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Background
With the rapid development of biomedical research, the number of biomedical docu-
ments increases with the explosive exponential growth, which has made it difficult for 
biomedical scholars to keep pace with the cutting-edge research. There is an increasing 
need of effective natural language processing (NLP) tools to help retrieve, organize, and 
manage the massive biomedical data and information. Biomedical named entity recog-
nition (BioNER) is a primary first step in any biomedical literature mining task, which 
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aims to detect the boundary of biomedical entities and predict their entity types, such 
as diseases, genes, species, chemical, etc. The performance of BioNER systems directly 
impacts downstream applications, such as biomedical relation extraction [1, 2], drug-
drug interaction task [3, 4] and knowledge base construction [5, 6].

A BioNER task is typically considered as a sequence labeling task, which aims to assign 
the best label sequence for a given input sentence. A common tagging method is the BIO 
format [7], which denotes whether each token is at the Beginning of an entity, Inside, or 
Outside an entity. This method is capable of distinguishing consecutive entities and can 
be used easily in an end-to-end model, which inputs each token and produces BIO tags 
in the final layer. An example sentence annotated using the BIO format can be found in 
Fig. 1, where “congenital myotonic dystrophy” is the entity detected and “disease” is the 
entity type classified.

Traditional methods for the BioNER task usually used dictionary-based or rule-based 
approaches [8, 9]. These methods heavily relied on biomedical experts to establish 
dictionaries or rules, which takes a lot of manual labor and is time consuming. As the 
amount of data increases, more researchers tried to use machine learning approaches 
to deal with the BioNER task, such as Support vector machine (SVM) [10, 11] or Con-
ditional random field (CRF) [7, 12, 13]. However, the conventional machine learning 
approaches need plenty of handcrafted features extracted from raw data, and the per-
formance is limited. The rapid development of deep learning provides an easier way to 
overcome these problems. Crichton et al. [14] used the word context as the input based 
on the convolutional neural network (CNN) and Habibi et al. [15] proposed the bidirec-
tional LSTM (BiLSTM) model combined with a CRF layer. More recently, pre-trained 
language models like BERT [16], XLNet [17], and Roberta [18] achieved great success on 
a lot of NLP tasks. Lee et al. [19] introduced a domain-specific language model, named 
BioBERT, which is pre-trained on the large-scale biomedical corpora. BioBERT largely 
outperformed previous methods in several biomedical text mining tasks including 
BioNER task. Considering the powerful performance of BioBERT, we propose to use it 
as the encoder of our model to obtain high-quality semantic representations.

In addition, we assume that combining the syntactic information, e.g., part-of-
speech (POS) labels, syntactic constituents, and dependency relations with the 
pre-trained BioBERT can help recognize biomedical named entities. Specifically, 
sentences in biomedical texts are usually formal, well-structured and contain a lot of 
specialized terms, in which syntactic information can present grammatical structure 
for sentences and provide helpful cues for understanding the relationship between 
words. For example, Fig. 2 shows the constituency parse tree automatically produced 
by the NLP toolkit, where the disease entity is “congenital myotonic dystrophy.” The 
range of the noun phrase in this tree instead of the adjective phrase can be a good 
hint for BioNER. The other advantage of syntactic information is that it can be auto-
matically generated by off-the-shelf NLP toolkits rather than manually constructed, 

Fig. 1  An example sentence for the input and output in BioNER
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which makes it easier to use in this task. Previous studies [20–24] suggest that the 
syntactic information has a certain ability to help the BioNER task. These studies nor-
mally concatenated the embeddings of the syntactic features with the word embed-
dings directly, which hurts the model performance because of the error-prone and 
noisy syntactic information processed from NLP toolkits. Accordingly, Tian et  al. 
[25] proposed a novel model instead of directly concatenating to incorporate the syn-
tactic information into the BioBERT encoder and achieved the best results in sev-
eral BioNER datasets. They used the key-value memory network (KVMN) [26], a new 
deep neural method learning from pairwise information, to weight the syntactic fea-
tures. However, the output of the KVMN mainly relies on the value embeddings. The 
key embeddings are only used for providing weights to values. To solve this problem, 
Tian et  al. [27] proposed a new attention mechanism, named two-way attention, to 
integrate syntactic information for the encoder. The two-way attention can make full 
use of syntactic features, rather than using one feature (key embeddings) to weight 
the other (value embeddings) as in KVMN. Although this method achieved good per-
formance in another task, named “the joint Chinese word segmentation (CWS) and 
part-of-speech (POS) tagging task,” it still has some shortcomings. One is that the 
two-way attention mechanism employed two separate attention parts, therefore it 
may lose some information between the two parts. Another is that the embeddings 
of syntactic information are only randomly initialized, which lacks a strong semantic 
representation ability and may cause the out-of-vocabulary problem. Consequently, 
we propose a novel attention mechanism to tackle these problems.

An effective deep learning model requires huge amounts of data. However, the 
dataset in the biomedical domain is more likely to become unavailable due to the 
limitations of privacy and specialization. To deal with the above problems, multi-
task learning (MTL) has been introduced by previous studies [14, 28, 29, 29–34] and 
achieved great success in the BioNER task. The basic method of MTL is that multi-
ple annotated datasets are trained at the same time to improve the performance on 
a single dataset. The datasets are all used in the BioNER task with a similar format, 
which may have different entity types and may be created by different researchers. 
Different datasets in the similar domain may contain useful common information like 
lexical semantics and grammatical expression. The multi-task model can therefore 
share this information across different datasets in the training step. In general, pre-
vious MTL models have adopted the strategy that the model shares certain parts of 

Fig. 2  A constituency parse tree example
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the model parameters for different datasets and leaves the rest separated for specific 
tasks. For example, Crichton et al. [14] proposed an MTL model by sharing parame-
ters in encoder layers and convolution layers, and trained separately in decoder layers 
for each dataset. Wang et al. [28] proposed a BiLSTM-CRF model with an additional 
character layer. An MTL model was trained by sharing parameters of the character-
level and word-level LSTMs and adjusting parameters of the CRF layer independently 
for different datasets. Chai et al. [34] trained an MTL model by sharing parameters in 
underlying layers of the XLNet and trained separately the upper layers of the XLNet 
and the decoder CRF. This MTL method leads to the limited ability of sharing infor-
mation across different datasets and causes the model to rely too heavily on the task-
specific layer. Besides, the multi-task model parameters will increase with the number 
of datasets because of additional task-specific layers. Huang et  al. [35] proposed a 
transfer learning model by sharing all parameters to integrate multiple cross-domain 
datasets to achieve good results in Chinese Word Segmentation tasks. Inspired by 
this work, we propose a straightforward and effective multi-task learning model that 
shares all parameters across different datasets. The benefit is that we do not need any 
task-specific models to fit different datasets, and the method can be directly applied 
in the single-task model without manual adjustments. It can control the rapid growth 
of the total parameters on the MTL model and improve the performances on several 
BioNER datasets.

In this paper, we propose a novel fully-shared multi-task learning model based on 
the pre-trained BioBERT with a new attention module to integrate the auto-pro-
cessed syntactic information for the BioNER task. The proposed framework con-
tains two parts: One is the single-task method which is only trained on each single 
BioNER benchmark dataset, and the other is the multi-task method trained across 
all datasets together. Specifically, our single-task model uses a new proposed atten-
tion mechanism, named Combined Feature Attention (CFA), to integrate the syntactic 
information into BioBERT encoder for improving the performance. We employ the 
open source NLP toolkit to parse the input sentence and extract several types of syn-
tactic information. Then, we use the proposed attention module to weight each token 
and its corresponding syntactic features, where syntactic features are combined with 
the hidden embeddings derived from BioBERT and syntactic labels obtained from the 
toolkit. Finally, the attention vectors are concatenated with the output of the BioBERT 
and used to guide the tagging process for the decoder. In this way, the single-task 
method takes advantage of the pre-trained BioBERT and syntactic information, and 
outperforms other single-task models in the BioNER task. Moreover, we introduce 
a straightforward and effective multi-task learning method which shares all model 
parameters to incorporate multiple datasets into one model. The fully-shared MTL 
method is a basic but effective way to learn the commonality among different datasets 
and can be applied easily to many single-task neural network models. To summarize, 
the main contributions of this paper are as follows:

•	 We propose a new attention mechanism, named CFA, to make good use of the 
pre-trained BioBERT and the syntactic information in the single-task model. Our 
single-task model substantially outperforms the baseline BioBERT model and 
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other models using the syntactic information because of our better syntactic fea-
ture extraction and combination ability.

•	 We introduce a straightforward and effective multi-task learning method which 
shares all parameters without task-specific layers for different datasets. The 
fully-shared MTL method discriminatively exploits the implicit information 
across different datasets and significantly improves BioNER compared with the 
single-task model.

•	 The experiment results on seven benchmark BioNER datasets show our fully-
shared MTL model with CFA outperforms others on all datasets, which proves 
the effectiveness of the proposed method. Analyses and case studies show all 
components of our proposed model are necessary for achieving high perfor-
mance.

Methods
Following the previous approaches, we treat BioNER as a sequence labeling task. 
Given the input biomedical sentence of n words X = [x1, x2, . . . , xi, . . . , xn] , the out-
put is a sequence of named entity labels Y = [y1, y2, . . . , yi, . . . , yn] , where xi is the i-th 
word in the sentence, and yi is the i-th predicted label. For each xi , the goal is to 
predict the corresponding label yi ‘B’, ‘I’, ‘O’, where ‘B’ indicates the word xi is the 
beginning of a biomedical entity, ‘I’ denotes xi is inside an biomedical entity, and ‘O’ 
denotes xi is outside an entity, i.e. xi is not a part of an biomedical entity.

The proposed framework contains two parts: One is the single-task model which 
is only trained on each single BioNER dataset, and the other is the multi-task model 
trained across all datasets together. In this section, we respectively explain details of 
the proposed single-task model and multi-task model.

Fig. 3  The architecture of the proposed single-task model for BioNER (the context features and syntactic 
labels of the 7th word “congenital” in the example sentence are extracted from the results processed by the 
NLP toolkit)
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Single‑task model (STM)

The overall architecture of our single-task model is detailed in Fig.  3. The left part 
describes the backbone of the proposed architecture for the BioNER sequence labe-
ling paradigm, and the right part is the process of handling the syntactic information. 
We propose a novel attention module to integrate the syntactic information into the 
backbone of the model. In this section, the process about syntactic feature extraction 
is first introduced. Next, we describe how the proposed attention mechanism, namely 
combined feature attention (CFA), incorporates the syntactic features into BioBERT. 
Finally, we describe how the sequence labeling model works with the attention layer.

Syntactic feature extraction

Following previous studies [25, 27], we utilize three types of syntactic information: 
POS labels, syntactic constituents, and dependency relations. POS is a category of 
words with similar grammatical properties, such as nouns, verbs, adjectives, adverbs 
and so on. Syntactic constituent is a word or a group of words that functions as a 
single unit in a hierarchical structure, such as a noun phrase, or verb phrase. Depend-
ency relations are the concept that words are connected to each other through some 
kind of directed links, such as nominal subject, copula, adjectival modifier and so 

Fig. 4  An example of syntactic feature extraction
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on. To obtain the syntactic information, first, we run the open source NLP toolkit, 
e.g., Stanford CoreNLP Toolkit (SCT) [36] to get the results for the input sentence X . 
Then we extract the context features and their corresponding syntactic labels of each 
word xi in X from the results. In Fig. 4, we show an example for the highlighted word 
“congenital” in the input sentence “This case is a paternally transmitted congenital 
myotonic dystrophy,” where three types of context feature and their corresponding 
syntactic labels are extracted. We elaborate each type of syntactic information below.

•	 POS labels Consider each word xi in sentence X , we employ a 1-word window to 
extract the neighboring words on both sides of xi as context features and their cor-
responding POS labels as syntactic labels. For example, in Fig.  4a, the word “con-
genital” is the currently processed word, then the context features are the word itself 
and its left and right neighboring words and syntactic labels are the corresponding 
POS labels of each context word obtained from the toolkit. The context features are 
[transmitted, congenital, myotonic], and the syntactic labels are [VBN, JJ, JJ].

•	 Syntactic constituents Given a word xi in X , we first find the leaf containing xi in 
the syntactic parse tree, and then search up from the leaf to find the first accept-
able ancestor node whose label is in a pre-defined syntactic label list following “the 
CoNLL-2003 shared task” [37]. Then we select all the words under this node as con-
text features and search first ancestor nodes of these words as their corresponding 
syntactic labels. In Fig. 4b, “NP” is the first acceptable ancestor node for the example 
word “congenital.” There are six words under this node and each word can find its 
ancestor node. The context features are [a, paternally, transmitted, congenital, myo-
tonic, dystrophy] and the corresponding syntactic labels are [NP, ADJP, ADJP, NP, 
NP, NP].

•	 Dependency relations Dependency relations use directed acyclic graphs to depict the 
structure of a given sentence. The asymmetric relationship between two basic units 
has been called the dependency relation. One unit is the dominant element (called 
governor), and the other is the subordinate element (called dependent). For each word 
xi in X , we first select governor words and dependent words of xi from the depend-
ency structure as shown in Fig. 4c. Then, we treat these governor words, dependent 
words and the word xi as context features and treat the dependency types of these 
words in the graph as syntactic labels. As is shown in Fig. 4c, the example word “con-
genital” has only one governor word “dystrophy” which is the root of the sentence 
and no dependent words. For comparison, the word “transmitted” has one depend-
ent word “paternally” which is pointed from “transmitted.” The context features for 
the word “congenital” are [congenital, dystrophy] and the corresponding syntactic 
labels are [amod, root].

After these procedures, we can build the context feature sequence S and the syn-
tactic label sequence L for each type of the syntactic information for each input 
sentence X . Formally, for each word xi in X , let Si = [si,1, si,2, . . . , si,j , . . . , si,mi ] and 
Li = [li,1, li,2, . . . , li,j , . . . , li,mi ] be the sub sequence of S and L, respectively. Here, si,j 
denotes a context word extracted by the rules we define, li,j denotes the corresponding 
syntactic label for si,j , and mi denotes the length of Si and Li . For example, in Fig. 4a, 
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we focus on the 7th word “congenital,” s7,1 = “transmitted,” l7,1 = “VBN,” and m7 =3. 
It’s worth noting that we obtain different S’s and L’s for three types of syntactic infor-
mation, and our model utilizes each type of syntactic information separately.

Combined feature attention

Inspired by Tian et al. [27], we use the attention method to incorporate the syntactic 
features into the BioBERT model. We first feed the input sentence X into the encoder 
pre-trained BioBERT to get the hidden vector sequence:

where hi ∈ R
d1 is the hidden vector of the i-th word xi and d1 is the hidden dimension 

of the encoder. Second, we change the context feature sequence Si and syntactic label 
sequence Li to embedding matrices respectively for each word xi . Because the words in 
Si are also included in the input sentence X, we leverage the hidden vector sequence 
H to embed Si . Different from previous methods [25, 27] that use randomly initialized 
embeddings or pre-trained embeddings, the embeddings in our method have more 
abundant semantic representations and can avoid the OOV problem due to the powerful 
function and good performance of BioBERT. Specifically, a context word si,j in Si is prob-
ably the k-th word in the sentence X, so we use hk to directly represent the embedding of 
si,j , where 1 ≤k≤ n . In this way, we can obtain the embedding of each word in Si:

where the context feature embedding matrix ES
i ∈ R

d1×mi and eSi,j = hk . As is shown in 
Fig. 3, the context features for the word “congenital” in the type of dependency relations 
are [congenital, dystrophy], where “congenital” and “dystrophy” are the 7th and 9th word 
in the input sentence, so ES

i = [eSi,1, eSi,2] = [h7,h9] . As for Li , we adopt the common 
approach of randomly initializing the embeddings and training with the model:

where the syntactic label embedding matrix is EL
i ∈ R

d2×mi and d2 is the artificially set 
dimension of the initial embeddings. Then, we concatenate ES

i  and EL
i  to obtain syntactic 

feature embedding matrix for each input word xi and align the dimension of ei,j and hk 
by a fully connected layer:

where Ei ∈ R
d1×mi is the syntactic feature embedding matrix for xi , We ∈ R

d1×(d1+d2) is 
the weight matrix and be ∈ R

d1×mi is the bias vector.
Finally, we apply the Scaled Dot-Product Attention [38], an effective attention 

mechanism used in many NLP tasks, with the representations of the word xi and its 
syntactic feature to get attention vectors. It can be formulated as:

(1)H = [h1,h2, . . . ,hi, . . . ,hn]

(2)ES
i = [eSi,1, eSi,2, . . . , eSi,j , . . . , eSi,mi

]

(3)EL
i = [eLi,1, eLi,2, . . . , eLi,j , . . . , eLi,mi

]

(4)ei,j =We · (eSi,j ⊕ eLi,j)+ be

(5)Ei =[ei,1, ei,2, . . . , ei,j , . . . , ei,mi ]
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where ai,j ∈ R
1 is the attention weight for each syntactic feature ei,j in Ei , hi is the hidden 

vector of xi , ai ∈ R
d1 is the weighted vector for all syntactic features in Ei and  denotes 

an element-wise sum operation. After that, we concatenate ai and hi to get the output 
vector oi for each word xi in sentence X, which can be expressed by oi = ai ⊕ hi.

In this way, the proposed attention module can learn the weights of the correspond-
ing syntactic features for the input sentence. Since the attention module uses a special 
embedding method which combines the information of context features and syntactic 
labels, we name it combined feature attention (CFA).

Sequence tagging network

Once the output vector oi is obtained from the CFA module, we feed it into a fully-con-
nected layer followed by a softmax layer. For each word xi in X, the tagging probability 
distribution Oy  can be formulated as follows:

where [ŷ1, ŷ2, ŷ3] denote the probability of each type of BioNER labels, i.e., “B,” “I” and 
“O,” W and b are trainable parameters. We can also use the CRF layer instead of the 
softmax layer in our model, but from our test experiments it did not achieve significant 
improvement and took longer time in training steps. The loss function is cross-entropy.

Multi‑task model (MTM)

Recently, multi-task learning (MTL) has been successfully applied to solve the problem 
of limited availability of annotated data in the BioNER tasks. Most previous MTL mod-
els for the BioNER task use multiple datasets simultaneously to train a model, in which 
some parameters of the model are shared for different datasets and the others are sepa-
rated and task-specific. This leads to the limited ability of sharing information across 
different datasets and the explosive growth of the total parameters with the increase of 
datasets. We propose a straightforward and effective MTL method to attach a pair of tag 
identifiers for each input word sequence, “ < tag > ” and “ < /tag > ,” at the beginning and 
end of the sequence respectively, where “tag” denotes the name of the dataset containing 
the input sentence. As is shown in Fig. 5, if the input sentence X belongs to “T” dataset, 
we add the tag “ < T > ” before the first word x1 and add the tag “ < /T > ” after the last 
word x9.

In the  training step, we input sentences from all different datasets together with tag 
identifiers into the model. These tag identifiers distinguish the origin of each sentence 
to affect the hidden representations of each word in the sentence. It is similar to directly 
telling the model which dataset the input sentence belongs to, and allowing the model 
to learn the differences and commonalities between datasets. Since we only change the 

(6)ai,j = softmax

(

(hi)
T · ei,j√
d1

)

(7)ai =
mi
∑

j=1

ai,j · ei,j

(8)Oy = [ŷ1, ŷ2, ŷ3] = softmax[W · oi + b]
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input sentence before encoding without the model architecture modification, the pro-
posed fully-shared MTL method can share all parameters in the training step to inte-
grate different datasets and train the model without any task-specific layers. In addition, 
BioNER datasets include various biomedical entity types, such as gene, disease, and spe-
cies. There are multiple datasets for each type. Although the datasets under different 
types are quite different, we assume that the cross-type information of the biomedical 
domain can improve the performance of the multi-task model. Therefore, we train the 
model on the datasets under multiple entity types at the same time. Moreover, for the 
tag identifier “ < tag > ,” we can use the name of the dataset or entity type containing the 
input sentence. Since the datasets under the same type are still different due to different 
constructors and annotation rules, we decide to use the name of the dataset as the tag. If 
we use the name of the entity type, the differences between datasets will not be captured.

In the inference step, we predict specific test sets by adding the corresponding dataset 
tag to the input sentence. If you want to recognize entities for a biomedical sentence, 
you need to select an appropriate dataset tag used in the training step according to your 
purpose. Different choices will lead to different results. For example, when you want to 
detect disease entities, you should choose any of the dataset belonging to disease type as 
the tag identifier.

Results
In this section, we first describe several BioNER benchmark datasets used in our experi-
ments. Then we introduce the experimental setup and implementation details. Next, 
we present the results of different experiments for the proposed single-task model and 
multi-task model, respectively.

Fig. 5  The architecture of the proposed multi-task learning model for BioNER
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Datasets

We make experiments on seven BioNER benchmark datasets1 which are publicly avail-
able and widely used in previous studies. We utilize the same splitting strategy on train-
ing, validation and testing sets according to Lee et al. [19] for each dataset. Since these 
datasets include various biomedical entity types, we divide them into four categories: 
gene/protein, disease, species and chemical. Table  1 gives some details of these data-
sets including the number of sentences, sentence length, entity type and entity count, 
where the sentence length represents the average length of the sentences in the dataset, 
and entity count represents the total number of entities mentioned in the dataset. More 
details about these datasets can be found in [14].

Experiment setup

Our experiments are divided into two parts. We train the proposed single-task model 
(STM), named BioBERT-CFA, and some other comparative STMs for each of the data-
sets. Then we train the multi-task model (MTM) with all datasets jointly by using 
the proposed MTL method based on the vanilla BioBERT model and the proposed 
BioBERT-CFA model.

For the experiments of STM, we use “Stanford CoreNLP Toolkits” (SCT) [36] , a 
well-known open source toolkit which is widely used in many NLP studies, to process 
ach input sentence and obtain parts-of-speech, constituency, and dependency parsing 
results as the syntactic information. We use each type of syntactic information sepa-
rately in the CFA module. For the encoder, we use the base v1.1 version of BioBERT2 
and keep the default hyper-parameter followed by Lee et al. [19], which consists of 12 
transformer layers with 768 hidden vector dimensions. The parameters in the BioBERT 
encoder are fine-tuned with the model training. The embeddings of context features 
are derived from BioBERT and the embeddings of syntactic labels are randomly initial-
ized in the CFA module.  For the experiments of MTM, we combine all datasets as a 
total dataset for training. Then we change each input sentence respectively in the total 
dataset by using the proposed MTL method and feed it into STM to train a multi-task 
model. In testing, we evaluate the results of each dataset separately for each multi-task 
model.

Table 1  The statistics of the datasets used in our experiments

Dataset Number of 
sentences

Sentence length Entity type Entity count

BC2GM 20,000 28.5 Gene/protein 24,583

JNLPBA 24,806 29.7 35,336

BC5CDR-disease 13,938 26.0 Disease 12,852

NCBI-disease 6881 26.1 6881

Linnaeus 23,155 23.1 Species 4263

Species-800 8130 25.9 3651

BC5CDR-chemical 13,938 26.0 Chemical 15,935

1  https://​github.​com/​cambr​idgel​tl/​MTL-​Bioin​forma​tics-​2016.
2  https://​github.​com/​dmis-​lab/​biobe​rt-​pytor​ch.

https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/dmis-lab/biobert-pytorch
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We implement all experiments on a NVIDIA Tesla V100 GPU using PyTorch library3. 
We employ Adam [39] as the optimizer with the learning rate of 5e-5 and train each 
model with a batch size of 64 and maximum sequence length of 128 for 30 epochs. For 
the evaluation metrics of BioNER, we use macro-averaged F1 scores computed by the 
widely used seqeval4 script in all experiments.

Single‑task model results

For comparison, we adopt the following three single-task models for  the BioNER task 
as the baselines: the first one is the vanilla BioBERT model proposed by Lee et al. [19], 
which achieved good performance in many biomedical tasks. The second one is named 
BioKMNE [25] based on a key-value memory network (KVMN) [26] to integrate the 
syntactic feature with BioBERT and it outperformed the vanilla BioBERT model in their 
experiments. Besides, we implement a novel attention mechanism, named two-way 
attention (TWA) proposed for other tasks by Tian et al. [27], instead of the KVMN mod-
ule in the BioKMNER model to incorporate the syntactic information for the BioNER 
task. We name this model BioBERT-TWA​ and assume that BioBERT-TWA can outper-
form BioKMNER. The BioKMNER model, BioBERT-TWA model and the proposed sin-
gle-task model BioBERT-MFA use the same three types of syntactic information: POS 
labels (POS), syntactic constituents (Syn), and dependency relations (Dep) and employ 
the same NLP toolkit SCT to get the syntactic information.

Table 2 shows the overall performance of our model BioBERT-CFA compared with the 
three baseline models on the seven benchmark datasets, where BioBERT (ours) denotes 

Table 2  Performance of different single-task models

Model BC2GM JNLPBA BC5CDR-
Disease

NCBI-disease Linnaeus Species-800 BC5CDR-
Chemical

BioBERT 84.72 77.49 87.15 89.71 88.24 74.06 93.47

BioBERT (ours) 84.62 77.41 86.89 89.18 88.06 74.88 93.44

BioKMNER

 POS 84.74 77.06 – 89.47 88.44 75.45 93.73

 Syn 84.76 77.17 – 89.27 88.68 75.65 93.74

 Dep 84.65 77.32 – 89.24 88.57 75.81 93.78

BioBERT-TWA 
(ours)

 POS 84.83 77.81 86.91 89.41 88.17 75.03 93.52

 Syn 84.96 78.02 87.03 89.36 88.42 75.24 93.68

 Dep 84.85 78.23 87.12 89.52 88.36 75.14 93.81

BioBERT-CFA 
(ours)

 POS 85.06 78.21 87.45 89.98 88.38 75.62 93.89

 Syn 85.36 78.36 87.49 89.91 88.75 75.83 94.05

 Dep 85.28 78.47 87.56 89.94 88.66 75.64 94.09

4  https://​github.​com/​chakki-​works/​seqev​al.

3  http://​pytor​ch.​org/.

https://github.com/chakki-works/seqeval
http://pytorch.org/
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our reproduced results of BioBERT, BioBERT-TWA (ours) denotes our reproduced 
results of the two-way attention method with the BioBERT encoder, and BioBERT-CFA 
(ours) denotes the results of our proposed single-task model. Bold indicates the highest 
score among all models. There are several observations for these results.

Firstly, compared with the vanilla BioBERT model without using any syntactic infor-
mation, all models incorporating syntactic information achieve better results among 
most datasets. It demonstrates the effectiveness of using syntactic information to help 
recognize biomedical named entities.

Secondly, comparing BioKMNER and BioBERT-TWA, we find that BioBERT-TWA 
yields better performance in most cases. For instance, on the BC2GM dataset, BioBERT-
TWA (Syn) achieves the F1 score of 84.96%, while KMNER obtains a lower F1 score of 
84.76%. This phenomenon that the performance of KVMN is not as good as TWA is 
consistent with the results in Tian et al. [27], which may be due to the reason that the 
method of computing weights in KVMN is inaccurate compared to TWA.

Thirdly, the proposed single-task model BioBERT-CFA achieves the best performance 
on all benchmark datasets and provides a significant enhancement to the baselines by 
incorporating the syntactic information. For example, BioBERT-CFA achieves improve-
ments of 1.06%, 0.95% and 0.80% F1 scores for the JNLPBA, Species-800 and NCBI-
disease datasets respectively compared with BioBERT, which confirms the effectiveness 
and universality of the proposed CFA module. Comparing with BioBERT-TWA, the 
BioBERT-CFA model uses a novel attention mechanism and embedding method, and 
provides outstanding performance.

Among different types of syntactic information, in most cases, syntactic constitu-
ents (Syn) and dependency relations (Dep) in our experiments work better than part of 
speech tags (POS). For example, the BioBERT-CFA model achieves 85.36% and 85.28% 
F1 scores on the BC2GM dataset when it uses Syn and Dep, respectively, while 85.06% 
is achieved when it uses POS labels. The same phenomenon can be found in BioKM-
NER and BioBERT-TWA models. This is partly because the syntactic constituents and 
dependency relations provide more cues of the relationship between words, while the 
POS labels focus more on attributes of the word itself.

Multi‑task model results

We train the multi-task model (MTM) with all aforementioned datasets together by 
using the fully-shared multi-task learning method based on the vanilla BioBERT model 

Table 3  Results of different multi-task models

Model BC2GM JNLPBA BC5CDR-
Disease

NCBI-disease Linnaeus Species-800 BC5CDR-
Chemical

BioBERT-STM 84.62 77.41 86.89 89.18 88.06 74.88 93.44

BioBERT-DM 77.63 72.27 77.98 81.29 79.62 65.59 81.65

(− 6.99) (− 5.14) (− 8.91) (− 7.89) (− 8.44) (− 9.29) (− 11.88)

BioBERT-MTM 85.36 78.38 87.46 89.9 88.36 75.33 93.56

(+ 0.74) (+ 0.97) (+ 0.57) (+ 0.72) (+ 0.30) (+ 0.45) (+ 0.12)

BioBERT-CFA-
MTM

85.65 78.67 87.76 90.09 88.87 75.98 94.26

(+ 1.03) (+ 1.26) (+ 0.87) (+ 0.91) (+ 0.81) (+ 1.10) (+ 0.82)
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and the proposed BioBERT-CFA model, named BioBERT-MTM and BioBERT-CFA-
MTM, respectively. In BioBERT-CFA-MTM, we use dependency relations (Dep) as syn-
tactic information because of its good performance. The BioBERT-STM is our baseline 
model which denotes the single-task BioBERT model trained by a single dataset sepa-
rately. For comparison, we design a BioBERT-DM model where we train BioBERT on the 
whole dataset which directly mixes all datasets without our MTL method. As shown in 
Table 3, the BioBERT-DM model greatly hurt the performance on all datasets because 
different datasets have different entity types and annotation rules, and this model has no 
ability to distinguish between different datasets. In contrast, the BioBERT-MTM yields 
quite stable improvements no matter what dataset we test compared with the baseline, 
which confirms that the model trained jointly with different datasets by using the fully-
shared MTL method would achieve better performance than training it by a single data-
set. The fully-shared MTL method can learn useful information from different datasets. 
The F1 scores of BioBERT-MTM on BC5CDR-Chemical dataset only increase by 0.12%, 
which is because that BC5CDR-Chemical is the only one of chemical types of those 
seven datasets. Additionally, we find that the final model BioBERT-CFA-MTM enhances 
performance remarkably on all datasets, which again shows the effectiveness of the pro-
posed CFA module and MTL method.

Comparative analysis with previous studies

In this section, we compare the results of the final model BioBERT-CFA-MTM, which 
utilizes the proposed CFA module and fully-shared MTL method, with those of previ-
ous corresponding publications in the multi-task learning BioNER task. The results (F1 
scores) on the same datasets are summarized in Table 4. Overall, our model outperforms 
previous studies in the BioNER task and achieves  the best performance on all bench-
mark datasets. There are some valuable observations. First, the approaches based on the 
pre-trained language model, such as Akdemir et al. [33], Khan et al. [32], Tong et al. [40] 
and Chai et al. [34] generally outperform those based on the CNN and BiLSTM model, 
such as Crichton et al. [14], Wang et al. [28], Wang et al. [29], Yoon et al. [30] and Zuo 
et al. [31] This shows the power of using the pre-trained model as the encoder. Second, 
although the models of Akdemir et al. and Khan et al. are also based on the pre-trained 
BioBERT, the proposed BioBERT-CFA-MTM yields better performance because we 
combine the syntactic information and MTL method into BioBERT. Third, compared 
with the latest state-of-the-art model from Chai et  al., BioBERT-CFA-MTM achieves 
substantial improvements on several datasets. This is because the former approach is 
based on the pre-trained XLNet model which is inferior to the biomedical domain-
specific pre-trained BioBERT model. It also divides the parameters of the XLNet-CRF 
model into shared layers and task-specific layers while we share all the parameters of 
BioBERT-CFA-MTM across different datasets to learn more information from datasets.

Discussion
The effect of dimensions

We analyze the influence of different initial dimension sizes for the syntactic label 
embedding in the CFA module. The syntactic labels are used for integrating with 
the context features into the syntactic features, which are introduced in Equation 4. 



Page 15 of 21Zhang and Chen ﻿BMC Bioinformatics          (2022) 23:458 	

Therefore, the dimension d2 of the syntactic label embedding can affect the model 
performance. We test the different sizes of d2 by 32, 128, 256, 768, 1024 in the 
BioBERT-CFA model with the features of POS labels on the NCBI-disease dataset. 
Figure 6 presents the results where the best performance is achieved at 768. Since the 
size of the vocabulary for potential syntactic labels is relatively small (less than 100), 

Fig. 6  Impact of different sizes of dimension d2

Table 4  Comparison of the proposed model with previous multi-task model

Model BC2GM JNLPBA BC5CDR-
Disease

NCBI-disease Linnaeus Species-800 BC5CDR-
Chemical

Crichton et al. 
[14]

73.17 70.09 – 80.37 84.04 – 83.9

Wang et al. [28] 80.74 73.52 – 86.14 – – 88.78

Wang et al. [29] 84.41 – – 86.50 82.4 – –

Yoon et al. [30] 79.73 78.58 84.08 86.36 – – 93.31

Zuo et al. [31] 82.09 74.22 – 87.45 – – 89.19

Akdemir et al. 
[33]

82.99 77.88 84.86 88.09 87.03 75.62 92.58

Khan et al. [32] 83.01 72.89 – 86.68 – – 89.5

Chai et al. [34] 82.92 78.32 87.28 89.25 86.37 – 93.83

BioBERT-CFA-
MTM

85.65 78.67 87.76 90.09 88.87 75.98 94.26

Table 5  The results of different fully shared MTL methods

Model BC2GM JNLPBA BC5CDR-
Disease

NCBI-disease Linnaeus Species-800 BC5CDR-
Chemical

BioBERT-MTM 85.36 78.38 87.46 89.9 88.36 75.33 93.56

w/o the end 
tag

84.98 77.95 87.28 89.44 88.25 75.13 93.51

(− 0.38) (− 0.43) (− 0.18) (− 0.46) (− 0.11) (− 0.20) (− 0.05)

w/o the tag 
pair

77.63 72.27 77.98 81.29 79.62 65.59 81.65

(− 7.73) (− 6.12) (− 9.48) (− 8.61) (− 8.74) (− 9.74) (− 11.91)
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we assumed a small size of d2 would achieve better F1 scores. But the result shows the 
least size 32 gets the worst performance. It can be interpreted that the dimension d2 
of the syntactic label embedding is much smaller than the dimension d1 of the context 
feature embedding, which leads to lower weights for the syntactic labels in the CFA 
module. Contrarily, the size 768 is equal to the dimension d1 and therefore achieves 
the best performance.

The effect of the tag pair

In the proposed fully-shared MTL method, each input word sequence has attached 
a pair of tag identifiers, “ < tag > ” and “ < /tag > ,” at the beginning and end of the 
sequence respectively. To prove the effectiveness of the strategy, we conduct experi-
ments and show the results in Table  5. The BioBERT-MTM model is the fully shared 
MTL model which uses a pair of tag identifiers to distinguish between different datasets 
and achieve outstanding performance on the seven BioNER datasets. Then we remove 
the end tag “ < /tag > ” and only keep the beginning tag “ < tag > ” for each input sen-
tence. From the results of “w/o the end tag” model, removing the end tag strategy leads 
to a slight decline in the F1-scores. It shows that using a pair of tag identifiers positively 
affects the hidden representations of each word in the sentence more than using a single 
tag. If we remove the entire pair of tag identifiers, “ < tag > ” and “ < /tag > ,” and only 
input the original sentence as the “w/o the tag pair” model, it degrades to the aforemen-
tioned baseline BioBERT-DM model. This method seriously damages the performance 
because it treats the sentences from different datasets as from the same source and does 
not distinguish between different datasets.

Analysis for datasets under the same type

To analyze the effect of entity types of the BioNER dataset, we train the BioBERT-DM 
and BioBERT-MTM model on the only two datasets of the disease type, i.e. NCBI-dis-
ease and BC5CDR-Disease, and show the results in Table 6. The “BioBERT-MTM (all)” 
denotes the aforementioned result of the BioBERT-MTM model where we train it on 
all seven datasets including other entity types. The BioBERT-DM model, where we 
directly mix the two disease datasets for training, does not gain satisfactory results com-
pared with the single-task model BioBERT-STM. It shows that there are still some dif-
ferences between the datasets of the same type and directly mixing them will degrade 

Table 6  The results of using the datasets under the same type

Model BC5CDR-Disease NCBI-disease

BioBERT-STM 86.89 89.18

BioBERT-DM 86.66 89.35

(− 0.23) (+ 0.17)

BioBERT-MTM 87.13 89.55

(+ 0.24) (+ 0.37)

BioBERT-MTM (all) 87.46 89.9

(+ 0.57) (+ 0.72)
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the performance. In contrast, BioBERT-MTM obtains good results, which proves again 
that the proposed fully-shared MTL method learns useful information across differ-
ent datasets, even though these datasets are of the same type. Besides, the results of the 
BioBERT-MTM model trained on all datasets of multiple entity types are better than 
that trained on the two datasets of a single type, which shows that cross-type informa-
tion in the biomedical domain improves the performance by using our MTL method.

Analysis for using the tag of type name

In the above experiments of BioBERT-MTM, where the tag pair is attached to the input 
sentence, we use the name of the dataset containing this sentence as the tag. Similarly, 
we can use the name of the corresponding entity type as the tag. For example, when 
the input sentence is from the Linnaeus dataset, the pair of tags will be “ < Species > ” 
and “ < /Species > .” As shown in Table 7, “TN” denotes the method using the name of 
the type and “DN” denotes the method using the name of the dataset.  Bold marks the 
highest score among all methods. We found that the results of “DN” vastly outperform 
“TN” in most cases, which shows some differences exist in the datasets even of the same 
type. In addition, we combine the method “TN” and “DN” by attaching two pairs of tag 
identifiers at the beginning and end of the sentence respectively and name it “TN+DN.” 
The results of “TN+DN” are worse than “DN.” It shows that in the “TN+DN” method, 
too many tags are attached to the input sentence, and the model cannot understand the 
meaning of each tag well.

Case study

To better illustrate how our approach improves biomedical named entity recogni-
tion, we conduct a case study and list some practical prediction cases of the base-
line single-task model and the two proposed multi-task models on several benchmark 
datasets. The examples are shown in Table 8, where true labels and predicted labels 
are underlined in the sentence for each model. In case 1, we need to recognize enti-
ties about the gene or protein type. BioBERT-MTM correctly detects the boundaries 
of gene entity “human Elk1 gene” compared with the baseline, possibly because the 
multi-task model could learn similar context expressions from other related datasets. 
BioBERT-CFA-MTM correctly detects the boundaries of gene entity “pseudogene 
Elk2,” while BioBERT-STM and BioBERT-MTM only detect the result “Elk2.” This can 
be interpreted that BioBERT-CFA-MTM learns the relations between “pseudogene” 

Table 7  Results of different tag methods

Model Gene/protein Disease Species Chemical

BC2GM JNLPBA BC5CDR-
Disease

NCBI-disease Linnaeus Species-800 BC5CDR-
Chemical

BioBERT-STM 84.62 77.41 86.89 89.18 88.06 74.88 93.44

BioBERT-MTM

 TN 84.96 78.04 87.28 89.83 87.79 74.75 93.64
 DN 85.36 78.38 87.46 89.90 88.36 75.33 93.56

 TN+DN 85.03 78.32 87.23 89.65 88.12 75.14 93.25
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and “Elk2” from the corresponding lexical structures. In case 2, all models have cor-
rect prediction for the disease entity “cancer,” but only BioBERT-CFA-MTM correctly 
recognizes “inherited colorectal polyposis,” which is probably due to the effect of 
the CFA module. In case 3, BioBERT-STM fails to predict the species entity “Col-
wellia psychrerythraea 34H” while BioBERT-MTM is able to correctly detect it. 
Besides, “Alteromonadales” is recognized as a  species entity in BioBERT-STM and 
BioBERT-MTM, however, this word is not an entity in the standard answer. In sum-
mary, BioBERT-CFA-MTM improves BioNER effectively because it learns more lexi-
cal structures from the syntactic information and shares useful information between 
multiple datasets by the fully-shared MTL method. Nevertheless, there are still some 

Table 8  Case study of the prediction examples from different models

Dataset: BC2GM Dataset: BC2GM entity type: gene/protein

Case 1 True label Structural organization of the human Elk1 gene and its processed 
pseudogene Elk2.

BioBERT-STM Structural organization of the human Elk1 gene and its processed 
pseudogene Elk2.

BioBERT-MTM Structural organization of the human Elk1 gene and its processed 
pseudogene Elk2.

BioBERT-CFA-MTM Structural organization of the human Elk1 gene and its processed 
pseudogene Elk2.

Dataset: NCBI-disease 
entity type: disease

Entity type: disease

case 2 True label Inherited colorectal polyposis and cancer risk of the APC I1307K 
polymorphism.

BioBERT-STM Inherited colorectal polyposis and cancer risk of the APC I1307K 
polymorphism.

BioBERT-MTM Inherited colorectal polyposis and cancer risk of the APC I1307K 
polymorphism.

BioBERT-CFA-MTM Inherited colorectal polyposis and cancer risk of the APC I1307K 
polymorphism.

Dataset: Linnaeus entity type: species

Case 3 True label Other species represented are Colwellia psychrerythraea 34H and 
Shewanella oneidensis, that belong to the Alteromonadales family.

BioBERT-STM Other species represented are Colwellia psychrerythraea 34H and 
Shewanella oneidensis, that belong to the Alteromonadales family.

BioBERT-MTM Other species represented are Colwellia psychrerythraea 34H and 
Shewanella oneidensis, that belong to the Alteromonadales family.

BioBERT-CFA-MTM Other species represented are Colwellia psychrerythraea 34H and 
Shewanella oneidensis, that belong to the Alteromonadales family.

Dataset: NCBI-disease Entity type: disease

case 4 True label Skin photosensitivity may also be present.

BioBERT-STM Skin photosensitivity may also be present.

BioBERT-MTM Skin photosensitivity may also be present.

BioBERT-CFA-MTM Skin photosensitivity may also be present.

Dataset: Linnaeus Entity type: species

case 5 True label Scanagati then recommended the continuation of the electuary 
made of emollient, guaiacum resin, balsam, rhubarb, and nitre.

BioBERT-STM Scanagati then recommended the continuation of the electuary 
made of emollient, guaiacum resin, balsam, rhubarb, and nitre.

BioBERT-MTM Scanagati then recommended the continuation of the electuary 
made of emollient, guaiacum resin, balsam, rhubarb, and nitre.

BioBERT-CFA-MTM Scanagati then recommended the continuation of the electuary 
made of emollient, guaiacum resin, balsam, rhubarb, and nitre.
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difficult cases that cannot be solved by our models. In case 4, the phrase “skin pho-
tosensitivity” is inferred as the disease entity by three models, but it is not an entity. 
The word “photosensitivity” is rare and it does not appear in the training set, and the 
expression of the phrase “skin photosensitivity” is similar to other skin diseases, e.g., 
“skin fragility syndrome” and “skin track,” therefore it is error-prone and hard to cor-
rectly recognize. Likewise, in case 5, because the species entity “rhubarb” is a rare 
word and it is difficult to identify according to the context, our models fail to recog-
nize it.

Conclusions
In this paper, we propose a novel fully-shared multi-task learning model based on the 
pre-trained BioBERT with a new attention module to integrate the auto-processed syn-
tactic information for the BioNER task. The proposed attention module CFA extracts 
appropriate features from syntactic information and weights these features to enhance 
BioNER. The proposed multi-task learning method shares all parameters to capture 
useful information from different datasets. We conducted a large number of experi-
ments on seven benchmark BioNER datasets and our methods achieved the best results 
on all datasets. The experiment results and case studies demonstrate the importance 
of the proposed CFA module and fully shared MTL method used in our model. In the 
future, we expect to employ biomedical-specific syntactic toolkits instead of the general-
purpose toolkit to further improve the performance for CFA, and apply the proposed 
approach to other sequence tagging tasks.
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