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ABSTRACT: High-resolution transmission electron microscopy
(HRTEM) can directly obtain the lattice fringes and structure
parameters of coal. Aiming at present problems in extracting lattice
fringes in HRTEM images, such as unlocated fringe regions, single-
threshold segmentation, unclassified fuzzy superpixels, and tedious
fringe pruning, an intelligent recognition method based on
semantic segmentation, deep neural networks, fuzzy superpixels,
and other algorithms is proposed. For unlocated fringe regions, the
fringe regions are automatically localized with semantic segmenta-
tion. The whole semantic segmentation network adopts DeepLab
V3+ based on ResNet to reduce unnecessary operations brought
by non-fringe regions. For single-threshold segmentation of the
image, the image is chunked before anything else. The genetic-optimized watershed algorithm is applied to divide the fringe base
maps and non-fringe ones in order to avoid the distortion caused by different lights and shades of the image. For the fuzzy
superpixels between the fringes and non-fringes, a similarity category judgment method based on neighboring pixels is proposed to
solve the problem of unclassified fuzzy superpixels and to enrich and perfect the information of the lattice fringe base map.
Eventually, as for lattice fringe overlap caused by coals piling together, a similarity judgment method based on the fringes’
characteristics is proposed to remove the bur portion of the lattice fringes and improve the pruning rate. Combining the above
theories, a visualization tool based on MATLAB App Designer is designed, and the above four steps can be completed by this app to
accurately display the results of coal aromatic lattice fringe identification in HRTEM images. Comparison with the lattice fringes
drawn by leading experts shows that the fringes interpreted by this method are reliable. This method facilitates the extraction of
lattice fringes in HRTEM, which lays the foundation for the labeling of HRTEM images in a variety of deep learning algorithms and
facilitates the direct observation of coal structures by researchers.

1. INTRODUCTION

The complexity and nonhomogeneity of coal make it excep-
tionally difficult to research its structure. The utilization of both
coal and natural gas in coal is closely related to the coal structure.
In fact, the structure of coal has been studied by testing
techniques such as X-ray diffraction,1,2 nuclear magnetic
resonance,3,4 infrared spectroscopy,5,6 high-resolution trans-
mission electron microscopy (HRTEM),7−9 and atomic force
microscopy (AFM).10 Especially, HRTEM has garnered a lot of
attention from coal researchers because it can directly examine
the coal microcrystalline structure,11−14 study lattice fringes, and
extract structure parameters in coal,15−19 which may then be
utilized to build coal structure models.20 Deep processing and
interpretation of high-resolution transmission electron micros-
copy images is an important part of obtaining lattice fringes. At
present, there are three main methods for the interpretation of
lattice fringes: direct manual interpretation of fringes by the
human eye, which is of low accuracy and time-consuming;14

traditional extraction,21 which is currently the dominant method
of interpretation and means that the HRTEM images are
processed using relevant software to obtain binarized images and
then manually interpreted or quantitatively calculated at the
pixel level; and intelligent extraction,22 where a computer does
all the interpreting work.
For manual extraction, the main manifestations are that in the

process of manual extraction, a large number of lattice fringes
need to be processed and labeled; the whole process is tedious
and consumes lots of time and labor.14
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For traditional extraction, negative images, region selection,
contrast enhancement, and some morphological operations are
available to obtain parameters such as fringe length and
orientation to construct macromolecular models.9,23−26 In the
process of traditional extraction fringe extraction, a high-
resolution HRTEM image has different brightness. Because
the single-threshold method does not completely save the lattice
fringe information, the computer cannot accurately locate the
region of lattice fringes each time. In addition, the problem of
unclassified fuzzy superpixel blocks between the lattice fringe
base map and the non-lattice fringe base map has not been
resolved. The final lattice fringe base map loses a lot of
information.
For intelligent extraction, intelligent extraction is currently

less applied. MASK R-CNN neural networks can be used for
interpretation work with good results.22 Neural network training
requires an accurate fringe base map, but the method of
obtaining the fringe base map does not solve the problem of
unclassified images with varying brightness and darkness and

blurred superpixels. Therefore, training the neural network by
manually drawing fringes on these distorted lattice fringe base
maps only results in imperfect fringes.
In view of the above problems, this paper integrates neural

networks, image processing, and other theories into lattice fringe
extraction. A new method is proposed to solve the problems of
information distortion by the single-threshold method, non-
automated lattice fringe region determination, and unclassified
fuzzy superpixels. The results are compared with the lattice
fringes drawn by experts and prove that this method is feasible. It
will make the base map information of the lattice fringe richer
and more complete, and it will enable scientific researchers to
interpret fringes more accurately and easily.

2. METHODOLOGIES

Fourteen samples from coal seams 2, 3, and 8 in Xishan, Shanxi
Province, China, and six samples from coal seam 16 in Yimin,
Inner Mongolia Autonomous Region, China, were selected. The
coal samples were lightly crushed in an agate mortar for 10 min

Figure 1. Flow chart of the extraction.
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followed by grinding the coal samples to less than 200 mesh,
dispersing them in ethanol, sonicating for 20 min, and then
dropping them into a standard TEM copper mesh. The “high-
resolution”mode with a magnification of up to 50 million times
is used to image the contours of the lattice fringes. Finally,
HRTEM images were taken by a 200 keV transmission electron
microscope (JEOL, JEM-2100F).
The method of extracting HRTEM lattice fringes based on

semantic segmentation and fuzzy superpixels proposed in this
paper is mainly divided into four steps: semantic segmentation
to locate fringe regions, determining fuzzy superpixels,
classifying fuzzy superpixels, and automatically pruning fringes.
The entire extraction flow chart is shown in Figure 1.
2.1. Semantic Segmentation.To extract the coal aromatic

lattice fringes from the HRTEM images, the first step is to locate
the fringe region accurately. The current main method is to
actively distinguish the image after thresholding, which has
many defects. Semantic segmentation can solve the difficulty of
positioning the fringe region perfectly. Semantic segmentation is
a deep learning algorithm that associates labels or categories
with each pixel of an image, and it is used to identify the set of
pixels that constitute a distinguishable category.27,28 Therefore,
it is of great necessity to apply semantic segmentation to
precisely localize fringe regions. The background and fringe
regions of theHRTEM image are shown in Figure 2. The human
eye can clearly distinguish between the background and fringe
regions.

Researching a large number of the pictures of background
regions and fringe regions, it turns out that there is a huge
difference in the grayscale distribution. We select a part of the
256 × 256 picture as an example (Figure 3). The background
region is more concentrated in the grayscale distribution, while
the fringe region is relatively scattered. The human eye can easily
identify the approximate location of the background and fringe
regions, but the thresholding is difficult to achieve. Based on the
above features and combined with the means of semantic
segmentation in artificial intelligence, a large number of images
are trained to achieve the purpose of separating the background
region and the fringe region from each other, and then the fringe
region is processed accordingly. If you skip the positioning step
of the fringe area, directly label the lattice fringes in the HRTEM
image, and use semantic segmentation to train them, the trained
network model can theoretically input the HRTEM image to get
the output of the lattice fringes. However, the process of label
definition must take a lot of time to complete manually, and the
portability of the result is poor because of the great difference
between different coal sample images. However, in this semantic
segmentation, using the architecture of DeepLab V3+ based on
the ResNet network, the image is labeled through the MATLAB
Image Label App, and after the label, the mask image is exported.

The size of the input image is 224 × 224; thus, for a complete
HRTEM image, it can be first chunked into multiple 224 × 224
sized images for testing and then merged into one complete
image afterward. The training device hardware comprises dual
NVIDIA GeForce RTX 2080Ti graphics cards and 64 GB RAM.
The Deeplab V3+model adopts an encoder−decoder structure;
the main part of the encoder is a pretrained residual network
Resnet18, which is used to extract image features, the encoder
uses Atrous Spatial Pyramid Pooling (ASPP) to introduce
multiscale information, and the decoder further merges the low-
level features with the high-level features to improve the
accuracy of the segmentation boundary. Encoders and decoders
all use cavity-separable convolution.29,30 The whole part is
shown in Figure 4.

2.2. Block Threshold Segmentation.The HRTEM image
is a high-resolution image, and the brightness of different parts of
the image varies greatly. If the single-thresholdmethod is used to
determine the fuzzy superpixel range of one image, much useful
information will be lost. In response to this problem, combined
with the idea of block division, the fringe region is divided into
blocks by the size of 64 × 64. After that, a threshold
segmentation is performed on each small block to obtain a
fringe base map and a non-fringe base map in order to make the
fringed bottom map as accurate as possible.
To let the computer automatically fix the threshold required

by the watershed algorithm, the annealing algorithm is generally
used. However, in order to reduce the computation amount and
accelerate the optimization, the genetic algorithm can be used
for optimization. The so-called “genetic algorithm” is an
algorithm that simulates the mechanism of biological evolution
in nature. It follows the law of the survival of the fittest so as to
find the optimal solution in the simulation of natural evolution
and increase the speed of the algorithm operation. The three
fundamental genetic operators are selection, crossover, and
mutation.31−33 Selecting the best individuals from the
population and eliminating the inferior individuals is called
selection. Crossover plays a vital role in biological evolution,
called gene recombination. Mutation is gene mutation that
occurs during biological existence. According to the three basic
operators, there is a direction to find the optimal solution under
the given conditions. When the optimum individual reaches

Figure 2. Schematic diagram of the background and fringes in the
HRTEM image. (a) Original HRTEM image; (b) background region;
(c) fringe region.

Figure 3. Schematic diagram of features of different parts in an
HRTEM image. (a) Background; (b) fringe region; (c) difference in
gray distribution.
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fitness, the problem is solved. The flow chart of the genetic
algorithm is shown in Figure 5.

The genetic algorithm is capable of global optimization and
generality, and it can be combined with other algorithms. The
threshold parameter in each block is coded by the genetic
algorithm to obtain the initial population, cross, and then
mutate, which leads to the optimal threshold parameters. In this
way, the uncertainty and subjectivity of each artificially selected
threshold can be avoided and the turning rate can be accelerated.

Since the human eye selects the duller part when distinguishing
lattice fringes, the threshold value in each block should be less
than the mean value of the part. Therefore, the initial population
should be one gray unit less than the mean gray level instead of
being generated randomly in order to speed up the optimization
rate.
After the best individual is obtained, it is known that the part

of the pixel value less than the threshold of the best individual is
the fringe base map, the part of the pixel value greater than the
mean value is transformed to 255 as the non-fringe base map,
and the others’ category is to be determined. Compared to the
time of determining the threshold for the single block, the
annealing algorithm is 0.069671 s, while the optimized time of
the genetic algorithm is 0.02713 s, which explicates that the
genetic algorithm accelerates the speed of finding fuzzy
superpixels.

2.3. Fuzzy Superpixels. The concept of superpixels is an
image segmentation technology proposed and developed by
Ren and Malik34 in 2003. They refer to irregular pixel blocks
with certain visual significance composed of neighboring pixels
with similar textures, colors, luminance, and other character-
istics. When the labels of some pixel blocks cannot be accurately
determined, they are defined as fuzzy superpixels.35 The fringe
region is divided into two parts by the watershed algorithm: the
fringe base map and the non-fringe base map, both of which are
superpixel blocks. The remaining part to be determined is the
fuzzy superpixel part. The correct classification of fuzzy
superpixels directly affects the accuracy of the fringe base map.
As shown in Figure 6a, a region in the original image is

selected. Figure 6c is the image after the watershed algorithm is
performed on Figure 6b. There are two superpixel blocks in
Figure 6c, and the black superpixel block is the lattice fringe base
map. In order to make the classification more accurate, the fuzzy
superpixel parts of the image should be identified. Since the
color of the fringes is relatively dim and the human visual system
cannot distinguish the gray scale from 0 to 255 as clearly as the
computer, the mean value is used as the boundary in an image;
those above the mean value are defined as relatively whiter, and
those below the mean value are defined as relatively darker. The
pixel classification in the range from the segmentation threshold
to themean value is not accurate.What may be a fringe base map
or a non-fringe base map is called fuzzy superpixels. The blue
part in Figure 6d is the fuzzy superpixels. By comparing Figure

Figure 4. Schematic diagram of the DeepLab V3+ structure.

Figure 5. Flow chart of the genetic algorithm.
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6c,d, it can be found that the bottom map of the lattice fringe in
the upper left part of Figure 6c may be decoded into several
separated fringe segments. However, if the fuzzy superpixels are
considered, it is clear that the fringe bottom map will not be
completely separated for sure. Therefore, it is crucial to solve the
problem of unclassified fuzzy superpixels.
At present, determining the classification of the fuzzy

superpixel in the fringe regions remains a problem to be solved.
The most common methods for determining the classification
are neural networks, regression, and others. If the BP neural
network is used to predict the fuzzy superpixels in the fringe
regions, the input of the network is the grayscale values of the
non-fringe and fringe parts of each block, and the corresponding
outputs are 0 and 1. The neural network is trained for each block,
the corresponding fuzzy superpixels are put in the trained
network, and the probability of fuzzy superpixels in each block
can be predicted. A probability of less than 0.5 is equal to 0,
which corresponds to the non-fringe part; a probability of more
than 0.5 is equal to 1, which corresponds to the fringe part. Such
an approach requires neural network predictions for each block,
which is computationally intensive and time-consuming. At the
same time, the prediction is based only on the gray value of a
single pixel, completely ignoring the gray value around the pixel,
which lacks comprehensive consideration. For example, there
are four pixel points with grayscale values of 91 and 139, namely,
A, B, C, and D. By means of the BP neural network, the
probabilities of A and B are the same, and so are C and D. This
shows, regardless of the other pixels in the 8-neighbor, that the
center pixels are predicted only with respect to their own
grayscale size and not with respect to the surrounding pixel
distribution. Obviously, that is extremely unreasonable.
Similarly, the regression prediction method is used to make
the data satisfy a certain functional model, which also does not
take into account the grayscale values around the pixel.

Therefore, it is not practical to completely ignore the situation
around the fuzzy superpixels and merely use one mathematical
model to predict the classification of the fuzzy superpixels. This
paper proposes a similarity category judgment method based on
neighboring pixels. Since the gradient around the fuzzy
superpixel decreases in an increasing trend, a neighborhood
size of 3× 3 is selected. As shown in Figure 7, with Pixel x5 as the
center, all pixels in the 8-neighbor are taken as a whole x, and the
blue regions are fuzzy superpixels. We select the pixel with a gray
value of 109 in the fuzzy superpixels as the judgment point
(marked as pixel α). We then compare the similarity between
pixel α and each of the remaining 8-neighbor, namely the pixels
with gray values of 46, 89, 123, 119, 140, 121, and 63 (fuzzy
superpixels with a value of 91 are excluded). The greater the
similarity is, the more similar they are. The whole process uses
the Spearman correlation coefficient judgment formula.36 The
Spearman formula uses monotonic equations to evaluate the
correlation of two statistical variables. If there are no duplicate
values in the data and when the two variables are completely
monotonically correlated, the Spearman correlation coefficient
is +1 or −1, as shown in eq 1.

h
x x y y

x x y y

( )( )

( ) ( )
i i i

i i i i

1 2 2
=

∑ − ̅ − ̅
∑ − ̅ ∑ − ̅ (1)

where x is the original data and y is the comparison data.
Calculating all similarities between the centered pixel and

each of the remaining 8-neighbor not only takes into account the
surrounding pixels but also facilitates the calculation (compared
with BP neural network and regression). When the human eye
observes a single pixel, it observes the surrounding pixels as well.
Therefore, the gray scale of the surrounding pixels will affect the
judgment of fuzzy superpixels. For the human eye to observe
certain fuzzy superpixel β, its gray value is H. The threshold of
the part (where β is) is X, and the mean value of this part is M.
The pixel value that is not more than X must be the fringe base
map. The pixel value that is no less than M cannot be the base
map. The number of pixels in the β-centered 8-neighbor whose
pixel value is no more than threshold X is n1, and that with their
pixel value being no less thanM is n2. If n1 > n2, it means that it
belongs to the fringe base map. Since the 8-neighbors have eight
pixels excluding the center, each pixel has a probability of 0.125.
Thus, the probability of β belonging to the fringe base map is
0.125 × n1. If n1 < n2, the probability of β belonging to the non-
fringe base map is 0.125 × n2. If n1 = n2, we calculate the sum of
the gradient of β and the superpixels in the fringe base map and
the superpixels in one fringe base map in the eight
neighborhoods. Wherever the gradient sum is lower is the
type of superpixel the module β is closer to. As shown in eq 2,

Figure 6. Schematic diagram of the fuzzy superpixels. (a) Original
HRTEM image; (b) image of the selected region; (c) superpixels; (d)
fuzzy superpixels.

Figure 7. Schematic diagram of pixel comparison. (a) 8-Neighbor; (b) superpixels; (c) the central pixel; (d) the compared pixels.
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In conclusion, it will be more accurate to comprehensively
consider the classification of pixels from two aspects of similarity
and the human eye’s characteristics. Suppose that the weights of
the two factors areω1 and ω2, respectively, whereω1 + ω2 = 1, h
= a × h1ω1 + h2ω2. The value of a is ±1. If n1 > n2 and the gray
level of the contrasted pixel is less than X, a = 1; if n1 > n2 and the
gray level of the contrasted pixel is more than M, a = −1.
Likewise, if n1 < n2 and the gray level of the contrasted pixel is
less than X, a =−1; if n1 < n2 and the gray level of the contrasted
pixel is more than M, a = 1.
2.4. Fringe Pruning. After solving the issue of fuzzy

superpixels, the image will be skeletonized to obtain the lattice
fringe image. However, due to the stacking between coal seams,
some lattice fringes are intersected. In the previous interpreta-
tion methods, this problem was solved by manual painting,
which was time-consuming and labor-intensive. A method of
automatic processing of fringe branching is proposed in order to
make the whole step more intelligent. The preliminarily
obtained lattice fringes are labeled and sorted for each
connected region so that each fringe has a corresponding
label, which is finally shown in Figure 8a. Then, the bur of the
image is removed. Due to the pixels of the boundary points in the
image, it is not possible to judge their 8-neighbor. Therefore, the
image can be enlarged, and the periphery of the image can be
padded with zeroes as shown in Figure 8b.

As for each element in the traversal images, if the pixel value in
the image is more than 0, the convolution operation is
performed on it. The convolution kernel is

h
1 1 1
1 1 1
1 1 1

=

The convolution formula is as follows:

g x h i j f x i y j( ) ( , ) ( , )
i j1

1

1

1

∑ ∑= − −
=− =− (3)

where, h(i, j) is the convolution kernel and f(x, y) is the gray
value.
The step length S of the convolution operation is 1. As shown

in Figure 9, all the elements whose operation result is more than
3 times of their own pixel value are counted. At the same time, if
the value of the convolution operation is the largest in its 8-
neighbor, it is labeled as the intersection point; all the
convolution results equal to 2 times of their own are marked
as boundary points.
Excluding the intersection points, what remain are broken

fringes. Since the shortest lattice fringe is 0.25 nm and a pixel in
the HRTEM image is generally 0.03 nm, considering
intersection, the connected region formed by three or less
than three pixels is the bur, and all the connected regions are
traversed to remove burs. After removing the burs, all the lattice
fringes after segmentation are obtained, and the similarity of
these fringes is calculated one by one according to the new label
order. The grayscale average, grayscale variance, grayscale third-
order moment, median, and modal number of the fringes are
selected as the eigenvalues for judgment, and the Spearman

Figure 8. Schematic diagram of the enlargement of the label image. (a) Label image; (b) expanded label image.

Figure 9. Schematic diagram of convolution.
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correlation coefficient judgment formula is used. We then
compare the similarity of each fringe. If the eigenvalues of each
original connected region are similar to the lattice fringes
without intersection points, it means that they belong to the
same category. Otherwise, they do not belong to the same kind.
If the categories are the same, we add the intersection points, and
vice versa.

3. RESULTS AND DISCUSSION
3.1. Results of the FringeArea Localization.The original

280 high-resolution pictures were cropped and rotated to obtain
16,800 224 × 224 pictures. Of these, 11,760 were used as the
training sets, 2520 were used as the cross-training sets, and 2520
were used as the test sets. Semantic segmentation was trained on
those three kinds of sets. The final accuracy rate reached 97.3%.
The training results are shown in Figure 10. It can be seen that
the abovementioned problems of thresholding have been solved
to a large extent, reducing the presence of a large number of
noise points.
We now take the grayscale thresholds of 60, 70, 80, 90, 100,

and 110 as an example (Figure 11). It can be seen from the

thresholding that when the thresholds are 60 or 70, the
background region is relatively removed more, but the main
fringe region loses lots of useful pixels. When the threshold is 70
or 80, more fringe regions are retained, but the background parts
have more and more noise. When the threshold value is 100 or
110, the background regions have much more noise, which
makes the processing extremely inconvenient. It can be seen that
the thresholding directly obtains the lattice fringe base map.
Locating the lattice fringe regions requires human observation,
and the computer cannot locate it autonomously. Meanwhile,
semantic segmentation can locate them accurately, reducing
some unnecessary operations in computer processing.

3.2. Results of the Block Threshold Segmentation. A
single-threshold segmentation cannot solve the distortion of the
fringe base map caused by different lights and shades in the
image. The size of original image is 2240 × 2240 and can be
divided into 1225 64 × 64 blocks. Figure 12a is an example of a
section from the original image. It can be seen that the red part is
brighter and the blue part is darker. With a lower threshold
under which the base map of the dark part is shown accurately,
the bright part loses most of the information as shown in Figure

Figure 10. Schematic diagram of training results. (a) Sample image 1; (b) test result of sample image 1; (c) sample image 2; (d) test result of sample
image 2; (e) sample image 3; (f) test result of sample image 3.

Figure 11. Schematic diagram of threshold segmentation. (a) Threshold 60; (b) threshold 70; (c) threshold 80; (d) threshold 90; (e) threshold 100;
(f) threshold 110.
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12b. On the other hand, with a higher threshold under which the
base map of the bright part is shown accurately, the dark part has
toomuch noise, affecting the subsequent processing, as shown in
Figure 12c. Figure 12d illustrates the result of block threshold
segmentation, which shows that both the bright and dark parts
can be accurately displayed and much information of the fringe
base map is retained.
3.3. Results of the Fuzzy Superpixel Classification.

Taking Figure 8 as an example, the pixel with a gray value of 109
is judged for similarity as shown in Table 1. It can be found that

pixel α is most similar to the pixel with a gray value of 140.
Therefore, the similarity category judgment method for
neighboring pixels proposed in this paper not only takes into
account manual extraction but also applies similarities for the
purpose of improving objectivity and accuracy. We apply this
method to Figure 7 to identify the attribution of each pixel as
accurately as possible, and the final effect is shown in Figure 13.
From Figure 13a,b, it can be found that the fuzzy superpixels

have their own labels, and the lattice fringe base maps obtained
by this method can maintain more complete information.
3.4. Results of Fringe Pruning.The lattice fringe base map

is skeletonized as shown in Figure 14b. We then remove the burs
of the lattice fringes and finally compare the separated fringes
according to the similarity degree. If the similarity is high, the
intersection points will be filled in; otherwise, the separation
continues. Figure 14b can be divided into 59 parts after
deburring, of which 26 parts belong to the fringe after breaking.
The similarity calculation is performed on these, and the results
are shown in Table 2. From Figure 14d, it can be seen that many
burs are removed and intersections are added according to the
similarity degree. Comparing the expertly interpreted lattice

Figure 12. Results of block threshold segmentation. (a) Original
HRTEM image; (b) lower threshold; (c) higher threshold; (d) block
threshold.

Table 1. Calculation of the Similarity Value of Each Pixel

contrast pixel grayscale a × h1 h2 h

123 0.5 0.68260 0.64608
89 −0.5 0.67960 0.44368
46 −0.5 0.59870 0.37896
119 0.5 0.73850 0.69080
140 0.5 0.88440 0.80752
121 0.5 0.68050 0.64440
63 −0.5 0.79320 0.42990

Figure 13. Schematic diagram of blurred fuzzy pixel processing results.
(a) Fuzzy superpixels; (b) lattice fringe base map; (c) removing burs;
(d), merging the same fringes.

Figure 14. Schematic diagram of lattice fringes. (a) Original HRTEM
image; (b) original lattice fringe; (c) expert drawing; (d) final lattice
fringe.

Table 2. Calculations of Different Label Similarity Values

label h label h

1 −0.09546 35 0.99304
3 0.99802 36 0.83548
4 0.98325 40 0.99547
9 0.99989 42 0.99976
14 0.99924 43 0.99972
19 0.99990 45 0.08508
22 0.99999 47 0.25132
24 0.99999 50 0.99906
25 0.97146 51 0.13861
27 0.99499 52 0.99973
28 0.99993 53 0.99851
30 0.98311 54 0.99061
33 0.99565 56 0.83532
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fringes in Figure 14c, it can be found that the fringes interpreted
by the method of this study are accurate and reliable.
An HRTEM image with a size of 2240 × 2240 takes several

hours to a day to trim manually, but this method can trim it in
about 20 min. After the final fringe is obtained, the angle of the
lattice fringes is calculated according to the start and end
positions of the fringe, and the direction of the lattice fringes is
determined by the angle. A straight line can correspond to two
angles, for example, y = x, which is both 45 and 225°. Thus, in the
process of calculating the angle, what is needed is to calculate the
angle between 0 and 180°. Finally, the angle distribution
diagram can be obtained, which is convenient for researchers to
observe the direction of the lattice fringes.
3.5. Development of the MATLAB App. All the above

steps are developed by MATLAB and encapsulated with the
MATLAB app. The early MATLAB human−computer
interaction is realized through the MATLAB GUI, in which
some visualization tools can be made to facilitate the usual
algorithm calibration and verification. However, it still has many
shortcomings, such as relatively low-end components, constant
bugs, errors reported when opening the last saved interface in
many cases, and difficulty in writing GUI function codes and
their poor readability. At present, the above shortcomings can be
completely avoided through MATLAB App Designer. First of
all, there are many kinds of components. Component control is
convenient. Interfaces built by them look appealing. Further-
more, because the MATLAB app is object-oriented, the code is
simple to write and easy to read. Finally, the portability is strong.
The finished app interface can also be encapsulated and
packaged. It is convenient for use in the MATLAB software
and online as well. This is why MATLAB App Designer is
chosen to develop a visual interface.
The app mainly includes the following functions: loading

images that need to be processed, like HRTEM images, lattice
fringe images, superpixel images, fringe length distribution
images, and fringe direction distribution images; analyzing fringe

length and fringe direction; and allowing scientific researchers to
process and judge more quickly and conveniently. All the above
images, length distribution data, and angle distribution data can
be saved in one folder for future use. One example of using the
app is shown in Figure 15.

4. CONCLUSIONS
This study proposed an intelligent recognition method based on
semantic segmentation, deep neural networks, fuzzy superpixels,
and other algorithms. The original HRTEM image was
processed to obtain an accurate lattice fringe base map, and
then the pixels of this map were quantitatively calculated to
finally obtain the fringes. Problems of previous handling are
addressed in this study with targeted solutions:

(1) For unlocated fringe regions, semantic segmentation was
used to automatically identify fringe regions and ignore
non-fringe regions, reducing noises generated during
HRTEM image processing while saving a lot of time.

(2) For single-threshold filtering, the image was chunked first
to avoid the distortion caused by different lights and
shades of the image. Then, the genetic-optimized
watershed algorithm was applied to determine the
optimal threshold for each block, weakening the influence
of human subjectivity and binarization on the decoding
process while preserving the information in the image as
complete as possible.

(3) For the fuzzy superpixels between fringes and non-fringes,
a similarity category judgment method based on
neighboring pixels was proposed to solve the problem
of unclassified fuzzy superpixels and to enrich and perfect
the information of the lattice fringe base map. Accurate
fringe base maps can lay the foundation for labeling of
HRTEM images in a wide range of deep learning.

(4) For lattice fringe overlap caused by coals piling together,
this paper proposed a similarity determination method
based on the fringes’ features, which was used to quantify

Figure 15. Schematic Diagram of the MATLAB App.
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the relevant pixels of the fringe base map in order to
remove burs rapidly and accurately. Comparison with
lattice fringes drawn by leading experts demonstrates the
feasibility of pruning the fringes.

(5) The development of the MATLAB app can provide
reliable technical support for users to obtain a large
amount of lattice fringe information more conveniently.
All the above four steps can be completed by the app. The
app file is freely available to relevant researchers on
GitHub. The website is https://github.com/
YICHUANSUANFA/Research-of-HRTEM.

(6) Future studies need to explore the causes of the spatial
state distribution of coal lattice fringes. A coal HRTEM
database containing various regions can also be
established for researchers. The study of lattice fringes
can facilitate the construction of coal macromolecule
models in the field of coal molecular geochemistry. In
addition, the novel method for intelligent recognition of
lattice fringes is more beneficial to HRTEM research in
polymer materials, carbon materials, and graphene fields.
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