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Abstract: Hydraulic piston pump is the heart of hydraulic transmission system. On account of the
limitations of traditional fault diagnosis in the dependence on expert experience knowledge and
the extraction of fault features, it is of great meaning to explore the intelligent diagnosis methods
of hydraulic piston pump. Motivated by deep learning theory, a novel intelligent fault diagnosis
method for hydraulic piston pump is proposed via combining wavelet analysis with improved
convolutional neural network (CNN). Compared with the classic AlexNet, the proposed method
decreases the number of parameters and computational complexity by means of modifying the
structure of network. The constructed model fully integrates the ability of wavelet analysis in feature
extraction and the ability of CNN in deep learning. The proposed method is employed to extract
the fault features from the measured vibration signals of the piston pump and realize the fault
classification. The fault data are mainly from five different health states: central spring failure,
sliding slipper wear, swash plate wear, loose slipper, and normal state, respectively. The results
show that the proposed method can extract the characteristics of the vibration signals of the piston
pump in multiple states, and effectively realize intelligent fault recognition. To further demonstrate
the recognition property of the proposed model, different CNN models are used for comparisons,
involving standard LeNet-5, improved 2D LeNet-5, and standard AlexNet. Compared with the
models for contrastive analysis, the proposed method has the highest recognition accuracy, and the
proposed model is more robust.

Keywords: axial piston pump; intelligent fault diagnosis; deep learning; wavelet time-frequency
analysis; convolutional neural network

1. Introduction

The hydraulic piston pumps are the core power source of the hydraulic transmission
system, which are the “heart” of the hydraulic system. The reliability of its work is the
key to ensure the high precision, high speed, stable operation of many national defense
equipment and industrial equipment. Once the piston pump breaks down, downtime will
occur, and the entire production line maybe paralyzed. More severely, it could even cause
a catastrophic accident [1,2]. However, hydraulic pumps often face rigorous operating
conditions such as high temperature, heavy load, high speed, and high pressure, which
accelerate the deterioration of the health condition of the hydraulic pumps [3,4]. Therefore,
the investigation on the intelligent fault diagnosis of the piston pump plays a practical and
significant role in safe and efficient production, personnel health, and so on [5,6].

In recent years, due to the reliance of traditional mechanical fault diagnosis on expert
experience and knowledge, the diagnosis process consumes a lot of human resources,
which is gradually unable to meet the needs of industrial production. Encouragingly,
the rapid development of artificial intelligence has profoundly changed human social life
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and promoted the intelligentialize of traditional industries. Correspondingly, intelligent
diagnosis methods have gradually become mainstream. On account of the excellent data
processing capabilities, many methods based on artificial intelligence have gradually been
employed in the territory of mechanical fault diagnosis, such as convolutional neural
networks (CNN) [7–9], autoencoder [9,10], deep belief networks [11,12], and recurrent
neural networks [13,14].

Aiming at the difficult operation and maintenance of complex engineering system
for health diagnosis, Tamilselvan et al. applied deep learning to accomplish mechanical
fault diagnosis [15]. A multi-sensor health diagnosis method was proposed on the basis
of deep belief network, which was considered to be the landmark breakthrough for fault
diagnosis combining deep learning model [15]. Moreover, Jiang et al. combined multi-
sensor information fusion with support vector machine (SVM) to realize the fault diagnosis
of gear and rolling bearing [16]. Azamfar et al. stacked different frequency domains
data into two-dimensional matrix as the input of CNN to implement fault diagnosis of
gearboxes, and the effect is more accurate than traditional machine learning methods [17].
Luwei et al. fused vibration data of different positions and combined with artificial neural
network (ANN) to realize fault diagnosis of rotating machinery [18]. On the basis of
coherent composite spectrum (CCS), Yunusa-Kaltungo et al. realized fault diagnosis of
rotating machinery via combining multi-sensor data with ANN [19]. Liu et al. utilized
cascade-correlation neural network to realize fault diagnosis of mechanical equipment,
which indicates that the result of multi-data fusion is better than single data [20]. Wang
et al. alleviated the conflict between multi-sensors data via improving the sensor, which
has good application in the field of fault diagnosis [21]. Based on Elman ANN, Kolanowski
et al. built a navigation system, which can easily add other sensors and make data better
fusion [22]. In addition, intelligent fault diagnosis generally includes two portions, feature
extraction and self-learning classification of neural network model respectively [23]. For
the sake of surmounting the problem of over-fitting created by the small amount of data in
hydraulic pumps, Kim et al. combined with deep learning models to achieve the status
detection of hydraulic system. It was worth pointing out that sensors were used to collect
signals and meanwhile joggling was performed to simulate additional noise to expand the
amount of sample data [24]. Zhang et al. used continuous wavelet transform (CWT) to
obtain single-channel time-frequency diagrams of bearing vibration signals and merged
three single-channel samples into three-channel samples as input data. The fault diagnosis
was realized by using multi-channel sample data and demonstrated to be better than that
of single-channel sample data [25]. Quinde et al. combined Wigner–Ville distribution
with local mean decomposition (LMD) to realize bearing fault diagnosis based on one-
dimensional signals [26]. Zhao et al. proposed a normalized CNN that combined batch
normalization (BN) with exponential moving average (EMA) technology to construct a
fault diagnosis model. The established model can be suitable for data imbalance and
changing working conditions and obtained the desirable fault diagnosis performance
for rotating machinery [27]. In terms of the structure of networks, Che et al. built a
deep residual network model to tackle the problems such as complex fault types and
long vibration signal sequences. The residual module was added to the CNN to further
reduce the training error of the model, and intelligent fault diagnosis of bearing was finally
achieved [28]. Aiming at the difficulties of feature extraction and poor robustness of the
model, Wei et al. combined CNN with long short-term memory (LSTM) to achieve fault
diagnosis of piston pumps with different cavitation degrees. The model still presented
good robustness in the case of additional noise [29]. Kumar et al. introduced a new
divergence function into the cost function, thereby reducing the complexity of the hidden
layers, and finally the accuracy of diagnosis of centrifugal pump component defects was
raised by 3.2% [30]. Al-Tubi et al. used genetic algorithms to adjust hidden layers of
support vector machines to achieve fault diagnosis of centrifugal pumps [31]. Siano et al.
combined fast Fourier transform with an artificial neural network to achieve the online
detection of pump cavitation [32]. For the fault diagnosis of the piston pump, Du et al.
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built an integrated model and obtained the higher accuracy than the models for contrastive
analysis. The model combined the sensitivity analysis (SA) of the characteristic parameters
with the empirical mode decomposition (EMD). The higher sensitivity characteristics
were input into probabilistic neural networks (PNN) for feature learning. The model still
had good generalization performance in the multi-mode recognition state [33]. Wang
et al. used a band-pass filter to improve the performance of minimum deconvolution
and effectively detect the bearing failure of the piston pump [34]. Lu et al. used sparse
empirical wavelet transform to process vibration signals of gear pump, combined with
adaptive dynamic least squares support vector machine method (LSSVM) to achieve gear
pump fault diagnosis, and the effect was better than empirical wavelet transform combined
with LSSVM [35]. Although the above studies have adopted deep learning models in
mechanical fault diagnosis and have achieved many beneficial research results, however,
they require high signal processing-related knowledge in feature extraction and consume
vast range of human resources in data processing. More importantly, deep learning is
rarely utilized in the fault diagnosis field of hydraulic piston pump. The advantages of the
deep learning models in feature self-learning need to be further explored.

The vibration signal of the hydraulic piston pump is a typical non-stationary
signal [1,36]. The short-time Fourier transform, Wigner transform, and wavelet trans-
form are widely utilized in the analysis of non-stationary signals [37–39]. Short-time
Fourier transform has a defect of low resolution [40]. Wigner transform has so-called
“cross-term” interference that cannot be explained and suppressed to multi-component
signals [41]. The wavelet transform inherits the localization idea of the short-time Fourier
transform and makes up for the weakness that the size of the sliding window does not
change with frequency. It has high resolution and can well extract the time domain and
frequency domain characteristics of non-stationary signals. Therefore, wavelet transform
gradually becomes an important method to deal with non-stationary signals. The results
of wavelet transform are displayed in the form of RGB images, which is essentially the
response of the energy intensity of the signal at different times and frequencies. It can show
the detailed changes of the signal and describe the fault characteristics in the signal [42].
Therefore, it can be used to extract the fault characteristics of the vibration signal of the
piston pump, which provides an auxiliary path for the fault diagnosis of piston pumps.

This paper takes the hydraulic axial piston pump as the research object, a main
contribution is in the following:

The constructed deep CNN simplifies the structure of the classic AlexNet network
model. The classic AlexNet with five convolutional layers is reduced to the model with
three convolutional layers. The full connected layer, convolutional layer and maxpooling
layer are redesigned. The number of maxpooling kernel, convolutional kernel, and full
connected layer neurons are adjusted. The LRN layer is removed on account of the minor
influence on the diagnostic accuracy. The constructed deep CNN is trained based on dataset
of real axial piston pump. Four optimizers are utilized in the gradient descent process
of constructed CNN model, and the Adam optimizer is finally selected, which can make
the model training process converge fastest, steady and improve generalization ability.
Moreover, the hyperparameters are optimized for the enhance performance, including
learning rate, batch size, the number and the size of convolutional kernel, and dropout rate.
The quantity of convolution kernels are unified in each layer, and the quantity of nodes
in the fully connected layer are improved. The RELU activation function is employed.
The input data are three-channel feature images. The constructed deep CNN model is
composed of three convolutional layers, three pooling layers, and three fully connected
layers. Each pooling layer is connected behind each convolutional layer. The random
inactivation neuron operation is added to the former two fully connected layers to avoid the
overfitting of proposed model. The last layer is the softmax classifier for image classification.
Compared with the classic AlexNet model, the structure is simplified, and the number
of the parameters is enormously reduced in the improved CNN model. Moreover, the



Sensors 2021, 21, 549 4 of 18

proposed model costs the shorter computation time and presents the higher classification
performance compared with the other CNN models.

This article is composed as follows: in Section 2, the basic theory of CWT is briefly
introduced. In Section 3, the principle of CNN is described, including the convolutional
layer, pooling layer, and classification layer. In Section 4, the improvement of AlexNet
model is described and analyzed. In Section 5, the proposed method is verified with
measured fault data of hydraulic pump, and the test results are discussed. In Section 6,
conclusions are drawn, and future research is prospected.

2. Continuous Wavelet Transform

Wavelet transform is extensive employed in the domain of mechanical fault diagnosis.
CWT of signal can be expressed as follows [43–45]:

ωt(α, τ) = ( f (t), ϕα,τ) =
1√
α

∫ ∞

−∞
f (t)ϕ∗

(
t− τ

α

)
dt (1)

where ϕα,τ = 1√
α

ϕ
( t−τ

α

)
is the wavelet basis function, which is obtained from the mother

wavelet function through a series of expansion and translation. α is the scale factor, which
is related to frequency, if the value is larger, the corresponding time resolution is poor and
the frequency resolution is good. τ is the shift factor, which is related to time. ϕ ∗ (t) is the
complex conjugate of ϕ(t).

The choice of wavelet basis is the most crucial step in wavelet transform [42]. In
this paper, cmor wavelet was choosen as the wavelet basis function. After CWT, the one-
dimensional signal f (t) is decomposed into wavelet coefficients related to the scale α and
the shift τ, and then the two-dimensional time-frequency distribution images are projected.

3. Convolutional Neural Network

CNN is a deep learning method centered on image identification. It includes two parts,
one is feature self-learning, and the other is classification. The network is composed of fully
connected layers, pooling layers, convolutional layers, and so on. The feature self-learning
is mainly operated in the convolutional layers. The classification task is performed in the
softmax layer. To a certain degree, CNN benefits from the weight sharing mechanism of
the convolutional layers and can reduce the number of training parameters. Now, more
CNN structures with better generalization capabilities have been developed and applied
in various fields, such as LeNet-5 [46], AlexNet [46,47], Vgg [48], and so on.

3.1. Convolutional Layer

As the core layer of CNN, most calculations are performed in the convolutional layer.
It contains different feature information extracted by multiple convolution kernels [49].
Rich feature data can be extracted with deep convolutional layer. The convolution operation
can be illustrated as the following equation:

XL
j = S

 ∑
i∈Mj

XL−1
i · wL

ij + bj

 (2)

where L is the current number of layer. XL−1
i is the input trait map of L− 1 layer. XL

j is

the output trait map of L layer. wL
ij is the weight matrix. bj is the bias value of convolution

layer. Mj is the input feature set. S(·) is the activation function.
After convolution layers, the Rectified Linear Unit (RELU) activation function is

generally used for nonlinear transformation, which contributes to speed of gradient descent
and avoids vanishing gradient. Its mathematical expression is as follows:

g(x) = max
(

0, XL
j

)
(3)
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3.2. Pooling Layer

The pooling layer generally includes max-pooling, mean-pooling, and stochastic
pooling layer. The pooling layers are employed to accomplish down-sample to input
feature data [50]. The pooling operation can decrease the space size of the data and the
quantity of parameters of each layer of the model. Moreover, the phenomenon of model
overfitting can be effectively avoided. In this paper, the max-pooling layer is utilized to
take the maximum value of the neural unit in the receptive field as the new feature value
through the pooling kernel.

3.3. Softmax Classification

For multi-classification tasks, the softmax function is usually utilized in the end of
the network to map the output value to the interval (0, 1). After processed by the softmax
function, the output vector will be converted into the form of the probability distribution.
Its mathematical expression can be expressed as follows [51,52]:

J(i) =
[
z1, z2, · · · , zm−1, zm

]T
(4)

Pk = So f t max
(

J(i)
)
=

ezk

∑m
1 ezm (5)

P = So f t max
(

J(i)
)
=

[
ez1

∑m
1 ezm

,
ez2

∑m
1 ezm

, · · · ezm−1

∑m
1 ezm

,
ezm

∑m
1 ezm

]
(6)

where J(i) is the output vector of the output layer. z1, · · · , zm are the element values
of the output vector of m category. Pk is the probability value of input sample, which
belongs to the kth category. P is the probability distribution of the m category. ezk

∑m
1 ezm is the

normalization function.

4. Intelligent Diagnosis Method Combining Wavelet Time-Frequency Analysis with
Improved AlexNet Model
4.1. Improvement of AlexNet Network Model

The standard AlexNet model is a deep CNN, including 5 convolutional layers, 2 local
response normalization (LRN) layers, 3 max-pooling layers, and 3 fully connected layers.
It was born to solve image classification of 1000 types [53]. Compared with 1000 types
of image recognition, signal classification of five working condition for the piston pump
involved in this article is not considered to be a large-scale image recognition classification.

Considering the depth of the classic AlexNet network model, a large number of
learning parameters and request for multiple GPUs to work at the same time, it makes
model training more difficult. Thus, this paper simplifies the classic AlexNet model,
unifies the quantity of convolution kernels in each layer, and improves the quantity of
convolutional layers, the quantity of nodes in the fully connected layer, dropout value, and
so on. We make use of the RELU activation function. The input data are 3-channel feature
images. The model is composed of 3 convolutional layers, 3 pooling layers and 3 fully
connected layers. Each pooling layer is connected behind each convolutional layer. The
random inactivation neuron operation is added to the former two fully connected layers to
avoid the overfitting of proposed model. The last layer is the softmax classifier for image
classification. The structure of the model is shown in Figure 1.
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Figure 1. Improved AlexNet network model.

4.2. Network Model Training Process

The size of time-frequency images is fixed as 224 × 224 through the resize function in
Pytorch. Figure 2 reveals the flowchart of proposed model training. Firstly, the datasets
are constructed and divided, and the mini-batch samples are taken as input to train model.
Then, weight value, bias value, and other parameters are randomly initialized in the process
of model training. During the model training, time-frequency graphs pass through the
convolutional, pooling, fully connected layers, and feature data are forward propagated.
The error value between the predicted output and the expected output is computed by
cross-entropy cost function. In the meantime, weight value and bias value of each layer
of the network are updated via back propagation. Finally, the training of the network is
terminated with the purpose of reaching the convergence condition.
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4.3. Process of the Intelligent Fault Diagnosis Method

The research ideas of the intelligent fault diagnosis method of piston pump on account
of wavelet time-frequency analysis and improved AlexNet network model are as follows:

(1) The signal dataset is constructed by collecting the vibration signals of the piston
pump test bench under different conditions. Then samples are constructed through
the sliding window, and the length of each sample is 1024.

(2) Wavelet transform on the divided vibration signal dataset is performed to achieve
the time-frequency distribution of one-dimensional time series, and 3-channel time-
frequency images are generated. The division of dataset is in the following: the
training sets account for 70% and the test sets account for 30%.

(3) The structural parameters of the diagnostic model are preliminarily set, such as
learning rate, dropout value, the number of convolution kernel, and so on. Then a
CNN structure based on the improved AlexNet model is established.

(4) The training loss and test accuracy of the model are taken as evaluation indicator to
select structural parameters through numerous experiments.

(5) Through the above steps, the structural parameters of the neural network model are
determined. Then, the training samples, test samples are input into the network model
to retrain and verify the learning effect of the model, and t-distributed stochastic
neighbor embedding (t-SNE) is utilized to visualize the effect of feature extraction.

(6) To further validate the diagnosis property of proposed model, the following deep
models are used for comparisons, involving classic, improved 2D LeNet-5, classic
LeNet-5, and classic AlexNet.

5. Experimental Verification
5.1. Sample Set

For the sake of validating the effectiveness of the proposed method, a test bench is
built to collect the vibration signals of the hydraulic pump in different working conditions.
The experimental data collection was completed in Yanshan University. The test bench
is shown in Figure 3. In the experiment, a swash plate axial piston pump is selected as
the test object, and the type is MCY14-1B. The rated speed of motor is 1470 r/min, and it
means the corresponding rotation frequency is 24.5 Hz. In the test, an acceleration sensor
is installed at the end cover center of the pump to acquire the vibration signals, and the
type is YD72D. The sampling frequency is 10 kHz.
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During the experiment, the working pressure of the piston pump is respectively
adjusted to 2 MPa, 5 MPa, 8 MPa, 10 MPa, and 15 MPa. Under each working pressure,
the acceleration sensor is utilized to collect vibration signals of the piston pump in five
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states: normal state, sliding slipper wear, central spring failure, swash plate wear, and loose
slipper. Among them, the selected four failure states are the common failure cases of piston
pump. The partial time-domain waveforms of vibration signals are shown in Figure 4.
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Figure 4. Time-domain waveform of five states.

In addition, in order to further validating the identification effect of the proposed
method on different fault levels, three failure types with different degrees are set under
the states of center spring failure, sliding slipper wear, and loose slipper. Three failure
levels correspond to minor failures, moderate failures, and severe failures. Therefore, these
malfunction data are respectively composed of three different failure sample sets. The
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composition of the sample set in five states at the working pressure of 8 MPa is listed in
Figure 5. The composition of the sample set in other working pressure is the same as that
of 8 MPa, including 2 MPa, 5 MPa, 10 MPa, and 15 MPa.
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Seen from Figure 4, it is difficult to estimate the health status of the piston pump
corresponding to the vibration signal via simply observing the time-domain waveform
diagrams. Therefore, the vibration time-domain signal is converted into the time-frequency
domain distribution with the wavelet time-frequency analysis method to highlight the
internal characteristics. The partial wavelet time-frequency diagrams of five states of the
piston pump are shown in Figure 6.
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About the experiment, the wavelet time-frequency diagrams of the vibration signal
are taken as the analysis sample for fault identification. Under each working pressure, the
number of each state data sample is 240 and it means the total sample is 6000. The samples
are arranged randomly. The composition of the sample-set is displayed in Table 1.
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Table 1. Signal samples and labels.

Sample Type Total Training Sample Test Sample Labels

Sliding slipper wear 1200 840 360 0
Loose slipper 1200 840 360 1

Swashplate wear 1200 840 360 2
Normal state 1200 840 360 3

Center spring failure 1200 840 360 4
Total 6000 4200 1800 —

5.2. Optimal Selection of Model Structure Parameters

The selection of structure parameters plays a significant role in the construction of
neural networks. The measured data analysis in this article is based on the deep learning
framework PyTorch 1.5.1 and python programming language. The computer configuration
is W-2235CPU @3.80 GHz, the graphics card is RTX4000, and RAM (random access memory)
is 32 GB. The PyTorch framework is employed to initially build a CNN model, including
3 diverse convolutional layers, 3 uniform max-pooling layers, and 3 diverse fully connected
layers. The batch size, learning rate, dropout value, and the number of convolution
kernels are determined via debugging the parameter of the model. On behalf of ensuring
the robustness of the experiment results, all experiments are repeated 10 times. The
computational formula of the test accuracy is as follows:

Model accuracy =
ncorrect

Nall
× 100% (7)

where ncorrect is the quantity of samples whose predicted label is consistent with the target
label through the convolutional neural network. Nall is the total quantity of samples in the
training sample set or test sample set, respectively correspond to the training accuracy rate
and test accuracy rate of the proposed model.

The consequences of debugging the model are revealed in Figure 7.
Seen from Figure 7a, with different batchsizes, the loss curves present different con-

vergence rates. When the number of batchsize is 55, the loss curve converges faster and the
training accuracy curve achieves stable in fewer epochs. To sum up, the overall effect is
better than the other four batchsize.

In terms of different learning rates, Figure 7b reflects the changes of test accuracy and
training error loss. When the learning rate is 0.001, the training error loss curve and test
accuracy curve are undulating. The convergence effect of training error curve with learning
rate of 0.0001 is poorer than that with learning rate of 0.0002 and 0.0003. When the learning
rate is 0.0002 and 0.0003, the convergence speed of the error loss curve of the two training
sets is small, but the convergence trend of the test set accuracy curve is more stable at the
learning rate of 0.0002.

Seen from Figure 7c, different dropout values have different impact on the perfor-
mance of the model with the same number of epochs. From the perspective of the training
loss curve, when the dropout value is 0.8 and 0.9, the convergence speed of loss curve
is slower, and the test accuracy curve of the model displays great fluctuation. It can be
indicated that the larger dropout value leads to the insufficient feature extraction and the
unfavorable learning effect. However, the average error of the model is small, and the
convergence speed of error loss curve is fast at the dropout value of 0.5. At the same time,
the test accuracy curve converges rapidly and presents a steady trend. Moreover, a higher
convergence accuracy is obtained.
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Figure 7. The tendency of different model parameters.

The learning effect under different numbers of convolution kernels are displayed
in Figure 7d. It can be seen that the learning effect is not good, and the test accuracy is
low within the interval (1, 20). With the increase of the number of convolution kernels,
the eigenvalues extracted by the model are more representative. In the meantime, the
test accuracy of proposed model gradually augments and tends to be stabilized. The test
accuracy value is close to the maximum value at the number of convolution kernels of
35. As the number of convolution kernels is directly proportional to the computational
complexity of the model, it already meets the needs of sample testing at the quantity of
convolution kernels in each convolution layer of 35.



Sensors 2021, 21, 549 12 of 18

The selection of appropriate optimizer can make the training loss of the model decrease
quickly and steadily. Seen from Figure 7e,f, the accuracy curve of the model fluctuates
sharply with the RMSprop optimizer. When Adadelta, SGD, and RMSprop optimizers
are employed in the model, the initial accuracy of the model is all low. With the epochs
increasing, although the accuracy gradually increases, the accuracy of the model fluctuates
greatly. Nevertheless, the higher accuracy and lower training loss value are attained in
the initial training stage when Adam optimizer is employed. The corresponding accuracy
curve converges faster, and the training loss curve falls smoother than that with Adadelta,
SGD, and RMSprop. When the epoch reaches 15, the optimal accuracy is achieved.

According to the above analysis, the structure of the proposed model is elected as
follows: the batchsize is 55, the learning rate is 0.0002, the dropout value is 0.5, the quantity
of convolution kernels is 35, and the optimizer is Adam. The structure parameters of each
layer of the model are revealed in Table 2.

Table 2. Parameters of each layer.

Layers
Convolution Kernels
× Convolution

Kernel Size
Output Activation Function

First convolution layer 35 × 11 × 11 35 × 55 × 55 RELU
First max-pooling layer 35 × 3 × 3 35 × 27 × 27 —

Second convolution layer 35 × 3 × 3 35 × 27 × 27 RELU
Second max-pooling layer 35 × 5 × 5 35 × 13 × 13 —

Third convolution layer 35 × 3 × 3 35 × 13 × 13 RELU
Third max-pooling layer 35 × 3 × 3 35 × 6 × 6 —
First full connection layer — 1024 RELU

Second full connection layer — 512 RELU
Third full connection layer — 5 —

5.3. Fault Diagnosis Based on CWT-AlexNet

Based on randomly initialized weight value and bias value, a fault diagnosis model
is built. The cross-entropy loss function is employed to calculate the loss value between
output labels and real labels, and an Adam optimization algorithm is utilized to update
the weight value and bias value of each layer. The training of model is not terminated until
the training loss curve and test accuracy curve no longer decline or rise greatly with the
increase of epoch. After repeating experiments 10 times, the average accuracy of the model
is 98.06%. The highest accuracy can reach 98.33%. The accuracy curves and loss curves of
the model are shown in Figure 8.
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The recognition accuracy of each state test sample based on proposed model is revealed
in Table 3.

Table 3. The recognition accuracy rate of each state.

Sample Type Recognition Accuracy

Normal state 100.00%
Loose slipper 97.22%

Sliding slipper wear 100.00%
Swash plate fault 100.00%

Center spring failure 94.72%

Seen from Table 3, the features of the vibration signals of the piston pump can be
extracted via the fault diagnosis model with CWT-AlexNet, and the different types of
faults are distinguished effectively. Among the signals of the piston pump, the recognition
accuracy of the normal state, sliding slipper wear, and swashplate wear all achieve 100%,
which indicates that the hidden characteristics of the vibration signals of these three states
can be self-learned by the diagnostic model. Due to the similarity of the characteristics of
the vibration signals of loose slipper failure and center spring failure, it may easily cause
misclassification. Therefore, the corresponding recognition accuracies respectively only
reach 97.22% and 94.72%.

In order to further clearly show the feature extraction and classification capabilities of
the model, t-SNE is utilized to visualize the process of feature extraction of some middle
layers. Seen from Figure 9, the visual clustering effects of the followings are analyzed,
including the first max-pooling layer (Maxpool1), second max-pooling layer (Maxpool2),
third convolution layer (Conv3), and penultimate fully connected layer (FC2). Through the
feature extraction of the Maxpool1 layer, it can be seen that the feature data of the piston
pump are mixed with each other, and difficult to distinguish. However, after extracted by
the FC2 layer, the input features represent good five cluster distribution. It can be observed
that the same fault signatures congregate with each other and the different fault signatures
repel each other, which indicates that the model has good classification and recognition
ability. It means the ability of feature extraction of the model is gradually enhanced with
the deepening of the neural network.

5.4. Comparative Verification

In order to validate the feature extraction availability of the proposed model, the
performance of the CWT-AlexNet network is compared with other commonly used mod-
els, including standard LeNet-5, AlexNet and improved 2D LeNet-5 [54] network. The
detailed setting of improved 2D LeNet-5 network can be searched in [54]. After repeating
experiments 10 times, the average test accuracy, standard deviation (Std), training time,
and test time are taken as evaluation indicators. Comparison consequences are revealed in
Table 4.

Table 4. Comparison with different models.

Model Average
Accuracy Std Training Time

(s/epoch)
Test Time
(s/epoch)

CWT-AlexNet 98.06% 0.171 7.27 3.12
Tradition LeNet-5 93.79% 0.348 5.33 1.41

Improved 2D LeNet-5 95.63% 0.739 10.29 1.53
Tradition AlexNet 98.02% 0.134 11.54 4.25
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Figure 9. Visualization of t-distributed stochastic neighbor embedding (t-SNE). where, hx is the sliding slipper wear, sx is
the loose slipper, xp is the swash plate fault, zc is the normal state, and zxth is the center spring failure.

Seen from Table 4, the average accuracy of the four models is all above 90%. The
CWT-AlexNet model has obvious advantages in comparison with traditional LetNet-5
and improved 2D LeNet-5 model. The average accuracy of the CWT-AlexNet model is
respectively higher than LetNet-5 and improved 2D LeNet-5 model about 4.27% and 2.43%,
and the Std of the proposed model is lower. When compared with the classic AlexNet
model, the average accuracy of the CWT-AlexNet model increases only 0.4%; however, the
model takes less calculation time, and the diagnostic efficiency is better than the classic
AlexNet model.

For the purpose of visually show the performance of the model for multi-fault classifi-
cation prediction, the classification effect confusion matrix of the above four models are
shown in Figure 10.
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Figure 10a–d are the confusion matrix of LeNet-5, improved 2D LeNet-5, classic
AlexNet and CWT-AlexNet model, which reflect the misclassification of the five state
signal samples. According to the results presented by the confusion matrix, four models
have good performance on the signals under normal state, sliding slipper wear, and
swashplate wear, and the number of misclassified samples is small. The proposed model
performs best on center spring failure samples and loose slipper failure, and the quantity
of misclassifications is less than that of the classic AlexNet model, LeNet-5 and improved
2D LeNet-5 models.

For the purpose of intuitively compare the correct classification results of above
models. The histograms of the signal classification in different states are shown in
Figure 11. It vividly shows that the CWT-AlexNet model has the highest recognition
accuracy for the five state signals, which further illustrates that the diagnostic model has
higher recognition accuracy and stronger model robustness.
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6. Conclusions

In this study, a novel intelligent fault diagnosis method is proposed via combining
CWT with CNN, which fully integrates the ability of wavelet time-frequency analysis in
feature extraction and the ability of AlexNet in automatic learning.

(1) The structure of AlexNet network is improved through reducing the number of
parameters and calculation complexity of each layer. The proposed model can extract
features from the vibration signals of the piston pump in different states and identify
various fault types effectively. The recognition accuracy of the normal state, sliding
slipper wear, and wear swash plate fault can reach 100%, the recognition accuracy of
the loose slipper fault can reach 97.22%, and the recognition accuracy of the center
spring failure can reach 94.72%.

(2) Compared with standard LeNet-5 network, standard AlexNet network and improved
2D LeNet-5 network, the proposed CWT-AlexNet model has the highest recognition
accuracy for five fault types of the piston pump, and the proposed model has strong
robustness.

This research will provide a theoretical reference for the intelligent fault diagnosis of
piston pump and conducive to the failure prediction of piston pump.
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22. Kolanowski, K.; Świetlicka, A.; Kapela, R.; Pochmara, J.; Rybarczyk, A. Multisensor data fusion using Elman neural networks.

Appl. Math. Comput. 2018, 319, 236–244. [CrossRef]
23. Wan, Q.; Xiong, B.; Li, X.; Sun, W. Fault diagnosis for rolling bearing of swashplate based on DCAE-CNN. J. Vib. Shock. 2020, 39,

273–279.
24. Kim, K.; Jeong, J. Deep Learning-based Data Augmentation for Hydraulic Condition Monitoring System. Procedia Comput. Sci.

2020, 175, 20–27. [CrossRef]
25. Zhang, H.; Yuan, Q.; Zhao, B.; Niu, G. Bearing fault diagnosis with multi-channel sample and deep convolutional neural network.

J. Xi’an Jiaotong Univ. 2020, 54, 58–66.
26. Quinde, I.B.R.; Sumba, J.P.C.; Ochoa, L.E.E.; Guevara, A.J.V.; Morales-Menendez, R. Bearing Fault Diagnosis Based on Optimal

Time-Frequency Representation Method. IFAC Pap. 2019, 52, 194–199. [CrossRef]
27. Zhao, B.; Zhang, X.; Li, H.; Yang, Z. Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data

imbalance and variable working conditions. Knowl. Based Syst. 2020, 199, 105971. [CrossRef]
28. Che, C.; Wang, H.; Ni, X.; Lin, R. Fault diagnosis of rolling bearing based on deep residual shrinkage network. J. Beijing Univ.

Aeronaut. Astronaut. 2020, 1–10. [CrossRef]
29. Wei, X.; Chao, Q.; Tao, J.; Liu, C.; Wang, L. Cavitation fault diagnosis method for high-speed plunger pump based on LSTM and

CNN. Acta Aeronaut. Astronaut. Sin. 2020, 41, 1–12.

http://doi.org/10.1016/j.ymssp.2019.04.032
http://doi.org/10.1109/ACCESS.2020.3012182
http://doi.org/10.1115/1.4045995
http://doi.org/10.1016/j.icheatmasstransfer.2020.104526
http://doi.org/10.1016/j.measurement.2020.107908
http://doi.org/10.3390/pr8101217
http://doi.org/10.1109/access.2020.2992692
http://doi.org/10.3390/s20185040
http://doi.org/10.1016/j.neucom.2018.06.078
http://doi.org/10.1016/j.renene.2020.04.148
http://doi.org/10.1016/j.procs.2017.10.042
http://doi.org/10.1109/ACCESS.2019.2963092
http://doi.org/10.3390/s20185112
http://doi.org/10.1016/j.ress.2013.02.022
http://doi.org/10.1155/2014/418178
http://doi.org/10.1016/j.ymssp.2020.106861
http://doi.org/10.3390/machines6040059
http://doi.org/10.3390/en13061394
http://doi.org/10.1017/S0890060401153011
http://doi.org/10.1109/ACCESS.2018.2889358
http://doi.org/10.1016/j.amc.2017.02.031
http://doi.org/10.1016/j.procs.2020.07.007
http://doi.org/10.1016/j.ifacol.2019.09.140
http://doi.org/10.1016/j.knosys.2020.105971
http://doi.org/10.13700/j.bh.1001-5965.2020.0194


Sensors 2021, 21, 549 18 of 18

30. Kumar, A.; Gandhi, C.; Zhou, Y.; Kumar, R.; Xiang, J. Improved deep convolution neural network (CNN) for the identification of
defects in the centrifugal pump using acoustic images. Appl. Acoust. 2020, 167, 107399. [CrossRef]

31. AlTobi, M.A.S.; Bevan, G.; Wallace, P.; Harrison, D.; Ramachandran, K. Fault diagnosis of a centrifugal pump using MLP-GABP
and SVM with CWT. Eng. Sci. Technol. Int. J. 2019, 22, 854–861. [CrossRef]

32. Siano, D.; Panza, M. Diagnostic method by using vibration analysis for pump fault detection. Energy Procedia 2018, 148, 10–17.
[CrossRef]

33. Du, Z.; Zhao, J.; Li, H.; Zhang, X. A fault diagnosis method of a plunger pump based on SA-EMD-PNN. J. Vib. Shock. 2019, 38,
145–152.

34. Wang, S.; Xiang, J.; Tang, H.; Liu, X.; Zhong, Y. Minimum entropy deconvolution based on simulation-determined band pass
filter to detect faults in axial piston pump bearings. ISA Trans. 2019, 88, 186–198. [CrossRef]

35. Yan, L.; Huang, Z. A new hybrid model of sparsity empirical wavelet transform and adaptive dynamic least squares support
vector machine for fault diagnosis of gear pump. Adv. Mech. Eng. 2020, 12, 1–8.

36. Ye, S.; Zhang, J.; Xu, B.; Hou, L.; Xiang, J.; Tang, H. A theoretical dynamic model to study the vibration response characteristics of
an axial piston pump. Mech. Syst. Signal Process. 2020, 150, 107237. [CrossRef]

37. Li, H.; Zhang, Q.; Qin, X.; Sun, Y. Fault diagnosis method for rolling bearings based on short-time Fourier transform and
convolution neural network. J. Vib. Shock. 2018, 37, 124–131.

38. Qiu, N.; Zhou, W.; Che, B.; Wu, D.; Wang, L.; Zhu, H. Effects of micro vortex generators on cavitation erosion by changing
periodic shedding into new structures. Phys. Fluids 2020, 32, 104108. [CrossRef]

39. Tang, S.N.; Zhu, Y.; Li, W.; Cai, J.X. Status and prospect of research in preprocessing methods for measured signals in mechanical
systems. J. Drain. Irrig. Mach. Eng. 2019, 37, 822–828.

40. Zhao, X.; Ye, B.; Chen, T. Study on Measure Rule of Time-Frequency Concentration of Short Time Fourier Transform. J. Vib. Meas.
Diagn. 2017, 37, 948–956.

41. Yin, A.; Li, H.; Li, J.; Dai, Z. Complex Wavelet Structural Similarity Evaluation of Wigner-Ville Distribution and Bearing Early
Condition Assessment. J. Vib. 2020, 40, 7–11.

42. Yan, R.; Lin, C.; Gao, S.; Luo, J.; Li, T.; Xia, Z. Fault diagnosis and analysis of circuit breaker based on wavelet time-frequency
representations and convolution neural network. J. Vib. Shock. 2020, 39, 198–205.

43. Wang, J.; He, Q.; Kong, F. Multiscale envelope manifold for enhanced fault diagnosis of rotating machines. Mech. Syst. Signal
Process. 2015, 376–392. [CrossRef]

44. Silva, A.; Zarzo, A.; González, J.M.M.; Munoz-Guijosa, J.M. Early fault detection of single-point rub in gas turbines with
accelerometers on the casing based on continuous wavelet transform. J. Sound Vib. 2020, 487, 115628. [CrossRef]

45. Tang, S.; Yuan, S.; Zhu, Y.; Li, G. An Integrated Deep Learning Method towards Fault Diagnosis of Hydraulic Axial Piston Pump.
Sensors 2020, 20, 6576. [CrossRef]

46. Jaafra, Y.; Laurent, J.L.; Deruyver, A.; Naceur, M.S. Reinforcement learning for neural architecture search: A review. Image Vis.
Comput. 2019, 89, 57–66. [CrossRef]

47. Unnikrishnan, A.; Sowmya, V.; Soman, K.P. Deep AlexNet with reduced number of trainable parameters for satellite image
classification. Procedia Comput. 2018, 143, 931–938. [CrossRef]

48. Piekarski, M.; Jaworek-Korjakowska, J.; Wawrzyniak, A.I.; Gorgon, M. Convolutional neural network architecture for beam
instabilities identification in Synchrotron Radiation Systems as an anomaly detection problem. Measurement 2020, 165, 108116.
[CrossRef]

49. Jiao, J.; Zhao, M.; Lin, J.; Liang, K. A comprehensive review on convolutional neural network in machine fault diagnosis.
Neurocomputing 2020, 417, 36–63. [CrossRef]

50. Sainath, T.N.; Kingsbury, B.E.; Saon, G.; Soltau, H.; Mohamed, A.-R.; Dahl, G.; Ramabhadran, B. Deep Convolutional Neural
Networks for Large-scale Speech Tasks. Neural Netw. 2015, 64, 39–48. [CrossRef]

51. Dai, X.; Duan, Y.; Hu, J.; Liu, S.; Hu, C.; He, Y.; Chen, D.; Luo, C.; Meng, J. Near infrared nighttime road pedestrians recognition
based on convolutional neural network. Infrared Phys. Technol. 2019, 97, 25–32. [CrossRef]

52. Huang, N.; He, J.; Zhu, N.; Xuan, X.; Liu, G.; Chang, C. Identification of the source camera of images based on convolutional
neural network. Digit. Investig. 2018, 26, 72–80. [CrossRef]

53. Zhao, X.; Zhang, Q. Improved AlexNet based fault diagnosis method for rolling bearing under variable conditions. J. Vib. 2020,
40, 472–480.

54. Wan, L.; Chen, Y.; Li, H.; Li, C. Rolling-Element Bearing Fault Diagnosis Using Improved LeNet-5 Network. Sensors 2020, 20,
1693. [CrossRef] [PubMed]

http://doi.org/10.1016/j.apacoust.2020.107399
http://doi.org/10.1016/j.jestch.2019.01.005
http://doi.org/10.1016/j.egypro.2018.08.013
http://doi.org/10.1016/j.isatra.2018.11.040
http://doi.org/10.1016/j.ymssp.2020.107237
http://doi.org/10.1063/5.0021162
http://doi.org/10.1016/j.ymssp.2014.07.021
http://doi.org/10.1016/j.jsv.2020.115628
http://doi.org/10.3390/s20226576
http://doi.org/10.1016/j.imavis.2019.06.005
http://doi.org/10.1016/j.procs.2018.10.342
http://doi.org/10.1016/j.measurement.2020.108116
http://doi.org/10.1016/j.neucom.2020.07.088
http://doi.org/10.1016/j.neunet.2014.08.005
http://doi.org/10.1016/j.infrared.2018.11.028
http://doi.org/10.1016/j.diin.2018.08.001
http://doi.org/10.3390/s20061693
http://www.ncbi.nlm.nih.gov/pubmed/32197388

	Introduction 
	Continuous Wavelet Transform 
	Convolutional Neural Network 
	Convolutional Layer 
	Pooling Layer 
	Softmax Classification 

	Intelligent Diagnosis Method Combining Wavelet Time-Frequency Analysis with Improved AlexNet Model 
	Improvement of AlexNet Network Model 
	Network Model Training Process 
	Process of the Intelligent Fault Diagnosis Method 

	Experimental Verification 
	Sample Set 
	Optimal Selection of Model Structure Parameters 
	Fault Diagnosis Based on CWT-AlexNet 
	Comparative Verification 

	Conclusions 
	References

