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Abstract

Background: Soil-transmitted helminths (STH) – a class of parasites that affect billions of people – can be mitigated using
mass drug administration, though reinfection following treatment occurs within a few months. Improvements to water,
sanitation and hygiene (WASH) likely provide sustained benefit, but few rigorous studies have evaluated the specific WASH
components most influential in reducing infection. There is a need for alternative analytic approaches to help identify,
characterize and further refine the WASH components that are most important to STH reinfection. Traditional
epidemiological approaches are not well-suited for assessing the complex and highly correlated relationships commonly
seen in WASH.

Methodology: We introduce two recursive partitioning approaches: classification and regression trees (C&RT) and
conditional inference trees (CIT), which can be used to identify complex interactions between WASH indicators and identify
sub-populations that may be susceptible to STH reinfection. We illustrate the advantages and disadvantages of these
approaches utilizing school- and household-level WASH indicators gathered as part of a school-based randomized control
trial in Kenya that measured STH reinfection of pupils 10 months following deworming treatment.

Principal Findings: C&RT and CIT analyses resulted in strikingly different decision trees. C&RT may be the preferred
approach if interest lies in using WASH indicators to classify individuals or communities as STH infected or uninfected,
whereas CIT is most appropriate for identifying WASH indicators that may be causally associated with STH infection. Both
tools are well-suited for identifying complex interactions among WASH indicators.

Conclusions/Significance: C&RT and CIT are two analytic approaches that may offer valuable insight regarding the
identification, selection and refinement of WASH indicators and their interactions with regards to STH control programs;
however, they represent solutions to two distinct research questions and careful consideration should be made before
deciding which approach is most appropriate.
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Introduction

Infection with soil-transmitted helminths (STH), intestinal

nematodes, is classified by the World Health Organization

(WHO) as a neglected tropical disease (NTD). More than 1

billion people are infected and up to 5.3 billion are at risk of

infection with at least one species of STH, including roundworm

(Ascaris lumbricoides), whipworm (Trichuris trichiura), or hookworm

(Necator americanus or Ancylostoma duodenale) [1–3]. STH infection

occurs through fecal exposure, either through the skin in

contaminated soil (in the case of hookworm) or ingestion of fecal

material, typically in soil, on food, or on fingers [4]. Morbidity is

most acute in school-age children, though high levels of hookworm

infection can persist into adulthood [4]. It is estimated that

between 5 and 39 million disability adjusted life years are lost due

to STH infection [5,6].

Though a recent review found limited evidence [7], STH

infections have been found to impact on growth and nutrition of

children [8] and reduce pupil absence in some studies [9,10].

Control of STH is a priority for the WHO [11] and several

countries, including Kenya, are scaling up mass drug administra-

tion in school-age children to reduce STH-related morbidity

[12,13]. These infections can be treated safely and effectively with

the anthelminthic drugs albendazole or mebendazole [4,14].

However, in the absence of improved access to water, sanitation,

and hygiene (WASH), reinfection occurs and the prevalence and
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intensity of infection can reach pre-treatment levels in as few as six

months, with 94% reinfection after 12 months [15]. Access to

WASH includes hardware – such as toilet facilities that separate

human feces, protected water supply, and soap – as well as

behaviors, such as hand washing at key times and toilet use. The

UNICEF and WHO Joint Monitoring Program (JMP) is the most

widely cited source of data on what is considered ‘‘improved’’

water supply and sanitation [16], but the JMP does not provide

guidance on hand washing, nor are its definitions specific to STH

control. Even in countries with moderate access to improved water

and sanitation in sub-Saharan Africa there is considerable

geographic inequity [17]; these same marginalized populations

without access are the ones with high risk of STH [18].

WASH components thought to be most critical for control of

STH are the use of a clean toilet facility and the presence of water

and soap for hand washing; however, few randomized trials have

been conducted to assess the relationship between WASH and

STH infection. Three randomized controlled trials have found

evidence that improved hand washing with soap can lead to lower

STH infection [19–21]. Nonetheless, in a study by Dumba et al.,

researchers did not find any impact of a participatory hygiene and

sanitation transformation (PHAST) intervention compared with a

control group that received deworming alone [22].

A recent meta-analysis of 36, mostly observational, studies

suggested that access to and use of sanitation facilities is associated

with significant reductions in the prevalence of STH infection,

with an odds ratio [OR] of 0.54 (95% CI: 0.43–0.69) for A.

lumbricoides, 0.58 (95% CI: 0.45–0.75) for T. trichiura, and 0.60

(95% CI: 0.48–0.75) for hookworm [23]. In a separate meta-

analysis, soap use (OR: 0.53, 95% CI: 0.29–0.98), wearing shoes

(OR: 0.38, 95% CI: 0.18–0.81) and drinking treated water (OR:

0.45, 95% CI: 0.36–0.58) were associated with lower STH

infection [24]. Access to piped water was associated with lower

infection with A. lumbricoides (OR:0.39, 95% CI: 0.39–0.41) and T.

trichiura (OR: 0.57, 95% CI: 0.45–0.72). However, because nearly

all studies in these meta-analyses were observational, it was not

possible to disentangle the impacts of individual WASH compo-

nents or the relationship between WASH and socio-economic

status, potentially biasing many of these results.

WHO has set the goal of elimination of STH as a public health

problem by 2020, which is provisionally defined as a prevalence of

moderate- and high-intensity STH infection of ,1% (WHO,

2012). To achieve this goal, and to sustain the gains made possible

through mass drug administration, WASH improvements and

intersectoral collaboration will be critical [11,25]. However,

identifying and characterizing those WASH components that are

most effective at reducing or preventing STH infection is non-

trivial, in part because of the ethical challenges of conducting

randomized control trials which are necessary for establishing

causal relationships [24], and yet will be essential for developing

evidence on the success of STH control programs [18].

One challenge is that access to the different components of

WASH in both the public and private sphere is highly interrelated,

and little is known about the relative contributions of each

independent WASH component in mitigating infection with STH.

Furthermore, readily measurable WASH components relevant for

STH control have not been identified or validated. Indeed, current

WHO guidelines for STH control refer to WASH in general terms

[11,26]. The vast majority of studies examining the association

between WASH components and STH infection have considered

the main effects; however, because of the inherent connectedness

of WASH components – e.g. water must be present for hand

washing to occur – it is also critical to consider interactions. The

number of potentially measurable WASH components is quite

large, and when one also considers all the potential first, second-,

and higher-order interaction terms, most datasets would not have

sufficient power to detect all important associations using standard

analytic approaches. A need exists to identify alternative analytic

approaches to help identify, characterize, and further refine those

WASH components that are most important to STH infection.

The goal of this analysis is to introduce two analytic approaches

that are relatively new to the NTD and WASH communities:

classification and regression trees (C&RT) and conditional

inference trees (CIT). Both C&RT and CIT are a type of

recursive partitioning, a nonparametric analytic approach well-

suited for handling datasets with large numbers of predictor

variables, identifying complex interactions, and selecting indepen-

dent variables that are most predictive of or associated with the

outcome [27]. These approaches are particularly useful for

hypothesis generation and as a precursor to other model building

approaches. We demonstrate how both methods can be applied to

a dataset measuring household- and school-level WASH compo-

nents and STH infection in Kenyan school children. This is a

secondary analysis of the data; the primary results from this study

have been reported elsewhere [9]. We discuss the relative merits

and weaknesses of each approach and make recommendations for

their uses.

Methods

Ethics Statement
Data collection for this study was approved by the Institutional

Review Board at Emory University and the Ethics Committee at

Great Lakes University of Kisumu (Kenya). We obtained a loco

parentis from the head teacher at each school. Children provided

oral consent to participate in this study, which was documented on

the electronic data collection form. The ethics committees

approved both a waiver of parental consent and the use of oral

consent for study participants.

Study Design
This study utilized data from a cluster-randomized trial to assess

the impact of improved school and household WASH access on

STH infection in Nyanza Province, Kenya from 2007–2009 [28].

Data for this analysis were collected in February 2009 – the final

survey round of the trial – from 1,106 students in 39 public

Author Summary

Soil-transmitted helminths (STH) are pervasive enteric
parasites that lead to cognitive, nutritional and educational
sequelae. Mass drug administration is employed to reduce
morbidity, but reinfection occurs rapidly in the absence of
changes to other environmental conditions, such as
improvements to water, sanitation and hygiene (WASH).
Since WASH behaviors and conditions are highly interre-
lated, typical epidemiological methods are limited. Few
rigorous studies have assessed the impact of WASH
components as they complement deworming and even
fewer have sought to prioritize among the available
indicators or identify complex interactions. In this paper
we introduce two recursive partitioning approaches:
classification and regression trees (C&RT) and conditional
inference trees (CIT). We demonstrate these two tools
using data from a school-based cluster-randomized trial
conducted in Kenya. We discuss the advantages and
disadvantages of each tool and give examples of how they
may be used to improve STH control programs.

Relationship between WASH and STH Using Regressive Partitioning Tools
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primary schools (Checklist S1: STROBE Checklist). Twenty of

these schools had been randomly selected to receive a school-based

WASH intervention that included construction of ventilated-

improved pit latrine facilities at the school, hand washing and

drinking water storage containers, teacher training on hygiene

behavior change, and a one-year supply of dilute sodium-

hypochlorite used for treatment of drinking water at the point of

use. Pupils in all schools – both intervention and control – were

dewormed at baseline (May, 2007) and midterm (April, 2008)

using 400 mg of albendazole.

Pupils from grades 3 to 5 who were between the ages of 7 and

13 and had been dewormed during the previous round of data

collection were randomly selected and enrolled into the original

trial. The mean number of pupils was 302 and 275 in the

intervention and control schools, respectively. This age group was

selected because they experience the greatest burden of A.

lumbricoides and T. trichiura, though peak morbidity for hookworm

occurs later [29–31]. Systematic random selection of 30 pupils was

conducted using a list of pupils from the school records, though

some pupils were absent the day of the study. Only one child per

household was enrolled to avoid the need to adjust for intra-

household correlations. Of the 1106 students included in the study,

1095 provided a single analyzable stool and had valid Kato-Katz

results. The original sample included pupils from 40 schools (20

intervention and 20 control). However, one control school was

dropped from the analysis after children were treated with an

additional round of deworming drugs.

Stool samples were collected and transported to the laboratory

in cool boxes and examined microscopically within one hour of

preparation using the Kato-Katz method [32]. Each stool sample

was processed on two separate slides and read by different

laboratory technicians to ascertain the eggs per gram of each STH

species. Presence of infection was defined as detection of one or

more eggs on either slide. Because all individuals were dewormed

10 months prior to the study, any infection observed was

interpreted as incident infection. This analysis includes data on

pupils from both intervention and control arms.

Data on individual demographics, household WASH condi-

tions, and school WASH conditions were collected using

structured observations and questionnaires. Pupils were inter-

viewed to determine their age, sex, shoe wearing, comfort using

the latrine at home and school, knowledge on hand washing and

water supply treatment, opinion about latrine conditions, access to

hand washing and drinking water at school, and their soil eating

behavior (known as pica or geophagy), a common practice in

western Kenya [33]. As a complement to the direct observations

made at each school, pupil responses regarding school-based

access to drinking water, hand washing water, soap, and latrines

were aggregated at the school-level as an estimate of school

WASH access.

One caregiver – typically the maternal head of household – for

each pupil enrolled in the study was interviewed in his or her home

to determine if one or both parents was alive and, if alive, the

highest level of education achieved, socio-economic status through

an asset index; access to an improved drinking water source, as

defined by UNICEF and WHO [34]; if treated water is used; and

the presence and condition of a household latrine. School head

teachers were interviewed about the school’s access to an

improved water source during the dry season, pupil to latrine

ratio, and latrine conditions. Enrollment data were taken from

official school records.

In order to calculate socio-economic status, we used a principal

component analysis (PCA) using assets observed at the household

[35]. These assets included household construction materials,

ownership of goods such as a TV and radio, and connection to

electricity [36]. PCA was also used to construct an index of

sanitation conditions at both the household and school, which

included odor, presence of flies, presence of feces, wall material,

condition of the slab, and presence of a functioning door. These

components were put on a scale from 1–4 and the resulting value

was a relativistic score of the average conditions for all latrines at

the school or for the latrine at home. Two scores – latrine

cleanliness and latrine structure – were derived based on factor

loading. We did not include the score for latrine conditions at the

home in our tree analysis, since that would limit the analysis to

children with latrines at home. Acceptable latrines were classified

as those for which no parameter scored in the lowest two values for

each of the five sanitation categories.

Statistical Analysis
This study compares two different recursive partitioning

approaches: C&RT and CIT. Recursive partitioning is a

nonparametric regression approach; it is a form of hierarchical

clustering in which the data are sequentially split into dichotomous

groups such that each resulting group contains increasingly similar

responses for the outcome [37,38]. Recursive partitioning has

several advantages over traditional logistic regression. C&RT and

CIT are supervised clustering approaches; they create partitions

based on an outcome variable, as opposed to other clustering

approaches such as k-means and PCA, which do not involve the

outcome [39,40]. As nonparametric approaches, C&RT and CIT

make no assumption of a monotonic or parametric relationship

with the outcome, can be used to identify complex interactions

among the independent variables without a priori specification of

interaction terms, and can handle datasets where the number of

independent variables is high relative to the number of observa-

tions. This final feature is particularly attractive to studies such as

this, where a goal is to identify a few best predictors from many.

Both C&RT and CIT result in the formation of a decision tree

with three levels consisting of a root node, internal nodes, and

terminal nodes. Every tree starts with a ‘‘root node’’ that contains

the sample of data from which the tree will be grown (e.g. the

study population). The data are then partitioned into two ‘‘child

nodes’’ based on the value the independent variable (IV) that best

meets some partitioning criterion. The resulting child nodes each

contain a subset of the original data. Each child node may be

further partitioned, again based on the value of an IV. This

process continues until no further partitions remain or some set of

partitioning criteria are no longer met, resulting in terminal nodes.

Terminal nodes, by definition, cannot have offspring. C&RT and

CIT differ in the partitioning criteria used to select the IVs.

Under C&RT the data are partitioned according to the IV that

results in the greatest improvement in the distribution homoge-

neity of the outcome [41], also referred to as reducing node

impurity. Put another way, the data are split according to the IV

that best improves predictive accuracy in the child nodes. The

predictive accuracy of each potential binary split is considered

independently and the split offering the greatest improvement is

chosen to partition the data.

The initial tree generated by the recursive partitioning process

of C&RT tends to be large (i.e. contain many splits of the data)

and runs the risk of over-fitting the data. This motivates a second

stage of tree construction called ‘‘pruning’’, which can be viewed

as analogous to backwards selection in linear regression. Through

pruning, partitions of the data that are deemed to be the most

superfluous are removed from the bottom-up. Cross-validation is

then used to select the optimal sub-tree from the initial tree. In this

study, C&RT analysis was performed using the ‘rpart’ package in

Relationship between WASH and STH Using Regressive Partitioning Tools
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R, version 2.13.2, available at http://cran.r-project.org/web/

packages/rpart/index.html. For a more detailed description of this

method see Therneau et al [42].

With CIT, the partitioning criterion is based on statistical

significance and, unlike C&RT, accounts for conditional relation-

ships between IVs. In the first step of the algorithm, the global null

hypothesis of independence between all the IVs and the outcome

is tested; if the null cannot be rejected, partitioning stops. If the

global null hypothesis is rejected, then the IV that is the most

significant in the model, conditional on the other covariates, is

selected. When the selected IV is dichotomous, the choice of the

best binary split is trivial; for non-dichotomous variables, the

algorithm identifies the best binary split from all possible splits.

Because CITs are based on statistical inference, pruning is not

necessary. In this study, CIT analysis was performed using the

ctree function in the ‘party’ package in R, version 2.13.2, available

at http://cran.r-project.org/web/packages/party/index.html. See

Hothorn et al for more information on this method [43].

All of the demographic and WASH indicators listed in Tables 1–

3 were included in the analysis as IVs to be selected to partition the

trees. The outcome of interest was any STH infection, coded

dichotomously, with a ‘‘1’’ indicating the presence of at least one

infection by A. lumbricoides, T. trichiura, or hookworm. Both C&RT

and CIT trees were grown with the restriction that each node must

have a minimum of 20 observations.

The C&RT results were validated using 10-fold cross-validation

and the optimal tree was selected by pruning to the smallest tree

within one standard error of the minimum cross-validated error

tree [44]. Two different CITs were generated. In the primary

analysis a minimum p-value of 0.05 was used for the partitioning

criterion; in a secondary analysis, p-values were adjusted for

multiple comparisons, using the Bonferroni correction.

Results

Study Population and WASH Characteristics
Table 1 contains the prevalence of key demographic and

WASH variables measured at the pupil level. Over half (575; 52%)

of the pupils surveyed were boys with a mean age of 10.4 years.

Approximately a third (383; 35%) of pupils were observed without

shoes at school and 138 (13%) reported some form of soil eating,

known as geophagy. Pupils had a mixed impression of their school

latrines, with 55% and 64% reporting the latrines to be dirty and

have a strong odor, respectively; while 66% reported the latrines to

be ‘‘comfortable.’’

Table 2 contains information regarding the household demo-

graphic and WASH characteristics. The prevalence of orphan-

hood was high in the households surveyed, with 12% of mothers

and 33% of fathers deceased. Of the households with living

mothers, only 67 (6%) had completed at least secondary education

and 423 (39%) had no formal education. Nearly half of the

households had an improved water source in the dry season (537;

49%). The presence of a latrine was high (63%), though few hand

washing stations were observed (39%).

Information regarding school-level WASH characteristics is in

Table 3. Available water for drinking and hand washing was

observed at the time of interview in nearly 60% of schools. Only

half of the schools had an improved water source in the dry season,

while approximately 70% had an improved source in the rainy

season. The frequency with which pupils reported constant

availability of water for drinking and hand washing at school

varied widely between schools. Most students reported that soap

was not always available at school.

Of the 1095 pupils tested by Kato Katz, 18% tested positive for

at least one worm infection, with 81 pupils testing positive for A.

lumbricoides, 75 for hookworm and 74 for T. trichiura (Table 4).

Thirty-three children (3%) tested positive for two STH species. No

samples were positive for all three worm types. More detailed

information on the worm burden and main effects in this data

have been previously published in Freeman et al [9].

Classification and Regression Tree (C&RT)
Initial attempts to generate a classification tree failed to result in

anything other than the root node (the starting dataset with no

partitions) after pruning. This means that after cross-validation the

tree generated showed no significant improvement in predictive

accuracy over the starting dataset. A second C&RT analysis was

performed, this time with sensitivity weighted more heavily than

specificity under the assumption that in a situation of STH control,

the identification of true STH infections is likely to be prioritized

over true no infections. This was achieved by setting a

misclassification cost of 2:1 for STH positive vs. STH negative

infections. Typically the C&RT algorithm tries to minimize the

proportion of misclassified cases, where misclassification costs are

taken to be equal for every case (e.g. those individuals with both

positive and negative stool examinations for STH). With the 2:1

weighting employed, misclassified positive individuals count twice

as much as misclassified negative individuals.

The 2:1 misclassification weighting resulted in a pruned

classification tree with five partitions and six terminal nodes for

Table 1. Pupil-level independent variables included in C&RT and CIT analysis (n = 1095).

Independent Variable Response N (%) Variable Type WASH Characteristic

Age1 – 10.4 (1)3 Continuous Demographic

Sex1 Female 575 (52%) Dichotomous Demographic

Geophagy at school or home1 Yes 138 (13%) Dichotomous Demographic

Shoes worn at school2 Yes 712 (65%) Dichotomous Demographic

School latrines dirty1 Yes 602 (55%) Dichotomous Sanitation

School latrines comfortable1 Yes 724 (66%) Dichotomous Sanitation

School latrines smell1 Yes 704 (64%) Dichotomous Sanitation

Child knows when to wash hands1 Yes 902 (82%) Dichotomous Hygiene

1Reported by respondent (pupil).
2Observed by interviewer.
3Presented as the mean and standard deviation of the reported ages.
doi:10.1371/journal.pntd.0002945.t001
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predicting the incidence of infection by any of the three helminths.

The following independent variables appeared in the final pruned

tree: ‘‘latrine structure’’, ‘‘latrine cleanliness’’, ‘‘% pupils reporting

drinking water always available at school’’, and ‘‘father status’’

(Figure 1). The first split of the tree was the PCA factor for school

latrine cleanliness, indicating that this variable was best at

classifying STH infection status in the data. For both PCA-

derived school sanitation variables appearing in the final tree

(latrine cleanliness and latrine structure), the C&RT algorithm

found an optimal partition of the PCA scores; however, because

the numeric values of these scores have no external generalizability

we relabeled the dichotomous groups as having ‘‘better’’ or

‘‘worse’’ sanitation conditions.

There were six terminal nodes in the final C&RT tree.

Terminal node T5 had the greatest proportion of positive cases

with 19 of the 28 children positive for one or more species of

Table 2. Household-level independent variables included in C&RT and CIT analysis (n = 1095).

Independent Variable Response N (%) Variable Type WASH Characteristic

Mother’s Education1 Deceased 133 (12%) Ordinal Demographic

No education 423 (39%)

Primary 472 (43%)

Secondary or more 67 (6%)

Father’s Education1 Deceased 360 (33%) Ordinal Demographic

No education 190 (17%)

Primary 324 (30%)

Secondary or more 221 (20%)

District2 Kisumu East 211 (19%) Categorical Demographic

Nyando 388 (35%)

Rachuonyo 507 (46%)

Household asset score3 Asset score in lowest quintile 329 (30%) Dichotomous Demographic

Dry season improved water source1 Yes 537 (49%) Dichotomous Water

Hand washing station in home2 Yes 431 (39%) Dichotomous Hygiene

Household private latrine2 Yes 694 (63%) Dichotomous Sanitation

1Reported by respondent (parent, typically mother).
2Observed by interviewer.
3Calculated using principal components analysis from the observed presence of household assets.
doi:10.1371/journal.pntd.0002945.t002

Table 3. School-level independent variables included in C&RT and CIT analysis (n = 39).

Independent Variable Response N (%) Variable Type WASH Characteristic

Intervention status2 Intervention group 20 (51%) Dichotomous WASH

Control group 19 (49%)

Pupil enrollment (2009)3 Parameterized by quintiles NA Ordinal Demographic

Available drinking water2 Yes 23 (59%) Dichotomous Water

Available hand washing water2 Yes 23 (59%) Dichotomous Water

Current season improved water source1 Yes 27 (69%) Dichotomous Water

Dry season improved water source1 Yes 19 (49%) Dichotomous Water

Mean (SD)

Drinking water always available4 Proportion of pupils responding ‘‘yes,’’ per school 0.51 (0.4) Continuous Water

Hand washing water always available4 Proportion of pupils responding ‘‘yes,’’ per school 0.39 (0.4) Continuous Hygiene

Soap always available4 Proportion of pupils responding ‘‘yes,’’ per school 0.12 (0.1) Continuous Hygiene

Acceptable latrines per 100 pupils5 Observation and school records 1.03 (1.6) Continuous Sanitation

Latrine Structure6 Observation and principal component analysis NA Continuous Sanitation

Latrine Cleanliness6 Observation and principal component analysis NA Continuous Sanitation

1Reported by respondent (head teacher); ‘‘improved’’ based on definitions by the WHO/UNICEF Joint Monitoring Program for Water Supply and Sanitation [34].
2Observed by interviewer.
3Obtained from school records.
4Originally a yes/no variable reported individually by each pupil, then combined to get a percent of pupils reporting ‘‘yes’’ for each school.
5Calculated using principal component analysis derived from observation and school enrollment records.
6Calculated using principal component analysis derived from observation.
doi:10.1371/journal.pntd.0002945.t003
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helminth; this terminal node corresponds to schools with good

latrine cleanliness and structure but low reported drinking water

availability. The C&RT algorithm labeled terminal nodes T4 and

T5 as predictive of a ‘‘positive’’ STH infection, while the

remaining four terminal nodes were predictive of no STH

infection. Note that terminal node T4 is predictive of ‘‘positive’’

infection despite only 41% of observations being positive because

of the 2:1 weighting favoring sensitivity over specificity.

Table 5 shows the distribution of STH infection at each pair of

child nodes emanating from the internal nodes in the C&RT

analysis. Based on the classification tree, pupils with ‘‘worse’’

latrine cleanliness scores were twice as likely to be infected with

STH (30%), compared to those with ‘‘better’’ latrine cleanliness

scores (15%). Among pupils in schools with ‘‘better’’ latrine

cleanliness scores, those with ‘‘better’’ latrine structure had twice

the rate of infection (24%), compared to those with ‘‘worse’’ latrine

Table 4. Helminth incidence1 by worm type (n = 1095).

Helminth Species Positive Cases2 N (%) Eggs per gram Geometric Mean3

A. lumbricoides 81 (7%) 2391

Hookworm spp. 75 (7%) 179

T. trichiura 74 (7%) 122

Any (of the three) 197 (18%) –

1Incidence because we are measuring reinfection following deworming.
2By Kato-Katz.
3Among positive cases.
doi:10.1371/journal.pntd.0002945.t004

Figure 1. Classification tree for soil-transmitted helminth infection, with infection by any helminth (Ascaris lumbricoides, Trichuris
trichiura, or hookworm spp.) considered to be STH positive. Each internal node contains the name of the independent variable (IV) selected to
partition the data and the number of observations in the node. These nodes are numbered 1–5; the color of fill corresponds to the WASH
characteristic of the IV and the border color represents how that characteristic was measured (e.g. at the school, home or pupil level). The branches
emanating from each terminal node are labeled with the value of the IV used to partition the data. The square boxes represent terminal nodes and
are numbered T1–T6 and contain the distribution of positive and negative cases at that terminal node as well as the predicted status for the node (‘‘+
’’ or ‘‘2‘‘). Note that Terminal node T4 is classified as STH positive (‘‘+’’), even though the majority of pupils represented in the node are negative,
because of the 2:1 misclassification cost favoring sensitivity over specificity. 1This variable started out as a 4-level ordinal variable for father education
but due to the optimal partition identified by the algorithm – ‘‘deceased’ vs. ‘‘no education’’, ‘‘primary only’’, and ‘‘secondary or more’’– the variable
ended up as indicator variables for father deceased.
doi:10.1371/journal.pntd.0002945.g001
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structural conditions (12%). For schools with better latrine

structure, greater values for ‘‘% pupils reporting drinking water

always available at school’’ was predictive of lower levels of

infection. Among those schools with ‘‘worse’’ latrine cleanliness

and greater drinking water availability at school, the pupil-level

variable for father’s education status was identified as the best

classifier of STH infection. The optimal partition of this pupil-level

ordinal variable, which distinguished deceased fathers from living

fathers with various levels of education (see Table 2), occurred

between deceased fathers and living fathers regardless of education

status.

Conditional Inference Trees (CIT)
The primary CIT tree, generated without adjustment for

multiple comparisons, had 12 terminal nodes (Figure 2). The IV

most significantly associated with STH infection, conditional on all

other variables in the model, was ‘‘District’’. Of the 11 IVs

appearing in the tree, 5 were measured at the schoollevel, 5 at the

household level and 1 (‘‘age’’) at the pupil level. Five of the IVs in

the final tree were demographic measures while the remaining six

were WASH indicators. Terminal node T7 had the greatest

proportion of positive cases with 44% (n = 12) of individuals testing

STH positive. This node corresponds to pupils from Kisumu East

or Rachuonyo Districts with low family SES who attend a school

with high enrollment rates and little to no soap reportedly

available.

Table 6 shows the distribution of STH infection for each pair of

child nodes emanating from the internal nodes in the CIT analysis.

In Nyando District, greater reported availability of water for hand

washing in the schools was associated with a greater incidence of

STH infection (34% vs. 16%, from terminal nodes T1 and T2). In

the Kisumu East and Rachuonyo Districts, among those schools

with high enrollment rates (.80th percentile), pupils whose

household was in the lowest SES quintile had twice the incidence

of STH infection (32% vs. 16%; Table 6). The IV ‘‘% pupils

reporting soap always available at school’’ appeared twice in the

tree in Figure 2 (internal nodes 8 & 10) but with opposite directions

of association; at internal node 8, little to no soap availability was

associated with increased STH infection (44% vs. 24%), whereas

at internal node 10 lack of soap was associated with decreased

STH infection (11% vs. 27%).

The second conditional inference tree, grown with p-values

adjusted for multiple comparisons, is shown in Figure 3. This tree

is a sub-tree of the tree in Figure 2 and represents a more

conservative approach. The tree in Figure 3 has four terminal

nodes, with the greatest STH incidence seen in the terminal node

for pupils in Nyando District attending schools where more than

63% of the students reported hand washing water available (34%

of pupils in this node were positive for STH).

The branching of the IVs in both the classification and

conditional inference trees can be used to identify potential

interactions between WASH indicators that may be important

predictors of STH infection. The classification tree illustrates that

when latrine cleanliness is better, latrine structure is an important

determinant of STH infection. In this instance, worse latrine

structure predicts lower STH infection (Figure 1). When both

latrine cleanliness and structure are good, the pupil-reported

presence of water at school is important, with poor water

availability (,24% of students reporting constant water availabil-

ity) associated with higher STH infection (T5, Figure 1) and more

consistent water availability predicting less STH infection (T6,

Figure 1). The conditional inference tree suggests that the

interaction of living in the Nyando District and the reported

availability of hand washing water at school are together

associated with STH infection (Figure 2). Similarly, for those

living in the Kisumu East and Rachuonyo Districts the CIT

analysis identified an interaction between pupil enrollment, low

SES and age (among other interactions present in the tree).

Discussion

In the past several years classification and regression trees, first

introduced by Breiman et. al. in 1984 [45], have started to gain

recognition as a statistical tool in NTD research. C&RT is most

commonly used in the NTD research community as a tool for

disease prediction and classification [46–48], as well as to identify

the hierarchical importance of predictor variables [49,50]. To our

knowledge there have been no studies that have used C&RT or

CIT to examine WASH data in relationship to enteric disease

prevalence or incidence, specifically STH. Given the policy and

programmatic interest in quantifying the impact of WASH on

STH, these recursive partitioning approaches may prove to be

important analytic tools.

In this study we show how C&RT and CIT can be used as tools

to better understand household- and school-level WASH indica-

tors and their relationship with STH infection in children. While

both C&RT and CIT result in the generation of a decision tree,

the dissimilarities between Figures 1 and 2 make it clear that these

two approaches are not identical. Instead C&RT and CIT

represent solutions to two distinct research questions and careful

consideration should be made before deciding which tool is most

appropriate.

A C&RT analysis is well-suited when the goal is prediction or

classification. Independent variables are chosen to partition the

Table 5. Distribution of STH infection at each branch of classification tree.

Left Child Node * Right Child Node *

Internal Node # Independent Variable STH positive N (%) STH negative N (%) STH positive N (%) STH negative N (%)

1 Latrine cleanliness 65 (30%) 153 (70%) 132 (15%) 745 (85%)

2 % pupils reporting drinking water
always available at school

7 (13%) 46 (87%) 58 (35%) 107 (65%)

3 Latrine structure 83 (12%) 588 (88%) 49 (24%) 157 (76%)

4 Father status 15 (25%) 46 (75%) 43 (41%) 61 (59%)

5 % pupils reporting drinking water
always available at school

19 (68%) 9 (32%) 30 (17%) 148 (83%)

*See Figure 1.
doi:10.1371/journal.pntd.0002945.t005

Relationship between WASH and STH Using Regressive Partitioning Tools

PLOS Neglected Tropical Diseases | www.plosntds.org 7 June 2014 | Volume 8 | Issue 6 | e2945



Figure 2. Conditional inference tree for soil-transmitted helminth infection, with infection by any helminth (Ascaris lumbricoides,
Trichuris trichiura, or hookworm spp.) considered to be STH positive. Each internal node contains the name of the independent variable (IV)
selected to partition the data, the p-value for the significance of the IV in the model, and the number of observations in the node. These nodes are
numbered 1–11; the color of fill corresponds to the WASH characteristic of the IV and the border color represents how that characteristic was
measured (e.g. at the school, home or pupil level). The branches emanating from each terminal node are labeled with the value of the IV used to
partition the data. The square boxes represent terminal nodes and are numbered T1–T12 and contain the distribution of positive and negative cases
at that terminal node. 1This variable started out as a 4-level ordinal variable for mother education but due to the optimal partition identified by the
algorithm – ‘‘deceased’ vs. ‘‘no education’’, ‘‘primary only’’, and ‘‘secondary or more’’– the variable ended up as indicator variables for mother
deceased.
doi:10.1371/journal.pntd.0002945.g002

Table 6. Distribution of STH infection at each branch of conditional inference tree.

Left Child Node * Right Child Node *

Internal
Node # Independent Variable STH positive N (%) STH negative N (%) STH positive N (%) STH negative N (%)

1 District 96 (25%) 283 (75%) 101 (14%) 615 (86%)

2 % pupils reporting hand washing water always
available at school

30 (16%) 156 (84%) 66 (34%) 127 (66%)

3 Pupil enrollment 58 (11%) 456 (89%) 43 (21%) 159 (79%)

4 Private latrine 40 (14%) 239 (86%) 18 (8%) 217 (92%)

5 Low SES 22 (16%) 115 (84%) 21 (32%) 44 (68%)

6 Intervention 26 (19%) 109 (81%) 14 (10%) 130 (90%)

7 Age 10 (10%) 90 (90%) 12 (32%) 25 (68%)

8 % pupils reporting soap always available at school 12 (44%) 15 (56%) 9 (24%) 29 (76%)

9 Dry season improved water source 9 (33%) 18 (67%) 17 (16%) 91 (84%)

10 % pupils reporting soap always available at school 8 (11%) 67 (89%) 9 (27%) 24 (73%)

11 Mother status 5 (15%) 29 (85%) 3 (7%) 38 (93%)

*See Figure 2.
doi:10.1371/journal.pntd.0002945.t006
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data according to the one that results in the biggest improvement

to predictive accuracy, and not according to association with the

outcome, as in the CIT analysis. The difference in predictive

performance between these two types of trees is apparent when

comparing the sensitivity and specificity of the classification tree

(Figure 1) with the conditional inference tree (Figure 2), where

observations in each terminal node of the CIT are classified

according to the majority of observations in that node (e.g. if $

50% of pupils in the terminal node are STH positive, then all

individuals in that node will be classified as ‘‘positive’’). In Figure 1,

of the 197 children testing positive for STH infection, 62 were

correctly classified by the tree, for a sensitivity of 31%; of 898

children who tested negative, 828 were correctly classified,

resulting in a specificity of 92%. By contrast, in Figure 2, all of

the terminal nodes had fewer than 50% positive cases, resulting in

a sensitivity of 0% and a specificity of 100%. It is important to

keep in mind that the C&RT results were generated with a

preference towards sensitivity (using a 2:1 misclassification cost),

which is why terminal node T4 is classified as ‘‘positive’’ despite

only 41% of cases being positive. This weighting was necessary to

obtain a final pruned tree that was more than just the root node. If

we ignore this weighting and classify node T4 as ‘‘negative’’

according to the majority of observations, then the sensitivity of

the C&RT tree falls to 10% and the specificity grows to 99%.

While one might expect CIT results to have poorer predictive

accuracy, the poor predictive accuracy of the C&RT results is

surprising and may have more to do with our data than the

method itself. Firstly, the dataset used had relatively few positive

cases (18% positive overall), making classification more difficult.

Secondly, although infection was measured at the pupil level,

nearly half of the IVs (12 of 27) were school level. While the

presence of school-level IVs in the final tree could mean that

school-level factors may play a greater role in driving STH

infection than household factors, it also leads to some major

drawbacks. In Figure 1, terminal nodes T1, T2, T5 and T6 are not

classifying STH infection beyond the school level; a predicted

STH status of ‘‘positive’’ or ‘‘negative’’ is assigned to all students in

the same school because there are no individual-level WASH

factors to further differentiate pupils within the same school. Only

among the subgroup of pupils in Figure 1 for whom ‘‘father status’’

is predictive of STH infection are we able to classify infection at

the pupil level. As a result, the sensitivity of the STH tree is limited

by the sensitivity obtained at the school level. Taken together, the

scarcity of positive cases and use of school-level variables likely

explain the failure of the initial C&RT analysis to identify anything

beyond the root node. A further limitation of using data clustered

at the school level is that to our knowledge there is no way to

account for the design effect (decrease in the sample variance due

to clustered sampling) in either the C&RT or CIT analysis

packages. This may affect the validity of the CIT results if the

design effect varies by IV.

C&RT may be the preferred approach if interest lies in using

WASH indicators to classify individuals, or communities, as STH

infected or uninfected. Under this framework, a representative

dataset would be used to grow a classification tree (as was done in

this analysis), which could then be used to predict the STH status

of future data collected from individuals or communities. One

potential application of this approach is the development of a

rapid screening tool for classifying communities as ‘‘likely

endemic’’, ‘‘likely sub-endemic’’ or ‘‘likely non-endemic’’ for

STH based on the values of the set of IVs in the classification tree.

Such an approach might lessen the initial need for specimen

collection and conserve resources.

When the goal is to identify the IVs most associated with the

outcome, in order to estimate causal effects, conditional inference

trees are the more useful tool. At each branch of a conditional

Figure 3. Conditional inference tree for soil-transmitted helminth infection with p-values adjusted for multiple comparisons. This is
a sub-tree of the tree in Figure 2. The p-values shown in each internal node are adjusted for multiple comparisons.
doi:10.1371/journal.pntd.0002945.g003
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inference tree the IV that is most significantly associated with the

outcome is chosen to partition the data, resulting in a tree built on

statistical significance. An advantage of CIT over traditional

regression is that, as a nonparametric approach, it can identify

non-linear associations in the data. A CIT analysis can be used as

a form of variable selection, identifying the few IVs that result in

the most significant main and joint effects. Such an approach

would be useful when trying to determine which of the many

WASH indicators to include in an intervention package in order to

see the greatest impact on STH incidence.

Both C&RT and CIT are useful as exploratory analytic tools for

identifying complex interactions in the data. Using standard

analytic approaches to assess interaction often requires including

the product of two or more predictors in the same model and

assessing whether the resulting coefficient differs significantly from

zero. As the number of potential predictors increases, the number

of potential second-, third- and higher-order interactions grows,

becoming too large to include in any one model without

substantial a priori knowledge about complex interactions [51]. A

C&RT or CIT analysis allows one to move beyond the commonly

reported main effects, to identify complex interactions (e.g. non-

linear, multi-order interactions) in the data. Often the interactions

identified by the branching of the tree are ones that might not

have been identified a priori by the researcher (e.g. the interaction

of district, pupil enrollment, low SES and age found in Figure 2)

and can be used to generate hypotheses leading to further

research. These interactions can also be used to identify potentially

vulnerable sub-populations. For example, the tree in Figure 2

suggests that children in Nyando District who attend schools with

greater reported prevalence of hand washing water have a greater

risk of STH infection – a surprising and somewhat paradoxical

finding. It is important to interpret any interactions in the context

in which they were generated, namely for prediction (C&RT) or

association (CIT).

As with any analysis, it is important to consider the data and

potential for biases when interpreting results. One challenge is that

many WASH interventions are highly correlated. Research in

other fields has shown that when two IVs are highly correlated, the

effect estimate of the better measured variable will capture some of

the effect of the less-well measured variable, making the overall

effect estimates less accurate [52,53]. This is of potential concern

to WASH analyses where the potential for measurement error is

high, due to the sensitivity of the topics and the way in which some

indicators are measured (e.g. reported vs. observed measures).

Examples of highly correlated variables in our analysis are ‘‘%

pupils reporting soap always available at school’’, ‘‘% pupils

reporting hand washing water always available at school’’ and

‘‘intervention’’. Because the intervention involved making soap

and water available in some schools, these three variables are

highly correlated (rho = 0.71, p,0.0001) in our data and the

presence of any one of these in the final tree is likely capturing, in

part, the effect of the others. One advantage of a CIT analysis is

that IVs are selected conditional on all other variables in the

model. That is, each partition represents the variable most strongly

associated with STH infection controlling for the other IVs (i.e.,

WASH indicators) in the model. By simultaneously controlling for

the other IVs, a CIT analysis alleviates many of the concerns with

correlated data that are particularly pertinent to WASH analyses,

though it does not resolve concerns about measurement error.

Another advantage of CIT over C&RT is that the former can

handle independent variables with different types of classification

(e.g. continuous, categorical, ordinal, etc.) without bias [43].

Studies have shown that C&RT favors continuous IVs over

dichotomous or ordinal IVs [54,55]. It may be that the

appearance of ‘‘latrine cleanliness’’ and ‘‘latrine structure’’ in the

first splits of Figure 1 has more to do with the fact they are among

the few continuous IVs eligible to be selected for splitting and were

unduly favored by C&RT. That neither of these two best classifiers

in the C&RT analysis appeared in the CIT analysis is somewhat

surprising (if they are truly good classifiers one would also expect

them to be strongly associated with STH infection) and may

instead be indicative of this bias towards favoring IVs with many

possible splits. The optimal splits for ‘‘latrine cleanliness’’ and

‘‘latrine structure’’ could have been selected because the C&RT

algorithm was able to identify a partition that most closely

approximated some unmeasured risk factor for STH.

This is not to say that continuous variables should not be used in

C&RT. Another way that C&RT is being used by the NTD

community is to identify the best dichotomous cutoffs for

continuous IVs. Martinez et. al used C&RT to find optimal cutoff

for chromosome counts used in leprosy diagnosis while Levecke et.

al utilized C&RT to find cutoffs for study design factors for the

fecal egg count reduction test to monitor STH drug efficacy

[56,57]. It should be noted that CIT can also be used to identify

optimal cutoffs associated with the outcome. A main effects

analysis, using logistic regression, found neither of the principal

components for latrine structure and cleanliness to be strongly

associated with overall STH infection—which explains why they

did not appear in the CIT analysis—but when dichotomized

according to the cutoffs identified by C&RT (from Figures 1) the

resulting indicator variables were highly significant in the

regression analysis (results not shown).

While the goal of this study was primarily methodological, it is

important to discuss some of the findings, particularly those that

were surprising and at times counter-intuitive. In the first split of

the C&RT tree, children in schools with worse latrine cleanliness

had twice the incidence of infection compared to those with better

latrine cleanliness (30% vs. 15%), which is in-line with our

expectations. One example of a counterintuitive finding in the

C&RT analysis is that among schools with better latrine

cleanliness, better latrine structure is associated with greater

infection. It is possible that latrines with better structure are more

likely to be used, and even good cleanliness was insufficient to

prevent infection. Another counter-intuitive finding from the

C&RT results was that among schools with poor latrine

cleanliness, poorer water availability is associated with less STH

infection (Table 5, node 2). One reason for this surprising finding

could be that the causal direction of association is not well-

understood. Is the latrine cleanliness poor because the latrines are

often used [58], or does poor cleanliness prevent the latrines from

being used? Another surprising finding is that having ones’ mother

alive is predictive of less STH infection in the CIT analysis

(Figure 2, terminal nodes T11 vs T12) while having ones’ father

alive is predictive of more STH infection in the C&RT analysis

(Figure 1, terminal nodes T3 vs T4). While it is possible that there

is a causal explanation behind this, it is also important to

remember that the subsets of data used to make these split

selections are likely to be quite different, based on the previous

partitions leading to the nodes. The variable ‘‘% pupils reporting

soap always available at school’’ appears twice in Figure 2 but

suggests opposite directions of association. This could be due in

part to the complex interactions leading up to these two terminal

nodes. For example, by looking at the previous branching of the

tree in Figure 2, one can see that node 10 contains schools that did

not receive the intervention whereas the population in node 8

contains both intervention and non-intervention schools. It is

possible that students in node 8 attending an intervention school

that should have received soap, but report that it did not, are
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somehow more susceptible to STH infection. These, and other

unexpected findings, further support our suggestion that these two

approaches be used for hypothesis generating and that follow-up

analyses be conducted to better understand these interactions

identified in the data and determine if they are generalizable to

other populations.

Another way of analyzing the trees in Figures 1 and 2 is by

assessing the WASH characteristics of the IVs included at each

split. In the classification tree, two of the IVs selected to partition

the tree are related to water, two to sanitation and one is

demographic; no indicators for hygiene appear in the C&RT tree.

By contrast, 3 of the 11 independent variables in the conditional

inference tree are indicators of hygiene, 1 of sanitation and 1 of

water (and 1, ‘‘intervention’’ encompassing all three WASH

components); the remaining 5 IVs selected are demographic

indicators. These differences between the types of WASH

indicators present in the two trees again serve to highlight the

differences in the two approaches of growing trees: prediction vs.

statistical significance. The trees are also suggestive of the complex

relationship between demographic, water, sanitation and hygiene

variables and STH infection; both trees involve many of these

different variables with no single variable or class of variable

emerging as the most related to STH infection.

The differences in the Figure 1 and 2 results also emphasize one

of the common criticisms of recursive partitioning algorithms, that

any single tree is often highly unstable [37]. With only 1095

observations in the entire dataset, tree stability is a definite concern

in this analysis. Increasing sample size or incorporating multiple

datasets to grow and test the trees can help to improve tree

stability. Random forests is an alternative approach in which an

ensemble of classification or conditional inference trees are grown

and the results combined to get more stable measures of variable

importance [38]; however a downside is that random forests do

not result in a single tree diagram and cannot be readily used to

identify complex interactions.

In addition to tree stability, the small sample size will also limit

the power and generalizability of any one tree. With small datasets

one runs the risk of generating trees that over fit the data, and thus

any substantive findings may have limited applicability beyond the

data. Cross-validation and splits based on statistical inference help

to limit this concern in C&RT and CIT, respectively. Nonetheless,

we caution the reader against over-interpreting the substantive

findings in this paper. Moving forward, as issues related to WASH

take on greater priority, we expect larger datasets to become

available that will increase both the relevance and utility of these

analytic approaches. A good example is the Global Trachoma

Mapping Project, which, in addition to measuring trachoma

prevalence, has collected data on water and sanitation indices on

over half a million people [59].

A limitation of the data used in this analysis is that two of the

independent variables that appeared in the final classification tree

are data-specific; the indicators for latrine cleanliness and structure

were created from two principal components. Because these

variables are derived from the data they may not be generalizable

to other studies and their numerical value has little direct

interpretation or value as a metric; however, our findings

regarding the direction of effect and relative importance of these

characteristics remain valid. This analysis also highlights the need

to arrive at methods for measuring these and other water and

sanitation indicators that are feasible, replicable and generalizable.

Conclusions
C&RT and CIT are two analytic tools that may be of use to the

NTD and WASH communities, depending on the research

objective. When prediction of the outcome is the goal, C&RT is

likely to be the most favorable tool, whereas CIT is good for

identifying the IVs most significantly associated with the outcome.

Both methods can be used to identify complex interactions in the

data; however, these interactions should be interpreted in the

context of the tool (e.g. prediction vs. association). These

interactions can then be incorporated into subsequent parametric

analyses or used to generate hypotheses for future research. This

study supports the WHO’s goal for STH elimination by

contributing to the research on the impacts of WASH in

mitigating STH infection. With the help of this and future

research it will hopefully be possible to identify the WASH

indicators of greatest relevance for STH control.
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