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Results: In this paper, we propose a novel fully-shared multi-task learning model
based on the pre-trained language model in biomedical domain, namely BioBERT, with
a new attention module to integrate the auto-processed syntactic information for the
BioNER task. We have conducted numerous experiments on seven benchmark BioNER
datasets. The proposed best multi-task model obtains F1 score improvements of 1.03%
on BC2GM, 0.91% on NCBI-disease, 0.81% on Linnaeus, 1.26% on JNLPBA, 0.82% on
BC5CDR-Chemical, 0.87% on BC5CDR-Disease, and 1.10% on Species-800 compared to
the single-task BioBERT model.

Conclusion: The results demonstrate our model outperforms previous studies on all
datasets. Further analysis and case studies are also provided to prove the importance
of the proposed attention module and fully-shared multi-task learning method used in
our model.
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Background

With the rapid development of biomedical research, the number of biomedical docu-
ments increases with the explosive exponential growth, which has made it difficult for
biomedical scholars to keep pace with the cutting-edge research. There is an increasing
need of effective natural language processing (NLP) tools to help retrieve, organize, and
manage the massive biomedical data and information. Biomedical named entity recog-
nition (BioNER) is a primary first step in any biomedical literature mining task, which
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aims to detect the boundary of biomedical entities and predict their entity types, such
as diseases, genes, species, chemical, etc. The performance of BioNER systems directly
impacts downstream applications, such as biomedical relation extraction [1, 2], drug-
drug interaction task [3, 4] and knowledge base construction [5, 6].

A BioNER task is typically considered as a sequence labeling task, which aims to assign
the best label sequence for a given input sentence. A common tagging method is the BIO
format [7], which denotes whether each token is at the Beginning of an entity, Inside, or
Outside an entity. This method is capable of distinguishing consecutive entities and can
be used easily in an end-to-end model, which inputs each token and produces BIO tags
in the final layer. An example sentence annotated using the BIO format can be found in
Fig. 1, where “congenital myotonic dystrophy” is the entity detected and “disease” is the
entity type classified.

Traditional methods for the BioNER task usually used dictionary-based or rule-based
approaches [8, 9]. These methods heavily relied on biomedical experts to establish
dictionaries or rules, which takes a lot of manual labor and is time consuming. As the
amount of data increases, more researchers tried to use machine learning approaches
to deal with the BioNER task, such as Support vector machine (SVM) [10, 11] or Con-
ditional random field (CRF) [7, 12, 13]. However, the conventional machine learning
approaches need plenty of handcrafted features extracted from raw data, and the per-
formance is limited. The rapid development of deep learning provides an easier way to
overcome these problems. Crichton et al. [14] used the word context as the input based
on the convolutional neural network (CNN) and Habibi et al. [15] proposed the bidirec-
tional LSTM (BiLSTM) model combined with a CRF layer. More recently, pre-trained
language models like BERT [16], XLNet [17], and Roberta [18] achieved great success on
a lot of NLP tasks. Lee et al. [19] introduced a domain-specific language model, named
BioBERT, which is pre-trained on the large-scale biomedical corpora. BioBERT largely
outperformed previous methods in several biomedical text mining tasks including
BioNER task. Considering the powerful performance of BioBERT, we propose to use it
as the encoder of our model to obtain high-quality semantic representations.

In addition, we assume that combining the syntactic information, e.g., part-of-
speech (POS) labels, syntactic constituents, and dependency relations with the
pre-trained BioBERT can help recognize biomedical named entities. Specifically,
sentences in biomedical texts are usually formal, well-structured and contain a lot of
specialized terms, in which syntactic information can present grammatical structure
for sentences and provide helpful cues for understanding the relationship between
words. For example, Fig. 2 shows the constituency parse tree automatically produced
by the NLP toolkit, where the disease entity is “congenital myotonic dystrophy.” The
range of the noun phrase in this tree instead of the adjective phrase can be a good
hint for BioNER. The other advantage of syntactic information is that it can be auto-
matically generated by off-the-shelf NLP toolkits rather than manually constructed,

Input: This case is a paternally transmitted congenital myotonic dystrophy

Output: O O OO (0} (e} B-Disease I|-Disease I-Disease
Fig. 1 An example sentence for the input and output in BioNER



Zhang and Chen BMC Bioinformatics (2022) 23:458 Page 3 of 21

B
E] [ i ] [ y ] [dvstrophv}

) [

Fig. 2 A constituency parse tree example

which makes it easier to use in this task. Previous studies [20—24] suggest that the
syntactic information has a certain ability to help the BioNER task. These studies nor-
mally concatenated the embeddings of the syntactic features with the word embed-
dings directly, which hurts the model performance because of the error-prone and
noisy syntactic information processed from NLP toolkits. Accordingly, Tian et al.
[25] proposed a novel model instead of directly concatenating to incorporate the syn-
tactic information into the BioBERT encoder and achieved the best results in sev-
eral BioNER datasets. They used the key-value memory network (KVMN) [26], a new
deep neural method learning from pairwise information, to weight the syntactic fea-
tures. However, the output of the KVMN mainly relies on the value embeddings. The
key embeddings are only used for providing weights to values. To solve this problem,
Tian et al. [27] proposed a new attention mechanism, named two-way attention, to
integrate syntactic information for the encoder. The two-way attention can make full
use of syntactic features, rather than using one feature (key embeddings) to weight
the other (value embeddings) as in KVMN. Although this method achieved good per-
formance in another task, named “the joint Chinese word segmentation (CWS) and
part-of-speech (POS) tagging task,” it still has some shortcomings. One is that the
two-way attention mechanism employed two separate attention parts, therefore it
may lose some information between the two parts. Another is that the embeddings
of syntactic information are only randomly initialized, which lacks a strong semantic
representation ability and may cause the out-of-vocabulary problem. Consequently,
we propose a novel attention mechanism to tackle these problems.

An effective deep learning model requires huge amounts of data. However, the
dataset in the biomedical domain is more likely to become unavailable due to the
limitations of privacy and specialization. To deal with the above problems, multi-
task learning (MTL) has been introduced by previous studies [14, 28, 29, 29-34] and
achieved great success in the BioNER task. The basic method of MTL is that multi-
ple annotated datasets are trained at the same time to improve the performance on
a single dataset. The datasets are all used in the BioNER task with a similar format,
which may have different entity types and may be created by different researchers.
Different datasets in the similar domain may contain useful common information like
lexical semantics and grammatical expression. The multi-task model can therefore
share this information across different datasets in the training step. In general, pre-
vious MTL models have adopted the strategy that the model shares certain parts of
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the model parameters for different datasets and leaves the rest separated for specific
tasks. For example, Crichton et al. [14] proposed an MTL model by sharing parame-
ters in encoder layers and convolution layers, and trained separately in decoder layers
for each dataset. Wang et al. [28] proposed a BiLSTM-CRF model with an additional
character layer. An MTL model was trained by sharing parameters of the character-
level and word-level LSTMs and adjusting parameters of the CRF layer independently
for different datasets. Chai et al. [34] trained an MTL model by sharing parameters in
underlying layers of the XLNet and trained separately the upper layers of the XLNet
and the decoder CRF. This MTL method leads to the limited ability of sharing infor-
mation across different datasets and causes the model to rely too heavily on the task-
specific layer. Besides, the multi-task model parameters will increase with the number
of datasets because of additional task-specific layers. Huang et al. [35] proposed a
transfer learning model by sharing all parameters to integrate multiple cross-domain
datasets to achieve good results in Chinese Word Segmentation tasks. Inspired by
this work, we propose a straightforward and effective multi-task learning model that
shares all parameters across different datasets. The benefit is that we do not need any
task-specific models to fit different datasets, and the method can be directly applied
in the single-task model without manual adjustments. It can control the rapid growth
of the total parameters on the MTL model and improve the performances on several
BioNER datasets.

In this paper, we propose a novel fully-shared multi-task learning model based on
the pre-trained BioBERT with a new attention module to integrate the auto-pro-
cessed syntactic information for the BioNER task. The proposed framework con-
tains two parts: One is the single-task method which is only trained on each single
BioNER benchmark dataset, and the other is the multi-task method trained across
all datasets together. Specifically, our single-task model uses a new proposed atten-
tion mechanism, named Combined Feature Attention (CFA), to integrate the syntactic
information into BioBERT encoder for improving the performance. We employ the
open source NLP toolkit to parse the input sentence and extract several types of syn-
tactic information. Then, we use the proposed attention module to weight each token
and its corresponding syntactic features, where syntactic features are combined with
the hidden embeddings derived from BioBERT and syntactic labels obtained from the
toolkit. Finally, the attention vectors are concatenated with the output of the BioBERT
and used to guide the tagging process for the decoder. In this way, the single-task
method takes advantage of the pre-trained BioBERT and syntactic information, and
outperforms other single-task models in the BioNER task. Moreover, we introduce
a straightforward and effective multi-task learning method which shares all model
parameters to incorporate multiple datasets into one model. The fully-shared MTL
method is a basic but effective way to learn the commonality among different datasets
and can be applied easily to many single-task neural network models. To summarize,
the main contributions of this paper are as follows:

+ We propose a new attention mechanism, named CFA, to make good use of the
pre-trained BioBERT and the syntactic information in the single-task model. Our
single-task model substantially outperforms the baseline BioBERT model and
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Fig. 3 The architecture of the proposed single-task model for BioNER (the context features and syntactic
labels of the 7th word “congenital”in the example sentence are extracted from the results processed by the
NLP toolkit)
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other models using the syntactic information because of our better syntactic fea-
ture extraction and combination ability.

+ We introduce a straightforward and effective multi-task learning method which
shares all parameters without task-specific layers for different datasets. The
fully-shared MTL method discriminatively exploits the implicit information
across different datasets and significantly improves BioNER compared with the
single-task model.

+ The experiment results on seven benchmark BioNER datasets show our fully-
shared MTL model with CFA outperforms others on all datasets, which proves
the effectiveness of the proposed method. Analyses and case studies show all
components of our proposed model are necessary for achieving high perfor-
mance.

Methods

Following the previous approaches, we treat BIoNER as a sequence labeling task.
Given the input biomedical sentence of n words X = [x1,%2,...,%;,...,%y,], the out-
put is a sequence of named entity labels Y = [y1,¥2,...,%i...,¥x], where x; is the i-th
word in the sentence, and y; is the i-th predicted label. For each x;, the goal is to
predict the corresponding label y; ‘B; ‘I, ‘O; where ‘B’ indicates the word x; is the
beginning of a biomedical entity, ‘I’ denotes «; is inside an biomedical entity, and ‘O’
denotes x; is outside an entity, i.e. x; is not a part of an biomedical entity.

The proposed framework contains two parts: One is the single-task model which
is only trained on each single BioNER dataset, and the other is the multi-task model
trained across all datasets together. In this section, we respectively explain details of
the proposed single-task model and multi-task model.
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Fig. 4 An example of syntactic feature extraction

Single-task model (STM)

The overall architecture of our single-task model is detailed in Fig. 3. The left part
describes the backbone of the proposed architecture for the BioNER sequence labe-
ling paradigm, and the right part is the process of handling the syntactic information.
We propose a novel attention module to integrate the syntactic information into the
backbone of the model. In this section, the process about syntactic feature extraction
is first introduced. Next, we describe how the proposed attention mechanism, namely
combined feature attention (CFA), incorporates the syntactic features into BioBERT.
Finally, we describe how the sequence labeling model works with the attention layer.

Syntactic feature extraction

Following previous studies [25, 27], we utilize three types of syntactic information:
POS labels, syntactic constituents, and dependency relations. POS is a category of
words with similar grammatical properties, such as nouns, verbs, adjectives, adverbs
and so on. Syntactic constituent is a word or a group of words that functions as a
single unit in a hierarchical structure, such as a noun phrase, or verb phrase. Depend-
ency relations are the concept that words are connected to each other through some
kind of directed links, such as nominal subject, copula, adjectival modifier and so
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on. To obtain the syntactic information, first, we run the open source NLP toolkit,
e.g., Stanford CoreNLP Toolkit (SCT) [36] to get the results for the input sentence X.
Then we extract the context features and their corresponding syntactic labels of each
word x; in X from the results. In Fig. 4, we show an example for the highlighted word
“congenital” in the input sentence “This case is a paternally transmitted congenital
myotonic dystrophy,” where three types of context feature and their corresponding
syntactic labels are extracted. We elaborate each type of syntactic information below.

+ POS labels Consider each word x; in sentence X, we employ a 1-word window to
extract the neighboring words on both sides of x; as context features and their cor-
responding POS labels as syntactic labels. For example, in Fig. 4a, the word “con-
genital” is the currently processed word, then the context features are the word itself
and its left and right neighboring words and syntactic labels are the corresponding
POS labels of each context word obtained from the toolkit. The context features are
[transmitted, congenital, myotonic], and the syntactic labels are [VBN, J], JJ].

+ Syntactic constituents Given a word x; in X, we first find the leaf containing x; in
the syntactic parse tree, and then search up from the leaf to find the first accept-
able ancestor node whose label is in a pre-defined syntactic label list following “the
CoNLL-2003 shared task” [37]. Then we select all the words under this node as con-
text features and search first ancestor nodes of these words as their corresponding
syntactic labels. In Fig. 4b, “NP” is the first acceptable ancestor node for the example
word “congenital” There are six words under this node and each word can find its
ancestor node. The context features are [a, paternally, transmitted, congenital, myo-
tonic, dystrophy] and the corresponding syntactic labels are [NP, ADJP, ADJP, NP,
NP, NP].

« Dependency relations Dependency relations use directed acyclic graphs to depict the
structure of a given sentence. The asymmetric relationship between two basic units
has been called the dependency relation. One unit is the dominant element (called
governor), and the other is the subordinate element (called dependent). For each word
x; in X, we first select governor words and dependent words of x; from the depend-
ency structure as shown in Fig. 4c. Then, we treat these governor words, dependent
words and the word x; as context features and treat the dependency types of these
words in the graph as syntactic labels. As is shown in Fig. 4c, the example word “con-
genital” has only one governor word “dystrophy” which is the root of the sentence
and no dependent words. For comparison, the word “transmitted” has one depend-
ent word “paternally” which is pointed from “transmitted” The context features for
the word “congenital” are [congenital, dystrophy] and the corresponding syntactic

labels are [amod, root].

After these procedures, we can build the context feature sequence S and the syn-
tactic label sequence L for each type of the syntactic information for each input
sentence X. Formally, for each word x; in X, let S; = [s;1,8i2,...,8ij,...,8im;] and
Li =i, by ..o Lijs. ..o lim,] be the sub sequence of S and L, respectively. Here, s;;
denotes a context word extracted by the rules we define, /;; denotes the corresponding
syntactic label for s;;, and m; denotes the length of S; and L;. For example, in Fig. 4a,
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we focus on the 7th word “congenital,” s7,; = “transmitted,” [;; = “VBN,” and m; =3.
It’s worth noting that we obtain different S’s and L’s for three types of syntactic infor-
mation, and our model utilizes each type of syntactic information separately.

Combined feature attention

Inspired by Tian et al. [27], we use the attention method to incorporate the syntactic
features into the BioBERT model. We first feed the input sentence X into the encoder
pre-trained BioBERT to get the hidden vector sequence:

Hz[hl)hZ’---rhiw“’hn] (1)

where h; € R% is the hidden vector of the i-th word x; and d; is the hidden dimension
of the encoder. Second, we change the context feature sequence S; and syntactic label
sequence L; to embedding matrices respectively for each word x;. Because the words in
Si are also included in the input sentence X, we leverage the hidden vector sequence
H to embed S;. Different from previous methods [25, 27] that use randomly initialized
embeddings or pre-trained embeddings, the embeddings in our method have more
abundant semantic representations and can avoid the OOV problem due to the powerful
function and good performance of BioBERT. Specifically, a context word s;; in S; is prob-
ably the k-th word in the sentence X, so we use hy to directly represent the embedding of
s;j, where 1<k<n . In this way, we can obtain the embedding of each word in S;:

S S S S S
E} =le], €5, ..., € ei’mi] (2)

where the context feature embedding matrix EiS € R4*mi and el«S,j = hy. As is shown in
Fig. 3, the context features for the word “congenital” in the type of dependency relations
are [congenital, dystrophy], where “congenital” and “dystrophy” are the 7th and 9th word
in the input sentence, so EiS = [efl,efz] = [hy, hg]. As for L;, we adopt the common
approach of randomly initializing the embeddings and training with the model:

L L _L L L
Ei = [el',l, el',z, ceey el’,j, c ey el»,ml_]

3)

where the syntactic label embedding matrix is E- € R%*"i and dy is the artificially set
dimension of the initial embeddings. Then, we concatenate EiS and EiL to obtain syntactic
feature embedding matrix for each input word x; and align the dimension of e;; and hy
by a fully connected layer:

€ =W, - (e,‘s,/' @ eb) + be (4)

Ei =le;1,€2,...,€i),..., € m] (5)

where E; € R91%"i ig the syntactic feature embedding matrix for x;, We € RAx(dr+d2) jg
the weight matrix and b, € R%1* is the bias vector.

Finally, we apply the Scaled Dot-Product Attention [38], an effective attention
mechanism used in many NLP tasks, with the representations of the word x; and its
syntactic feature to get attention vectors. It can be formulated as:
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(h)" e
JRp— ft - ¥
a;j = so max( \/Z (6)
m;
a=) a-eg (7)
j=1

where a;; € R!is the attention weight for each syntactic feature e;; in Ej, h; is the hidden
vector of x;, a; € R% is the weighted vector for all syntactic features in E; and 3 denotes
an element-wise sum operation. After that, we concatenate a; and h; to get the output
vector o; for each word x; in sentence X, which can be expressed by o; = a; @ h;.

In this way, the proposed attention module can learn the weights of the correspond-
ing syntactic features for the input sentence. Since the attention module uses a special
embedding method which combines the information of context features and syntactic
labels, we name it combined feature attention (CFA).

Sequence tagging network

Once the output vector o; is obtained from the CFA module, we feed it into a fully-con-
nected layer followed by a softmax layer. For each word x; in X, the tagging probability
distribution § can be formulated as follows:

® = [J1,72, 73] = softmax[W - o; + b] )

where [J1, 2, ¥3] denote the probability of each type of BioNER labels, i.e., “B, “I” and
“O; W and b are trainable parameters. We can also use the CRF layer instead of the
softmax layer in our model, but from our test experiments it did not achieve significant
improvement and took longer time in training steps. The loss function is cross-entropy.

Multi-task model (MTM)

Recently, multi-task learning (MTL) has been successfully applied to solve the problem
of limited availability of annotated data in the BioNER tasks. Most previous MTL mod-
els for the BioNER task use multiple datasets simultaneously to train a model, in which
some parameters of the model are shared for different datasets and the others are sepa-
rated and task-specific. This leads to the limited ability of sharing information across
different datasets and the explosive growth of the total parameters with the increase of
datasets. We propose a straightforward and effective MTL method to attach a pair of tag
identifiers for each input word sequence, “< tag >” and “< /tag >, at the beginning and
end of the sequence respectively, where “tag” denotes the name of the dataset containing
the input sentence. As is shown in Fig. 5, if the input sentence X belongs to “T” dataset,
we add the tag “< T >” before the first word x; and add the tag “< /T >” after the last
word xq.

In the training step, we input sentences from all different datasets together with tag
identifiers into the model. These tag identifiers distinguish the origin of each sentence
to affect the hidden representations of each word in the sentence. It is similar to directly
telling the model which dataset the input sentence belongs to, and allowing the model
to learn the differences and commonalities between datasets. Since we only change the
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Fig.5 The architecture of the proposed multi-task learning model for BioNER

input sentence before encoding without the model architecture modification, the pro-
posed fully-shared MTL method can share all parameters in the training step to inte-
grate different datasets and train the model without any task-specific layers. In addition,
BioNER datasets include various biomedical entity types, such as gene, disease, and spe-
cies. There are multiple datasets for each type. Although the datasets under different
types are quite different, we assume that the cross-type information of the biomedical
domain can improve the performance of the multi-task model. Therefore, we train the
model on the datasets under multiple entity types at the same time. Moreover, for the
tag identifier “< tag >, we can use the name of the dataset or entity type containing the
input sentence. Since the datasets under the same type are still different due to different
constructors and annotation rules, we decide to use the name of the dataset as the tag. If
we use the name of the entity type, the differences between datasets will not be captured.

In the inference step, we predict specific test sets by adding the corresponding dataset
tag to the input sentence. If you want to recognize entities for a biomedical sentence,
you need to select an appropriate dataset tag used in the training step according to your
purpose. Different choices will lead to different results. For example, when you want to
detect disease entities, you should choose any of the dataset belonging to disease type as

the tag identifier.

Results

In this section, we first describe several BioNER benchmark datasets used in our experi-
ments. Then we introduce the experimental setup and implementation details. Next,
we present the results of different experiments for the proposed single-task model and

multi-task model, respectively.
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Table 1 The statistics of the datasets used in our experiments

Dataset Number of Sentence length  Entity type Entity count
sentences
BC2GM 20,000 285 Gene/protein 24,583
INLPBA 24,806 29.7 35336
BC5CDR-disease 13,938 26.0 Disease 12,852
NCBI-disease 6881 26.1 6881
Linnaeus 23,155 231 Species 4263
Species-800 8130 259 3651
BC5CDR-chemical 13,938 26.0 Chemical 15,935
Datasets

We make experiments on seven BioNER benchmark datasets' which are publicly avail-
able and widely used in previous studies. We utilize the same splitting strategy on train-
ing, validation and testing sets according to Lee et al. [19] for each dataset. Since these
datasets include various biomedical entity types, we divide them into four categories:
gene/protein, disease, species and chemical. Table 1 gives some details of these data-
sets including the number of sentences, sentence length, entity type and entity count,
where the sentence length represents the average length of the sentences in the dataset,
and entity count represents the total number of entities mentioned in the dataset. More
details about these datasets can be found in [14].

Experiment setup

Our experiments are divided into two parts. We train the proposed single-task model
(STM), named BioBERT-CFA, and some other comparative STMs for each of the data-
sets. Then we train the multi-task model (MTM) with all datasets jointly by using
the proposed MTL method based on the vanilla BioBERT model and the proposed
BioBERT-CFA model.

For the experiments of STM, we use “Stanford CoreNLP Toolkits” (SCT) [36] , a
well-known open source toolkit which is widely used in many NLP studies, to process
ach input sentence and obtain parts-of-speech, constituency, and dependency parsing
results as the syntactic information. We use each type of syntactic information sepa-
rately in the CFA module. For the encoder, we use the base v1.1 version of BioBERT?
and keep the default hyper-parameter followed by Lee et al. [19], which consists of 12
transformer layers with 768 hidden vector dimensions. The parameters in the BioBERT
encoder are fine-tuned with the model training. The embeddings of context features
are derived from BioBERT and the embeddings of syntactic labels are randomly initial-
ized in the CFA module. For the experiments of MTM, we combine all datasets as a
total dataset for training. Then we change each input sentence respectively in the total
dataset by using the proposed MTL method and feed it into STM to train a multi-task
model. In testing, we evaluate the results of each dataset separately for each multi-task
model.

! https://github.com/cambridgeltl/ MTL-Bioinformatics-2016.
2 https://github.com/dmis-lab/biobert-pytorch.
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Table 2 Performance of different single-task models

Model BC2GM JNLPBA BC5CDR- NCBI-disease Linnaeus Species-800 BC5CDR-
Disease Chemical
BioBERT 84.72 7749 87.15 89.71 88.24 74.06 9347
BioBERT (ours) 84.62 7741 86.89 89.18 88.06 74.88 93.44
BioKMNER
POS 84.74 77.06 - 89.47 88.44 7545 93.73
Syn 84.76 7717 - 89.27 88.68 75.65 93.74
Dep 84.65 7732 - 89.24 88.57 75.81 93.78
BioBERT-TWA
(ours)
POS 84.83 77.81 86.91 89.41 88.17 75.03 93,52
Syn 84.96 78.02 87.03 89.36 8842 75.24 93.68
Dep 84.85 7823 87.12 89.52 88.36 75.14 93.81
BioBERT-CFA
(ours)
POS 85.06 78.21 87.45 89.98 88.38 75.62 93.89
Syn 85.36 78.36 87.49 89.91 88.75 75.83 94.05
Dep 85.28 78.47  87.56 89.94 88.66 75.64 94.09

We implement all experiments on a NVIDIA Tesla V100 GPU using PyTorch library®.
We employ Adam [39] as the optimizer with the learning rate of 5e-5 and train each
model with a batch size of 64 and maximum sequence length of 128 for 30 epochs. For
the evaluation metrics of BioNER, we use macro-averaged F1 scores computed by the
widely used seqeval* script in all experiments.

Single-task model results
For comparison, we adopt the following three single-task models for the BioNER task
as the baselines: the first one is the vanilla BloBERT model proposed by Lee et al. [19],
which achieved good performance in many biomedical tasks. The second one is named
BioKMNE [25] based on a key-value memory network (KVMN) [26] to integrate the
syntactic feature with BioBERT and it outperformed the vanilla BloBERT model in their
experiments. Besides, we implement a novel attention mechanism, named two-way
attention (TWA) proposed for other tasks by Tian et al. [27], instead of the KVMN mod-
ule in the BioKMNER model to incorporate the syntactic information for the BioNER
task. We name this model BioBERT-TWA and assume that BioBERT-TWA can outper-
form BioKMNER. The BioKMNER model, BioBERT-TWA model and the proposed sin-
gle-task model BioBERT-MFA use the same three types of syntactic information: POS
labels (POS), syntactic constituents (Syn), and dependency relations (Dep) and employ
the same NLP toolkit SCT to get the syntactic information.

Table 2 shows the overall performance of our model BioBERT-CFA compared with the
three baseline models on the seven benchmark datasets, where BioBERT (ours) denotes

3 http://pytorch.org/.
* https://github.com/chakki-works/seqeval.
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Table 3 Results of different multi-task models

Model BC2GM JNLPBA BC5CDR- NCBI-disease Linnaeus Species-800 BC5CDR-
Disease Chemical
BioBERT-STM 84.62 7741 86.89 89.18 88.06 74.88 93.44
BioBERT-DM 77.63 7227 77.98 81.29 79.62 65.59 81.65
(—6.99) (—514) (—891) (—7.89) (— 844) (—9.29) (—11.88)
BioBERT-MTM  85.36 7838 87.46 89.9 88.36 7533 93.56
(+0.74) (+097) (4+057) (+0.72) (4 0.30) (+045) (+0.12)
BioBERT-CFA- 85.65 7867 87.76 90.09 88.87 75.98 94.26
MTM (+103) (+126) (+087) (+091) +081)  (+1.10) (+082)

our reproduced results of BioBERT, BioBERT-TWA (ours) denotes our reproduced
results of the two-way attention method with the BioBERT encoder, and BioBERT-CFA
(ours) denotes the results of our proposed single-task model. Bold indicates the highest
score among all models. There are several observations for these results.

Firstly, compared with the vanilla BioBERT model without using any syntactic infor-
mation, all models incorporating syntactic information achieve better results among
most datasets. It demonstrates the effectiveness of using syntactic information to help
recognize biomedical named entities.

Secondly, comparing BioKMNER and BioBERT-TWA, we find that BioBERT-TWA
yields better performance in most cases. For instance, on the BC2GM dataset, BioBERT-
TWA (Syn) achieves the F1 score of 84.96%, while KMNER obtains a lower F1 score of
84.76%. This phenomenon that the performance of KVMN is not as good as TWA is
consistent with the results in Tian et al. [27], which may be due to the reason that the
method of computing weights in KVMN is inaccurate compared to TWA.

Thirdly, the proposed single-task model BioBERT-CFA achieves the best performance
on all benchmark datasets and provides a significant enhancement to the baselines by
incorporating the syntactic information. For example, BioBERT-CFA achieves improve-
ments of 1.06%, 0.95% and 0.80% F1 scores for the JNLPBA, Species-800 and NCBI-
disease datasets respectively compared with BioBERT, which confirms the effectiveness
and universality of the proposed CFA module. Comparing with BioBERT-TWA, the
BioBERT-CFA model uses a novel attention mechanism and embedding method, and
provides outstanding performance.

Among different types of syntactic information, in most cases, syntactic constitu-
ents (Syn) and dependency relations (Dep) in our experiments work better than part of
speech tags (POS). For example, the BioBERT-CFA model achieves 85.36% and 85.28%
F1 scores on the BC2GM dataset when it uses Syn and Dep, respectively, while 85.06%
is achieved when it uses POS labels. The same phenomenon can be found in BioKM-
NER and BioBERT-TWA models. This is partly because the syntactic constituents and
dependency relations provide more cues of the relationship between words, while the
POS labels focus more on attributes of the word itself.

Multi-task model results
We train the multi-task model (MTM) with all aforementioned datasets together by
using the fully-shared multi-task learning method based on the vanilla BioBERT model
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and the proposed BioBERT-CFA model, named BioBERT-MTM and BioBERT-CFA-
MTM, respectively. In BioBERT-CFA-MTM, we use dependency relations (Dep) as syn-
tactic information because of its good performance. The BioBERT-STM is our baseline
model which denotes the single-task BioBERT model trained by a single dataset sepa-
rately. For comparison, we design a BioBERT-DM model where we train BioBERT on the
whole dataset which directly mixes all datasets without our MTL method. As shown in
Table 3, the BioBERT-DM model greatly hurt the performance on all datasets because
different datasets have different entity types and annotation rules, and this model has no
ability to distinguish between different datasets. In contrast, the BioBERT-MTM yields
quite stable improvements no matter what dataset we test compared with the baseline,
which confirms that the model trained jointly with different datasets by using the fully-
shared MTL method would achieve better performance than training it by a single data-
set. The fully-shared MTL method can learn useful information from different datasets.
The F1 scores of BioBERT-MTM on BC5CDR-Chemical dataset only increase by 0.12%,
which is because that BC5CDR-Chemical is the only one of chemical types of those
seven datasets. Additionally, we find that the final model BioBERT-CFA-MTM enhances
performance remarkably on all datasets, which again shows the effectiveness of the pro-
posed CFA module and MTL method.

Comparative analysis with previous studies

In this section, we compare the results of the final model BioBERT-CFA-MTM, which
utilizes the proposed CFA module and fully-shared MTL method, with those of previ-
ous corresponding publications in the multi-task learning BioNER task. The results (F1
scores) on the same datasets are summarized in Table 4. Overall, our model outperforms
previous studies in the BioNER task and achieves the best performance on all bench-
mark datasets. There are some valuable observations. First, the approaches based on the
pre-trained language model, such as Akdemir et al. [33], Khan et al. [32], Tong et al. [40]
and Chai et al. [34] generally outperform those based on the CNN and BiLSTM model,
such as Crichton et al. [14], Wang et al. [28], Wang et al. [29], Yoon et al. [30] and Zuo
et al. [31] This shows the power of using the pre-trained model as the encoder. Second,
although the models of Akdemir et al. and Khan et al. are also based on the pre-trained
BioBERT, the proposed BioBERT-CFA-MTM yields better performance because we
combine the syntactic information and MTL method into BioBERT. Third, compared
with the latest state-of-the-art model from Chai et al., BioBERT-CFA-MTM achieves
substantial improvements on several datasets. This is because the former approach is
based on the pre-trained XLNet model which is inferior to the biomedical domain-
specific pre-trained BioBERT model. It also divides the parameters of the XLNet-CRF
model into shared layers and task-specific layers while we share all the parameters of
BioBERT-CFA-MTM across different datasets to learn more information from datasets.

Discussion

The effect of dimensions

We analyze the influence of different initial dimension sizes for the syntactic label
embedding in the CFA module. The syntactic labels are used for integrating with
the context features into the syntactic features, which are introduced in Equation 4.
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Table 4 Comparison of the proposed model with previous multi-task model
Model BC2GM JNLPBA BC5CDR- NCBI-disease Linnaeus Species-800 BC5CDR-
Disease Chemical
Crichton et al. 73.17 70.09 - 80.37 84.04 - 839
[14]
Wang et al. [28] 80.74 73.52 - 86.14 - - 88.78
Wangetal.[29] 8441 - - 86.50 824 - -
Yoon et al. [30] 79.73 78.58 84.08 86.36 - - 93.31
Zuo et al. [31] 82.09 74.22 - 87.45 - - 89.19
Akdemir et al. 82.99 77.88 84.86 88.09 87.03 75.62 92.58
[33]
Khan et al. [32] 83.01 72.89 - 86.68 - - 89.5
Chai et al. [34] 82.92 7832 87.28 89.25 86.37 - 93.83
BioBERT-CFA- 85.65 78.67 87.76 90.09 88.87 75.98 94.26
MTM
Table 5 The results of different fully shared MTL methods
Model BC2GM JNLPBA BC5CDR- NCBI-disease Linnaeus Species-800 BC5CDR-
Disease Chemical
BioBERT-MTM  85.36 7838 87.46 89.9 88.36 7533 93.56
w/o the end 84.98 77.95 87.28 89.44 88.25 7513 93.51
tag (—038) (-043) (=018 (— 0.46) (=011 (=020) (— 0.05)
w/o the tag 77.63 72.27 77.98 81.29 79.62 65.59 81.65
pair (—=773) (=612 (—948) (—861) (—874)  (—974) (—1191)

Therefore, the dimension dy of the syntactic label embedding can affect the model
performance. We test the different sizes of dy by 32, 128, 256, 768, 1024 in the
BioBERT-CFA model with the features of POS labels on the NCBI-disease dataset.
Figure 6 presents the results where the best performance is achieved at 768. Since the
size of the vocabulary for potential syntactic labels is relatively small (less than 100),
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Table 6 The results of using the datasets under the same type

Model BC5CDR-Disease NCBI-disease
BioBERT-STM 86.89 89.18
BioBERT-DM 86.66 89.35

(—0.23) (+0.17)
BioBERT-MTM 87.13 89.55

(4+0.24) (+0.37)
BioBERT-MTM (all) 87.46 89.9

(+0.57) (+0.72)

we assumed a small size of dy would achieve better F1 scores. But the result shows the
least size 32 gets the worst performance. It can be interpreted that the dimension ds
of the syntactic label embedding is much smaller than the dimension d of the context
feature embedding, which leads to lower weights for the syntactic labels in the CFA
module. Contrarily, the size 768 is equal to the dimension d; and therefore achieves
the best performance.

The effect of the tag pair

In the proposed fully-shared MTL method, each input word sequence has attached
a pair of tag identifiers, “< tag >” and “< /tag >, at the beginning and end of the
sequence respectively. To prove the effectiveness of the strategy, we conduct experi-
ments and show the results in Table 5. The BioBERT-MTM model is the fully shared
MTL model which uses a pair of tag identifiers to distinguish between different datasets
and achieve outstanding performance on the seven BioNER datasets. Then we remove
the end tag “< /tag >" and only keep the beginning tag “< tag >" for each input sen-
tence. From the results of “w/o the end tag” model, removing the end tag strategy leads
to a slight decline in the F1-scores. It shows that using a pair of tag identifiers positively
affects the hidden representations of each word in the sentence more than using a single
tag. If we remove the entire pair of tag identifiers, “< tag >” and “< /tag > and only
input the original sentence as the “w/o the tag pair” model, it degrades to the aforemen-
tioned baseline BioBERT-DM model. This method seriously damages the performance
because it treats the sentences from different datasets as from the same source and does

not distinguish between different datasets.

Analysis for datasets under the same type

To analyze the effect of entity types of the BioNER dataset, we train the BioBERT-DM
and BioBERT-MTM model on the only two datasets of the disease type, i.e. NCBI-dis-
ease and BC5CDR-Disease, and show the results in Table 6. The “BioBERT-MTM (all)”
denotes the aforementioned result of the BioBERT-MTM model where we train it on
all seven datasets including other entity types. The BioBERT-DM model, where we
directly mix the two disease datasets for training, does not gain satisfactory results com-
pared with the single-task model BioBERT-STM. It shows that there are still some dif-
ferences between the datasets of the same type and directly mixing them will degrade
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Table 7 Results of different tag methods

Model Gene/protein Disease Species Chemical
BC2GM JNLPBA BC5CDR- NCBI-disease Linnaeus Species-800 BC5CDR-
Disease Chemical
BioBERT-STM  84.62 7741 86.89 89.18 88.06 74.88 93.44
BioBERT-MTM
N 84.96 78.04 87.28 89.83 87.79 74.75 93.64
DN 85.36 78.38 87.46 89.90 88.36 75.33 93.56
TN+DN 85.03 7832 87.23 89.65 88.12 75.14 93.25

the performance. In contrast, BloBERT-MTM obtains good results, which proves again
that the proposed fully-shared MTL method learns useful information across differ-
ent datasets, even though these datasets are of the same type. Besides, the results of the
BioBERT-MTM model trained on all datasets of multiple entity types are better than
that trained on the two datasets of a single type, which shows that cross-type informa-
tion in the biomedical domain improves the performance by using our MTL method.

Analysis for using the tag of type name

In the above experiments of BioBERT-MTM, where the tag pair is attached to the input
sentence, we use the name of the dataset containing this sentence as the tag. Similarly,
we can use the name of the corresponding entity type as the tag. For example, when
the input sentence is from the Linnaeus dataset, the pair of tags will be “< Species >”
and “< /Species > As shown in Table 7, “IN” denotes the method using the name of
the type and “DN” denotes the method using the name of the dataset. Bold marks the
highest score among all methods. We found that the results of “DN” vastly outperform
“TN” in most cases, which shows some differences exist in the datasets even of the same
type. In addition, we combine the method “TN” and “DN” by attaching two pairs of tag
identifiers at the beginning and end of the sentence respectively and name it “TN+DN/
The results of “TN+DN” are worse than “DN! It shows that in the “IN+DN” method,
too many tags are attached to the input sentence, and the model cannot understand the
meaning of each tag well.

Case study

To better illustrate how our approach improves biomedical named entity recogni-
tion, we conduct a case study and list some practical prediction cases of the base-
line single-task model and the two proposed multi-task models on several benchmark
datasets. The examples are shown in Table 8, where true labels and predicted labels
are underlined in the sentence for each model. In case 1, we need to recognize enti-
ties about the gene or protein type. BIOBERT-MTM correctly detects the boundaries
of gene entity “human E