipyretic, Antiviral, Antifungal and Analgesic Properties

The antibacterial and antiviral pharmacology of eugenol have been known for over
a century. Many who have had oral surgery may be familiar with the analgesic and anti-
microbial bactericidal effects of eugenol, which has activity against a variety of strains of
Gram-negative (Pseudomonas aeruginosa, E. coli, Yersinia enterocolitica, Salmonella choleraesuis,
and even Helicobacter pylori) and Gram-positive (Stapholococcus aureus, Streptococcus pneumo-
nia, Enterococcus faecalis, and Streptococcus pyogenes) bacterial strains [55]. It is suggested that
the free hydroxyl group in the molecule imparts antimicrobial activity, and combinatorial
approaches with eugenol and other antibiotics are more effective. However, it is not only
bactericidal but virucidal activity that we observe as well. In that regard, the replication
of the Herpes Simplex Virus (HSV) is also neutralized by neutralizing and inactivating
this and other viral infections [56] through glycoprotein B that blocks HSV-1 and HSV-2
replication [57]; some studies suggest that eugenol inhibits viral DNA replication and can
damage the outer envelope of newly synthesized virions [57].

Perhaps the most striking regulatory effect of polyphenols and phenolic acids is
eugenol use in dentistry, where it is complexed with tooth fillers, used as an antisep-
tic/disinfectant and for its powerful analgesic properties [58,59]. Anyone who has used
eugenol when suffering dry sockets, tooth pain or infection can attest to the striking
relief and analgesic effect. This mechanism is linked to suppression of Na+, K+, and
Ca2+ voltage-dependent channels [60,61], particularly through high-voltage-activated Ca2+

channel inhibition. These currents are active in both capsaicin-insensitive and capsaicin-
sensitive dental primary afferent neurons, explaining why there is pain relief with this
compound [61] (See Table 1).

Table 1. Polyphenol compounds and their physiologic role involving select colonizing
bacteria species.

Polyphenols Sources Chemical or Physiological Functions Colonizing Bacteria

Curcuminoids Dietary, Plants, such as:
Curcuma longa

Shikimate pathway intermediate
inhibits NF-kB, TNF-a, IL-1b, IL-6, and
COX-2 gene expression,
anti-inflammatory activity

Lactobacilli sp. Prevotella sp.,
Many uncharacterized species

(-)-epigallocatechin-3-O-
gallate

Dietary, Plants, such as:
Green tea (Camellia
sinensis)

Shikimate pathway intermediate,
chelating properties, anti-inflammatory
and oxidative stress activity

Clostridium orbiscindens,
Enterobacter aerogenes,
Raoultella planticola,
Bifidobacterium longum,
Eubacterium ramulus in

(-)-epicatechin-3-O-
gallate

Dietary, Plants, such as:
green tea (Camellia
sinensis)

Shikimate pathway intermediate,
chelating properties, anti-inflammatory
and oxidative stress activity

Clostridium orbiscindens,
Enterobacter aerogenes,
Raoultella planticola,
Bifidobacterium longum,
Eubacterium ramulus in
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Table 1. Cont.

Polyphenols Sources Chemical or Physiological Functions Colonizing Bacteria

(-)-epigallocatechin
Dietary, Plants, such as:
green tea (Camellia
sinensis)

Shikimate pathway intermediate,
chelating properties, anti-inflammatory
and anti-oxidative stress activity

Clostridium orbiscindens,
Enterobacter aerogenes,
Raoultella planticola,
Bifidobacterium longum,
Eubacterium ramulus in

(-)-epicatechin
Dietary, Plants, such as:
green tea (Camellia
sinensis)

Shikimate pathway intermediate,
chelating properties, anti-inflammatory
and oanti-xidative stress activity

Clostridium orbiscindens,
Enterobacter aerogenes,
Raoultella planticola,
Bifidobacterium longum,
Eubacterium ramulus in

Cinnamon
Dietary, plants, such as:
bark of Cinnamomum
versum

Shikimate pathway intermediate,
chelating properties, anti-inflammatory
and anti-oxidative stress activity

Enterococcus spp. and
Lactobacillus spp.,
Campylobacter spp. and
Enterococcus spp. kkermansia,
Bacteroides, Clostridium III,
Psychrobacter

Eugenol Dietary, Plants, such as:
Eugenia caryophyllata

anti-inflammatory activity, decreased
proinflammatory cytokines, such as
TNF-α, NF-κB, synthesis of ferulic acid
and other aromatic compounds via
shikimate pathway through enzymes
phenylalanine ammonia lyase; tyrosine
ammonia lyase; S-adenosyl methionine
(methyl donor).

Many uncharacterized species,
Staphylococcus aureus,
Pseudomonas aeruginosa

6. Polyphenols in Obesity

Obesity is not only a chronic disease itself but is also a risk factor for various other
chronic diseases. Obesity contributes to inflammation, oxidative stress, type 2 diabetes,
cardiovascular disease, hypertension, and some types of cancer. It has been demonstrated
that some food ingredients including polyphenols have anti-obesity effects. Powder from
carob pods from an evergreen tree carob cultivated mainly in the Mediterranean region is
used as a substitute for cocoa powder because of its color and flavor [62]. Carob pod powder
(CPP) contains polyphenols and minerals such as calcium, phosphorus and potassium.
The antioxidant activity is correlated with the polyphenol concentration in carob pod
extracts [63]. It has been indicated by an in vivo study that carob pod polyphenols suppress
the increases in adipose tissue weight and adipocyte hypertrophy in high fat diet-induced
obesity model mice [64]. Feeding obese mice induced by a high-fat diet with CPP reduces
the serum total cholesterol level and suppress lipid accumulation in hepatocytes caused
by a high-fat diet. The in vitro mechanism studies using 3T3-L1 preadipocytes reveal that
carob powder polyphenols suppress triglyceride accumulation in differentiated 3T3-L1
cells, which is corelated with deceased CEBPβ protein levels and PPARγ mRNA levels [64].

In the human body, there are two types of adipose tissues, including white adipose
tissue (WAT) and brown adipose tissue (BAT). There is also visceral and adipose fat, with
visceral being the most metabolically active. WAT stores extra energy as triacylglycerol,
whereas BAT dissipates energy and releases it as heat [65]. Therefore, research in WAT
browning, facilitating BAT activity and thermogenic functions of dietary polyphenols is
a great interest in treating obesity [66]. Various dietary factors including polyphenols
fostering browning of WAT have been revealed to promote thermogenesis [67]. It has
been demonstrated that apple polyphenols decrease adipose tissue mass [68]. When mice
were used to study the underlying mechanisms, daily apple polyphenols consumption
induced increased expression of brown/beige adipocyte selective genes UCP1, CIDEA,
TBX1, CD137 [69].
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7. Polyphenols in Heart Disease, Cancer, and Type 2 Diabetes

T2D is characterized by hyperglycemia, which can result from or contribute to de-
fective insulin secretion, glucose intolerance and insulin resistance. Epidemiological and
clinical evidence supports the idea that regular, moderate wine consumption (one glass or
two per day) is associated with the decreased incidence of hypertension, T2D and cardio-
vascular disease [70]. Wine polyphenol constituents [71], such as those found in aged red
wine and beer, particularly include resveratrol and trans-resveratrol. These compounds
have some importance for aging, neurodegenerative diseases and cancer, including colon,
basal cell, ovarian, and prostate carcinoma [70], in part because of their effect on certain
enzymes that post-translationally modify patterns of histone protein acetylation [65,72].
Resveratrol and trans-resveratrol are stilbene derivatives also found in red wine are both of
interest for the cardiovascular system and the brain, but holds promise for aging and may
have properties other than those of antioxidants. Resveratrol in red wine is included among
the two main types of polyphenol constituents, namely, flavanols and anthocyanidins (See
Figure 1) [73]. These oxidized forms of flavanols are good metal chelators due to their
vicinally located hydroxyl groups [1].

One quintessential example is resveratrol is a small molecule and natural polyphenol
from various plants including grapes, cocoa, cranberries, strawberries, tomatoes, peanuts
among others [74,75] and its isomers are believed to be the chief anti-aging compounds
in red wine. Animal studies using rodent models reveal that resveratrol is effective in
the treatment of obesity and T2D [76]. Polyphenols, such as resveratrol, tea catechins and
curcumin, are increasingly recognized for their role in the regulation of lipid metabolism in
the host, perhaps through the microbiota [77]. These improve glucose hemostasis, lipid
profiles, metabolic efficiency and body weight loss [76]. Resveratrol causes phosphorylation
of AMPK, and thus improves its activity while decreasing the expression of the enzymes
involved in lipogenesis and improving insulin-mediated glucose uptake [78].

Curcumin and resveratrol both may improve insulin sensitivity cardiovascular func-
tion and are suspected to play a role in the so-called French paradox [79,80]. Aging is
associated with arterial stiffening, systolic blood pressure and heart disease. Interestingly,
Trimethylamine N-Oxide (TMANO), the gut microbiome-derived metabolite, was found
to induces aortic stiffening, increase systolic blood pressure in rodents and humans with
advancing age [81]. The role of the microbiota is now part of a heart shunt in the MGB axis,
as it relates to a vegetarian and polyphenol-rich diet, which provides health-promoting
phytochemicals and phytonutrients that are beneficial for both the heart and the brain
through the gut microbiota [80].

Polyphenols are not the only protective compounds in a vegetable-rich diet or in
wine because other putative cardioprotective factors may involve folate as a contributor
to the effect of wine. The fundamental mechanisms underlying the beneficial effects of
polyphenols in relation to metabolic disorders and the gut microbiota in murine models
show polyphenols ameliorate effects of metabolic disorders by locally alleviating intestinal
oxidative stress, inflammation and improve intestinal barrier function by modulating
microbial colonization with short-chain fatty acids producing bacteria [82,83]. Furthermore,
it was found that the presence of tight junctions in the digestive tract of rodents can be
improved, thereby implicating its role in strengthening the gastrointestinal barrier [84].
When the anti-obesity effects of cinnamon (Cinnamomum Zeylanicum) are studied using
diet-induced obese male adult Zebrafishes, feeding them a cinnamon-treated diet reduces
BMI, blood glucose levels and lipid levels in the liver, which are associated with decreased
expression of genes involved in adipogenesis such as PPAR family genes that are induced
by a high-fat diet [85].

Curcumin is widely used in Asia as a culinary ingredient in food recipes. Curcumin,
[1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione], is the lipophilic polyphe-
nol component extracted from rhizome of turmeric (Curcuma longa). It is donor of electrons
to reduce reactive oxygen species (ROS), therefore functions as an antioxidant [86]. Since it
is almost insoluble in water, its anti-inflammatory, antitumor, antimicrobial, and antiviral
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functions may be carried out by its metabolites absorbed into the circulation. It may also
function through regulation of the species of microbes in the gastrointestinal tract. When
mice with colon cancer are fed a diet containing curcumin, curcumin administration elimi-
nates or reduces the colon tumor burden, which is associated with increasing Lactobacilli
and reducing Coriobacterales [87,88] In addition, curcumin treatment decreases microbial
abundance of cancer-related species, such as Prevotella, that were found to be greater in
the stool of colorectal cancer patients [89]. It is well known that increased consumption of
plant-derived foods is inversely correlated with T2D. A recent finding suggests that in T2D,
polyphenols from fruits, vegetables and plants, which is related to dietary polyphenol in-
take can significantly help in the maintenance of glycaemic control and diabetes prevention,
as well as the aggregation of amyloid fibrils in confirmational diseases and downstream
toxicity [90]. Moreover, vitamins, such as thimine (vitamin B1), which are also derived
from the same sources, could work in concert with polyphenolic compounds to prevent or
alleviate T2D in part [91].

8. Epigenetic Modifications Targeted by Polyphenols

Epigenetic modifications are the modifications to the genome, rather than changes in
the DNA sequences, that can cause alterations of gene expression. These modifications
include DNA methylation, histone protein modifications (acetylation, phosphorylation,
and methylation), and mircoRNA (miRNAs) [92]. The changes in these epigenetic modi-
fications can be induced by environmental factors including dietary factors and lifestyle
factors, and are subsequently involved in the development of chronic diseases such as
obesity, T2D, cardiovascular diseases, and various cancers. The mechanisms of some of the
chemical or physiological functions such as anti-inflammatory, anti-oxidant and anti-cancer
properties of polyphenols can include epigenetic modifications [93]. Polyphenols can
reserve adverse epigenetic modifications by changing DNA methylation, histone protein
modifications and miRNA levels [93]. DNA methylation is catalyzed by DNA methyltrans-
ferases (DNMTs) by transferring a methyl group from S-adenosyl-methionine (SAM) to a
cytosine of CpG dinucleotides [92]. The acetylation levels of histone proteins are controlled
by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs promote
histone acetylation and result in a more relaxed chromatin structure that mostly favors tran-
scriptional activation, whereas HDACs remove acetyl groups and consequently suppress
gene expression [94]. It has been indicated that curcumin acts as an epigenetic modulator to
inhibit DNMTs, regulate HATs and HDACs, and regulate miRNAs in addition to binding
to DNA and interacting with transcription factors [93]. We proposed early on that histone
modification such as phosphorylated histone H3 was important in early Alzheimer disease
pathogenesis [95].

9. Conclusions

Our conclusions and future direction point to a better understanding of the second
genome within us and co-metabolism within all animals involving the gut microbiota. An
old adage says, “an apple a day keeps the doctor away”, and perhaps this is due to the
diverse polyphenols within apples that explain this anecdote. In that regard, we call for a
new physiology, which involves co-metabolism within the GM and exploring this metabolic
aspect. This is now entirely possible with the advancements in deep and whole genome
sequencing [72,96]. Moreover, the mutually beneficial metabolic relationship between the
host and its resident gut microbiota has been widely described [10,12,84,97]. The bacterial-
derived dietary products and metabolites from gut commensal micro-organisms are largely
useful for the host and our overall health and it is arguable the polyphenols and phenolic
acids largely derived from the Gram-negative enteric species that are most important of
these. Co-metabolism, which occurs between the microbiota and host systems and some
of these same microbes, can control integral segments of our overall health, neurobiology,
mood, biochemistry and may even be integral in the future control of disease.
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