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Sepsis develops when an infection surpasses local tissue containment. A series of 
dysregulated physiological responses are generated, leading to organ dysfunction and 
a 10% mortality risk. When patients with sepsis demonstrate elevated serum lactates 
and require vasopressor therapy to maintain adequate blood pressure in the absence 
of hypovolemia, they are in septic shock with an in-hospital mortality rate >40%. 
With improvements in intensive care treatment strategies, overall sepsis mortality has 
diminished to ~20% at 30 days; however, mortality continues to steadily climb after 
recovery from the acute event. Traditionally, it was thought that the complex interplay 
between inflammatory and anti-inflammatory responses led to sepsis-induced organ 
dysfunction and mortality. However, a closer examination of those who die long after 
sepsis subsides reveals that many initial survivors succumb to recurrent, nosocomial, 
and secondary infections. The comorbidly challenged, physiologically frail diabetic 
individuals suffer the highest infection rates. Recent reports suggest that even after 
clinical “recovery” from sepsis, persistent alterations in innate and adaptive immune 
responses exists resulting in chronic inflammation, immune suppression, and bacterial 
persistence. As sepsis-associated immune defects are associated with increased 
mortality long-term, a potential exists for immune modulatory therapy to improve 
patient outcomes. We propose that diabetes causes a functional immune deficiency 
that directly reduces immune cell function. As a result, patients display diminished bac-
tericidal clearance, increased infectious complications, and protracted sepsis mortality. 
Considering the substantial expansion of the elderly and obese population, global 
adoption of a Western diet and lifestyle, and multidrug resistant bacterial emergence 
and persistence, diabetic mortality from sepsis is predicted to rise dramatically over the 
next two decades. A better understanding of the underlying diabetic-induced immune 
cell defects that persist following sepsis are crucial to identify potential therapeutic tar-
gets to bolster innate and adaptive immune function, prevent infectious complications, 
and provide more durable diabetic survival.
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iNTRODUCTiON

The Third International Consensus Definitions for Sepsis and Septic Shock Report defines sepsis 
as life-threatening organ dysfunction caused by a dysregulated host response to an infection. This 
is associated with a >10% in-hospital mortality. Septic shock is defined as sepsis associated with 
profound circulatory, cellular, and metabolic abnormalities. Patients with septic shock have serum 
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lactate levels >2 mmol/L (>18 mg/dL) and require vasopressors 
to maintain a mean arterial pressure of 65 mmHg or greater in 
the absence of hypovolemia. Compared to sepsis alone, it has a 
much higher in-hospital mortality rate of >40% (1).

Long-term sepsis mortality is abysmal at 60–80%. Despite 
substantial advances in immune pathophysiology, this number 
has not considerably improved (2). In intensive care units, 
sepsis remains the leading cause of death (3). Considering the 
rapidly expanding elderly population with extensive comorbid 
burdens, physiological frailty, and immune senescence (4), over 
the next couple of decades, sepsis mortality is predicted to rise 
at a frightening rate (5). Just as terrifying are the mounting costs 
associated with treating septic patients. The United States spends 
~$17 billion on sepsis-associated medical care (6).

Despite over 100 therapeutic clinical trials in sepsis, there 
are no current FDA-approved therapies that improve sepsis 
survival (7). In contrast, advancements in clinical treatment 
protocols (8) have resulted in increased in-hospital survival 
from life-threatening sepsis and organ dysfunction. However, 
a substantial portion of these in-hospital survivors will then die 
in the months to years following the acute event. A trimodal 
pattern of death during and after sepsis has been described. 
The first peak occurs at several days and is likely secondary to 
inadequate resuscitation. The second peak occurs at several 
weeks and is secondary to persistent organ injury and/or failure 
(9). The late (months to years) deaths comprise the largest 
mortality group and are speculated to be the consequence of 
improvements in intensive care medicine that keep elderly and 
comorbidly challenged patients alive despite persistent immune, 
physiological, biochemical, and metabolic aberrations (10). In 
2008, over 800,000 Medicare patients survived admissions for 
severe sepsis. This population of survivors is composed of indi-
viduals with significant comorbidities that are at risk for hospital 
readmission (11). Several reports suggest that it is the synergistic 
effect of patients’ advanced age, comorbidities, and persistent 
organ injury that create this damaging state of ongoing immune 
dysfunction, immune suppression, catabolism, and inflamma-
tion (12–14), leading to long-term sepsis mortality. Patients with 
Type II diabetes (T2D) are physiologically frail and comprise 
the largest population of patients who experience post-sepsis 
complications and rising mortality.

Type II diabetes is a common and devastating disease 
frequently encountered by clinicians who care for critically ill 
patients. With increasing globalization of the western diet and 
lifestyle, the worldwide incidence and prevalence of T2D is 
approaching pandemic proportions. In the United States, the 
prevalence has almost doubled from 11.9 million in 2000 to 21.9 
million people in 2014, and the incidence has more than tripled 
from 1980 to 2014 (15). Globally, T2D is no longer a disease of 
high-income countries. In 2014, an estimated 422 million adults 
worldwide had T2D, compared to 108 million in 1980. The 
largest growth in prevalence can be found in low- and middle-
income countries (16). From 1980 until 2014, China, India, and 
United States had the largest T2D patient populations. However, 
recently, the global share of people with T2D has dramatically 
increased in India and China while United States share has 
decreased. As the growth trends in T2D prevalence continue, the 

number of adults with T2D will surpass 700 million worldwide 
in the near future (17).

As medical management strategies improve, patients with 
T2D live longer with their disease. In addition, the increasingly 
young age at diagnosis results in prolonged exposure to glucoli-
potoxicity, low-grade inflammation, and increased oxidative 
stress, creating a metabolic milieu conductive to cancer growth 
(18). This represents a major public heath challenge. Delayed 
diagnosis, inadequate follow-up, and suboptimal care of T2D 
patients predisposes them to develop acute and chronic com-
plications, leading to further burden on the patient, health-care 
system, and society as a whole (19). A 2012 global systematic 
analysis of disease and injury epidemiology identified T2D as a 
leading cause of years lived with disability (YLD), with a 67.2% 
increase in YLD from 1990 to 2010 (20). Furthermore, T2D has 
been shown to be a significant cause of mortality. Stokes and 
Preston performed a cohort study of National Health Interview 
Survey and National Health and Nutrition Examination Survey 
participants between 1997 and 2010 and estimated the propor-
tion of deaths attributable to T2D to be 11.5–11.8% (21). These 
numbers underestimate the burden of T2D, as an estimated one 
in four people with T2D are unaware that they have the disease 
(22). As the sedentary, calorie-rich western lifestyle continues 
to infiltrate the global landscape, T2D will continue to become a 
more common comorbidity encountered in the hospital setting.

Patients with T2D have an increased risk of developing infec-
tions and sepsis. Although a few rare infections such as Klebsiella 
liver abscesses, malignant otitis externa, and emphysematous 
cholecystitis are strongly associated with diabetic patients, most 
infections that occur in diabetics are also common in the general 
population (23). T2D also worsens infection prognosis, with 
T2D patients showing increased morbidity and mortality from 
sepsis (24). The combination of increased incidence, prevalence, 
and life expectancy of individuals with T2D, combined with an 
increased risk of infections is resulting in a rapidly expanding 
patient population consuming more medical resources.

Some investigators have refocused their efforts to work on 
understanding the underlying innate and adaptive immune 
system derangements that facilitate the development of infectious 
complications, impair recovery from sepsis, and increase long-
term mortality (25, 26). However, little effort has focused on the 
interplay between T2D, sepsis, immunity, and their impact on 
overall survival. In this review, we highlight the immune system’s 
interdigitating role in the pathogenesis of T2D and sepsis. We focus 
on the clinical implications and then explore potential therapeutic 
interventions available to improve long-term survival in patients 
with T2D. To combat this pandemic, we hypothesize that disease-
modifying therapeutics that have the ability to alter the course 
of disease have to be utilized, instead of focusing on palliative 
treatments that merely treat the sequelae of disease. Immune-
modulatory therapy has been shown to improve patient survival in 
cancer, autoimmune diseases, and HIV. However, from these suc-
cessful therapeutic advances, it has been shown that these therapies 
need to involve multiple agents, given in combination and intro-
duced at the correct time to dampen disease progression, enhance 
patient immune responses, and affect host–pathogen interactions. 
We believe single-agent interventions are the reason why the sepsis 
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FigURe 1 | Immune dysregulation in Type II diabetes and sepsis. Diabetes is a functional immune deficiency with chronic inflammation and immune suppression 
that affects an individuals’ overall immune system homeostasis. The development of patient management protocols in sepsis has decreased early organ failure and 
sepsis mortality, allowing highly comorbid elderly patients to survive the initial insult. Furthermore, sepsis studies have demonstrated an enduring inflammatory state 
driven by dysfunctional innate and suppressed adaptive immunity that culminates in persistent organ injury and patient death. Subsequently, the highly comorbid 
elderly patient population that initially survived now experiences significant morbidity and mortality several months to a year later. Multiple hypotheses for these 
observations exist, with persistent derangements in the innate and adaptive immune system cellular functions as the main contributors to this long-term mortality.
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literature is littered with failed therapeutic interventions. Combine 
the immune aberrations in T2D with the immune dysregulation 
found in sepsis and there are multiple targets for modulatory 
therapy. We propose that combinations of tailored interventions 
that focus on specific immune system perturbations that exist in 
sepsis and T2D will result in a high probability of success.

iMMUNe DYSFUNCTiON iN T2D AND 
SePSiS

Type II diabetes is a complex clinical syndrome, depicted by 
persistent hyperglycemia in the setting of decreased insulin secre-
tion and sensitivity, which results in a compilation of aberrant 
metabolic changes (24). Key metabolic changes include increased 
formation of advanced glycation end products (AGEs), activa-
tion of protein kinase C isoforms, and increased flux through 
the polyol and hexosamine pathways (27). These changes lead to 
increase production of superoxide (28), which activates inflam-
matory pathways, linking T2D to perturbations of the immune 
system (28). In addition, individuals with T2D have been shown 
to have abnormal host responses, including disorders of humoral 
immunity, defects in neutrophil function, and response of T cells 
(23, 29, 30). A recent study looking at obese individuals with and 
without T2D showed that individuals with T2D have specific 
immunological perturbations compared to metabolically healthy 
obese individuals, supporting the notion that T2D itself contrib-
utes to this identified immune dysfunction (31).

There is considerable clinical evidence that T2D worsens 
prognosis of pathological infections, with increased mortality 
from infections and sepsis in patients with T2D (24, 30, 32). This 
raises the pivotal question: why? The hematopoietic compart-
ment constantly replenishes terminally differentiated innate and 

adaptive cells that are necessary for wound healing, successful 
tissue regeneration, and immune surveillance against offending 
pathogens (9). Sepsis impacts the immune system globally by 
affecting the lifespan, production, and function of innate and 
adaptive immune cells, leading to homeostatic perturbations in 
immune cell repletion (33, 34). In patients with T2D, this homeo-
stasis may be altered secondary to over-nutrition and increased 
adiposity (35). These metabolic-induced immune perturbations 
clearly play a substantial role in the increased frequency, severity, 
and duration of infections (24, 28, 36).

In sepsis, an ongoing debate persists as to whether inflamma-
tory/anti-inflammatory processes or innate/adaptive immune 
dysfunction are more detrimental to survival (37). Genomic 
studies on tissue samples from septic and severely injured trauma 
patients have provided more information (13). These studies 
have identified an enduring and simultaneous inflammatory and 
anti-inflammatory state, which is driven by dysfunctional innate 
and suppressed adaptive immunity. Together, these culminate 
in persistent organ injury (38), inflammation, and patient death 
(39, 40). Figure 1 illustrates how the immune system responds to 
an acute septic episode. At baseline, patients with T2D have an 
aberrant immune system. After the initial acute septic episode, 
T2D patients continue to experience significant morbidity and 
mortality several months to a year later. We believe that it is the 
enduring derangements in the innate and adaptive immune sys-
tem cellular functions that contribute to the long-term morbidity 
and mortality.

MeTABOLiC RegULATiON OF iMMUNiTY

The immune system protects against foreign microbial invad-
ers, maintains optimal tissue homeostasis, and facilitates wound 
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healing. These processes are dynamic in nature, changing to 
meet the needs of the organism. Most immune responses are 
fueled by cellular metabolism that is regulated by extracellular 
signals, which direct the uptake, storage, and utilization of glu-
cose, amino acids, and fatty acids (9). When the organism senses 
an invading pathogen or tissue insult, the innate immune cells 
secrete cytokines, chemokines, and inflammatory mediators, 
which influence the expansion of adaptive immune cells (9). 
Since immune cells do not store nutrients, immune responses 
are only upregulated and sustained when there is an increased 
uptake of nutrients from the surrounding microenvironment. 
Nutrients provide substrates for ATP, RNA, DNA, and protein 
synthesis, along with the membranes necessary for the immune 
cell’s proliferation and maturation (41). Over a century ago, it was 
shown that a successful innate effector response is dependent on 
glucose metabolism (42), and that mitogen-driven proliferation 
of adaptive immune cells requires the utilization of extracellular 
glutamine (43, 44). T2D is a disease characterized by aberrant 
glucose metabolism. Homeostatic conditions are altered with an 
environment now characterized by chronic hyperglycemia and 
an increase in free fatty acids (FFAs) (45). An overall change 
in glucose metabolism therefore contributes to the immune 
dysfunction seen in T2D and sepsis.

In homeostatic conditions, immune cells rely on oxidative 
phosphorylation and β-oxidation as energy sources for ATP pro-
duction (46). However, after stimulation, leukocytes shift their 
metabolism toward aerobic glycolysis in a process known as the 
Warburg effect (47). Subsequently, glycolysis produces cellular 
energy, followed by lactic acid formation in the cytosol instead 
of oxidation of pyruvate in mitochondria (48). Upon exposure to 
lipopolysaccharides (LPS), macrophages demonstrate a shift from 
oxidative phosphorylation to glycolysis and succinate and induce 
IL-1β production (49, 50). How T2D affects these processes is 
unknown, but clearly altering the substrates available for these 
pathways likely contributes to ongoing immune dysfunction.  
A better understanding of how hyperglycemic environments 
affect the metabolic checkpoints that control immune cell func-
tion, transition, and maturation is needed. In fact, delineating 
these pathways may provide targets for modulating systemic 
inflammation, cellular immunity, and recovery from infectious 
insults suffered by patients with T2D.

While several investigations have addressed the impact of 
hyperglycemia on sepsis and trauma outcomes in the critically 
ill in the ICU (51, 52), there is a paucity of studies that address 
the complications of T2D during infectious states and sepsis. 
The studies that do examine the association between T2D and 
sepsis outcomes are limited in their ability to account for all 
confounders (53, 54). It has been shown that adequate control 
of hyperglycemia is associated with improved outcomes and 
survival in times of critical illness; conversely, too tight of gly-
cemic control has been associated with decreased survival (52). 
This U-shaped curve between glycemic control and mortality 
suggest that the ideal glycemic control for T2D patients is at 
moderately elevated glycemic levels. However, it is unclear that 
this effect is actually due to moderately elevated glucose levels, 
instead of confounding variables that lead to both lower gly-
cemic levels and poor outcome (55). Although early glycemic 

control has been associated with risk reduction in the develop-
ment of heart disease, hypertriglyceridemia, nephropathy, and 
cataracts, the biochemical mechanisms responsible for these 
effects are unknown (56, 57). Therefore, the more important 
question is: does long-term glycemic control augment immune 
function, prevent infectious complications, and promote 
durable survival? Although it makes logical sense that early 
and improves glycemic control would result in better immune 
function and reduced infections and sepsis episodes, there are 
few if any studies investigating this assumption. Moreover, 
there is a paucity of literature investigating the biochemical and 
physiological pathways central to immune function that benefit 
from glycemic control. Much more scientific investigation is 
necessary to determine the biological effect of glycemic control 
on immune function to improve long-term T2D survival from 
sepsis.

iNFLAMMATiON

Once the host loses local containment of an infection, the body 
is systemically exposed to microbes, microbial components, 
and products of damaged tissue. This induces an inflamma-
tory response and initiates sepsis-like responses through 
the recognition of pathogens and damaged tissue by way of 
pattern-recognition receptors (PRRs), which are ubiquitous on 
immune cell surfaces. PRRs are expressed primarily on immune 
and phagocytic cells and on many types of somatic tissues. 
Microbial infections are recognized by pathogen-associated 
molecular patterns (PAMPs), which are expressed by patho-
genic and harmless microbes. PAMPs are recognized by PRRs 
such as toll-like receptors (TLRs), C-type and mannan-binding 
lectin receptors, NOD-like receptors, and RIG-I-like receptors 
(9). Proteins and cellular products released by tissue damage are 
similarly recognized as damage-associated molecular patterns 
(DAMPs) (58). During sepsis, systemic activation of the innate 
immune system by PAMPs and DAMPs results in severe and 
persistent inflammatory responses characterized by an exces-
sive release of inflammatory cytokines such as IL-1β, TNF, and 
IL-17, collectively known as the “cytokine storm” (38). This 
unregulated release of inflammatory cytokines occurs over a 
relatively short period of time (hours or days). Furthermore, 
instead of stimulating what should be a normal physiological 
response to an infection, intense complement activation and 
innate immune cell stimulation enhance an excessive inflamma-
tory response resulting in tissue damage, compromised cellular 
responses, and molecular dysregulation. The resulting damage 
incites organ dysfunction and even multiorgan failure (38).

Type II diabetes is an inflammatory disease within itself. In 
T2D, FFAs bind to TLR2, a receptor for pathogen lipoproteins, 
and TLR4, a LPS receptor, to activate the innate immune system 
(59, 60). In addition, there is indirect activation through TLR 
signaling (61). This elicits the inflammatory pathways activated 
in sepsis. In addition, AGEs are DAMPs that activate pro-
inflammatory pathways.

Several studies also show that the inflammatory response is 
altered in patients with T2D. For example, mononuclear cells 
and monocytes have been found to secrete less IL-1 and IL-6 
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in response to stimulation by LPS, all of which appears to be 
secondary to an intrinsic defect in cells (29, 62). Although 
some patients recover from the inflammatory state during an 
acute septic episode, for unknown reasons elderly patients with 
significant comorbidities fail to resolve this initial condition. 
They instead progress to a state of persistent inflammation, 
immune cell dysfunction, and catabolic metabolism, all of 
which degrade the immune system’s ability to clear infections 
and heal injured tissues (63). In individuals with T2D, the 
chronically inflamed environment may play a role. Adipose 
tissue serves as a site of inflammation (28), with an increase in 
adiposity being associated with upregulation of genes encoding 
pro-inflammatory molecules resulting in the aggregation and 
accumulation of immune cells (64). Macrophages then create a 
pro-inflammatory loop by forming crown-like structures, which 
promote differentiation to pro-inflammatory M1 macrophages 
(28) and the associated pro-inflammatory cytokines. Similar to 
the environment seen in adipocytes, pro-inflammatory condi-
tions have also been seen in the pancreas. In the pancreas, there 
is β-cell apoptosis from glucose-induced IL-1β (65), and β-cell 
dysfunction by lipoapoptosis from FFAs acting as effector mol-
ecules (28). This stress-induced β-cell death results in the release 
of autoantigens and alarmins, which are endogenous molecules 
released by necrotic cells resulting in stimulation of the immune 
system through self-antigen presentation (28). This leads to an 
enhanced adaptive immune response (66).

Given the growing knowledge in the field of metabolic-induced 
immune dysfunction in T2D, possible interventions that curb 
inflammation may offer therapeutic benefits in T2D. In sepsis, 
recent investigations have suggested that therapeutic interven-
tions that curb hyperinflammation, shift catabolism toward 
anabolism, and bolster immune function may be beneficial in 
combination, once the initial episode of sepsis has subsided (25, 
67, 68). Although in other disease states, such as severe burns, 
advanced cancers, and autoimmune diseases, combination 
therapies that reduce inflammation, optimize metabolism, and 
decrease infections are common-place, in sepsis there currently 
is no clear plan for the routine use of these or similar strategies 
(9). Combinations of immune modulators that target affected 
pathways in T2D and sepsis have the potential to offer clinically 
significant improvements in overall survival.

MOLeCULAR ALTeRATiONS iN T2D  
AND SePSiS

The pathogenesis of T2D can be described as insulin resist-
ance associated with inactivity, obesity, and aging (69, 70). 
Initially, the pancreatic islet cells respond to this decrease in 
insulin-stimulated glucose uptake by increasing cell mass and 
secretory activity. When functional expansion of the islet β cells 
fails to compensate for the insulin resistance, insulin deficiency, 
and subsequent T2D develop. The hypothesized mechanisms 
behind insulin resistance and islet β-cells dysfunction focus 
on molecular changes that influence the pathogenesis of T2D. 
Specifically, most research centers on lipotoxicity, glucotoxic-
ity, oxidative stress, endoplasmic reticulum stress, amyloid 

deposition in the pancreas, and ectopic lipid deposition in the 
muscle, liver, and pancreas (70). The contribution of each of 
these mechanisms remains unclear, but, interestingly, all of 
these cellular stresses can be caused by over-nutrition (71) and 
are induced or exacerbated by an inflammatory response (72).

Obesity-induced inflammation is chronic and indolent, differ-
ing from the more acute type of inflammation commonly associ-
ated with infections (70). Current observations in sepsis show 
that sepsis-induced organ dysfunction occurs primarily though 
cellular and molecular dysregulation of signaling pathways, as 
opposed to gross tissue damage. This may result in multiple organ 
failure even in the context of preserved cell morphology and in 
the absence of significant cell injury. Therefore, immune dysfunc-
tion in sepsis is associated with molecular alterations that alter 
cellular phenotype and function. How the molecular changes 
in T2D and sepsis interact and influence each other resulting 
in worse clinical outcomes is unclear. Below we outline several 
important pathways of cellular dysfunction that impact immune 
function in diabetics and sepsis, illuminating gaps in knowledge, 
which could influence why patients with T2D have infections that 
are difficult to treat and are associated with significant morbidity 
and mortality (70).

Complement Activation
Obesity and elevated insulin levels have been associated with 
elevations in plasma C3 (73), C5, and C8 (74). These increased 
levels are likely a result of glycated immunoglobulins activat-
ing complement (75). Elevated glucose may then attack the 
thioester bond of C3, making it functionally deficient and lead-
ing to a decreased ability to opsonize bacteria (76). In sepsis 
models, a robust and consumptive depletion of complement 
occurs, resulting in a sharp drop in the hemolytic activity of 
plasma complement and its activation products (77). There is 
also evidence that sepsis in humans causes shedding of the C5a 
receptor into plasma, likely due to release of microparticles 
from neutrophils (78). In addition to complement activation 
in sepsis, there is well-established evidence that activation 
of the complement system leads to activation of the clotting 
and fibrinolytic systems (79), resulting in activation of several 
clotting factors, including thrombin, which have C3 and C5 
convertase activities. These ultimately generate C5a and the ter-
minal membrane attack complex (MAC) (80). The progress in 
understanding how complement activation increases systemic 
inflammation, organ failure, and mortality have resulted in the 
development and randomized phase 2 trial of a C5a inhibitor, 
CaCP29 (EudraCT Number: 2013-001037-40). This C5a inhibi-
tor has shown great promise despite a historically large field of 
other failed antibody inhibitors (81).

The fact that glycated immunoglobulins affect complement 
could obviously play a role in T2D patients having an increased 
risk of infections. However, it is still unclear why these patients 
have worse outcomes during septic episodes. One hypothesis is 
that obese T2D patients have baseline elevations of C5, which 
then becomes activated by enzymatic cleavage during a septic 
episode, leading to more MAC generation. To date, there have 
been no published studies looking at C5a inhibitors in T2D 
patients with sepsis.
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Mitochondrial Dysfunction and Redox 
imbalance
Mitochondria are essential for maintaining an adequate supply 
of ATP for cellular processes. Mitochondria have a significant 
role in glucose-stimulated insulin secretion from pancreatic 
β cells (82), with decreases in mitochondrial oxidative activ-
ity and ATP synthesis leading to insulin resistance (83, 84). 
Mitochondrial dysfunction, or direct damage of mitochondria, 
can trigger cell death pathways through release of mitochondrial 
cytochrome c (9, 85) as well as directly affect the generation of 
ATP. Not only will the drop in ATP negatively affect intracel-
lular processes and cellular function, such as insulin secretion, 
but severe lack of ATP can also trigger cellular anergy. In this 
state, the cell does not necessarily die, but instead acquires a 
hibernation-like state resulting in tissue dysfunction and organ 
failure (86).

In addition, hyperglycemia itself has been shown to induce 
ROS. Obese and insulin-resistant T2D individuals have a hyper-
glycemic intercellular environment with elevated concentrations 
of FFAs (87). Hyperglycemia itself has been shown to induce ROS 
(88, 89) through enzymatic cascades in mitochondria, including 
activation of NADPH oxidase, uncoupling of NO synthesis, and 
stimulation of xanthine oxidase (90). Glycated proteins have also 
been shown to promote ROS formation (91). ROS may then lead 
to the formation of NLRP3 inflammasomes and caspase 1, which 
activates the IL-1, pro-inflammatory system (92, 93).

In sepsis, there is generation of excessive amounts of ROS 
and RNS, which can directly inhibit respiration and damage 
the respiratory chain components in mitochondria (94–96), 
leading to mitochondrial dysfunction (9). In addition to this 
pathway, sepsis-impaired tissue perfusion (due to fluid loss, 
both intrinsic and extrinsic, as well as reduced vascular tone) 
leads to tissue hypoxia. Loss of tissue oxygenation significantly 
impairs oxidative phosphorylation and may trigger cell death 
pathways (97). In T2D, microvascular dysfunction can lead to 
local tissue hypoxia. The degree to which local tissue hypoxia 
propagates cell death and enables ongoing infections in T2D 
has not been defined.

In both T2D and sepsis, mitochondrial dysfunction and 
redox imbalance plays an integral role in progression of disease. 
In human models, cellular ATP levels are correlated with sepsis 
survival (96, 98). In T2D, changes in cellular ATP levels lead to 
insulin resistance. In a T2D patient with sepsis, it is unclear if 
these altered pathways are synergist, antagonistic, or some com-
bination of both. Either way, given the oxidative stress, it seems 
clear that antioxidant therapies may have a therapeutic role.

Calcium (Ca2+) Homeostasis
Calcium homeostasis in T2D is ubiquitously impaired across tis-
sues, including but not limited to adipocytes, platelets, pancreatic 
β cells, kidney, and liver (99). The most consistent finding is an 
increase in intracellular Ca2+ levels, leading to tissue-specific 
dysregulation (99), such as glucose resistance. Glucose homeo-
stasis is determined by the rate of glycolysis, gluconeogenesis, 
glycogen synthesis, and glycogenolysis, all which are calcium-
regulated pathways (100, 101). When intracellular Ca2+ increases, 
glycogen synthase is inhibited causing glucose resistance (102). 

Clinical trial NCT00436475 examined how Ca2+ supplementa-
tion impacted pancreatic β cell function, but did not show any 
significant differences (103, 104).

Hypocalcemia in sepsis, hypothesized to be secondary to 
defective intracellular calcium homeostasis, is common and cor-
relates with disease-specific scores during critical illness (105). 
Although systemic Ca2+ levels are reduced during sepsis, there 
are increased cytosolic Ca2+ levels, similar to those observed in 
T2D. These heightened intracellular Ca2+ levels lead to elevated 
inflammatory responses, cellular dysfunction, and can even be 
cytotoxic (9). In addition, accumulation of Ca2+ in organs dur-
ing sepsis is associated with significant organ dysfunction (106).

Poly(ADP-Ribose) Polymerase 1 (PARP1) 
and PARP2 Activation
Poly(ADP-ribose) polymerase 1 and PARP2 are enzymes that 
catalyze poly(ADP-ribosyl)ation of proteins, after being stimu-
lated by DNA strand breaks. PARP activity is therefore viewed 
as a sensor of DNA damage. PARP1 activation and initiation 
of the inflammatory response occur simultaneously (107). 
PARP1 activity upregulates pro-inflammatory gene expression 
(108), which is attributed to PARP1-induced alterations in 
chromatin structure and in transcriptional regulation (107, 
109). Because PARP1 also directly contributes to cell death in 
affected tissues (107) it is hypothesized that PARP1 has a role in 
sepsis-associated immune cell death. Further data to elucidate 
the role of PARP enzymes suggests they play a role in metabolic 
regulation by affecting mitochondrial function and oxidative 
metabolism (9). PARP activation impacts cellular functions 
by diverse mechanisms. In general, PARP inhibition enhances 
oxidative metabolism and mitochondrial content. This suggests 
that reducing PARP activity may prevent metabolic-related 
diseases such as T2D, which are characterized by impaired 
mitochondrial function (110).

Inhibitors of PARP1 have been assessed in clinical trials as 
potential cancer therapeutics, but trials in sepsis and T2D have 
not been initiated. It is not clear whether inhibition of PARP1 
in humans would be beneficial in the case of T2D or sepsis. In 
addition, the practicality of long-term inhibition without nega-
tive effects on genomic stability is unknown (110).

CeLLULAR DeFeCTS

Below we will summarize the alterations seen in the majority 
of innate and adaptive immune cells in T2D. Furthermore, we 
highlight how these cells types are affected by sepsis and try to 
illustrate how T2D and sepsis together may interact to exacerbate 
long-term mortality.

innate immunity
Endothelium
The endothelium, a single cell semi-permeable barrier, is com-
posed of endothelial cells (ECs), which line all of the vasculature 
and lymphatic systems in the body. They also play a role in many 
innate and adaptive immune responses (9). They are one of the 
first cells to identify invading microbes in the bloodstream 
via endogenous metabolite-related danger signals (111). ECs 
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express TLR-2 and TLR-4, which enable them to be activated 
by LPS. Activation subsequently leads to the production of 
pro-inflammatory cytokines and chemokines. These boost the 
immune response through recruitment of further immune 
cells (112). Therefore, ECs function as innate force multipliers, 
cell mobilizers, and immune regulators by modulating cellular 
function (113). In addition, ECs also express both MHC I and II 
molecules, which allow them to serve as antigen presenting cells 
for T cells by presenting endothelial antigens (112).

Endothelial cells are very sensitive to blood glucose 
alterations, with hyperglycemia-induced ROS leading to EC 
damage (114). In T2D, increased concentrations of glucose 
and FFAs also activate ECs, leading to a pro-inflammatory 
and pro-thrombotic endothelial phenotype (115). There is 
increase production of plasminogen activator inhibitor-1, 
thromboxane, tissue factor, and von Willebrand’s factor (vWF), 
which promotes platelet aggregation and adhesion to the sub-
endothelial layer and the formation of pathological thrombi 
(116). In sepsis, EC dysfunction is present and manifests as 
several pathological processes including capillary leak, altered 
vasomotor tone, and microvascular thrombosis (117). An 
increased release of pathological quantities of vWF once again 
promotes platelet aggregation and adhesion to the subendothe-
lial layer and the formation of pathological thrombi. These 
findings show that ECs are key regulators of the physiological 
and immune dysfunction seen in both T2D and sepsis. It would 
make sense that worsened EC dysfunction would be present 
in a septic T2D patient compared to a septic non-T2D patient 
given the pathways involved, but how these pathways intercon-
nect is not understood. However, it is clear that EC modulation 
could be beneficial to improve survival outcomes in septic T2D 
patient cohorts.

Neutrophils
Neutrophils are the most prevalent and integral cell type of 
innate function and are critical for containment and eradica-
tion of microbes (9). Neutrophil dysfunction has been linked to 
hospital-acquired infections (118). Neutrophils are the majority 
cell in bone marrow and are the very first responders to microbial 
infections sites (119). One important aspect is their capacity to 
produce pro- and anti-inflammatory cytokines and growth fac-
tors, which regulate the inflammatory response (120).

In T2D, neutrophils show defects in almost all functions, 
including migration to inflammatory sites, phagocytosis, release 
of lytic proteases, production of ROS, and apoptosis (121). In 
addition, a study evaluating the release of TNF, IL-1β, and IL-8 
from neutrophils in individuals with T2D showed increased 
amounts of TNF, IL-1β, and IL-8 in both the basal state and after 
stimulation by LPS. This excessive release may lead to tissue 
injury and cell death (121), increased susceptibility to invasive 
microorganisms (122), and impairment of normal wound heal-
ing (123).

In addition to microbial eradication by phagocytosis, oxida-
tive burst, and degranulation, it has been shown that neutrophils 
can eliminate a wide range of microbes by forming neutrophil 
extracellular traps (NETs) (124). If a system is primed to produce 
NETs, a process termed NETosis, tissue damage can occur (125). 

NETosis requires a microenvironment with increased levels of 
TNF (126), upregulated PAD4 (127), elevated intracellular cal-
cium levels, and fasting serum glucose (128), which are all seen 
in T2D.

In sepsis, there is delayed neutrophil apoptosis (129), lead-
ing to ongoing neutrophil dysfunction. This delayed apoptosis 
is further complicated by the release of immature band-like 
neutrophils from the bone marrow that demonstrates clear 
deficits in oxidative burst (130), cellular migration patterns  
(131, 132), complement activation ability, and microbial eradi-
cation (133). These defective neutrophils play a signification role 
in the persistent inflammation and immune dysfunction seen 
in sepsis. These findings combined with TLR signaling deficits, 
chemokine-induced chemotaxis reductions, altered apoptosis 
signaling pathways, and neutrophil immune senescence, result 
in a sundry of functional deficits that endure long after sepsis 
symptoms have subsided (9). In addition, septic patients have 
been shown to have elevated NET concentrations compared 
to healthy controls, and that these increased NET levels were 
associated with sepsis severity and organ dysfunction (84).

Neutrophils clearly have a role in the immune dysfunction 
seen in both T2D and sepsis. The increased tendency to form 
NETs contributes to the pathogenesis of both diseases; however, 
how or if this contributes to the worsen outcomes in patients with 
sepsis and T2D is unclear.

Monocytes and Macrophages
Macrophages have important roles in immune response and 
homeostasis. They play a significant role in phagocytosis, effec-
tively killing microbes, and in clearing apoptotic and necrotic 
cells. In addition, they secrete pro- and anti-inflammatory 
cytokines and express MHC-II molecules, allowing them 
to activate CD4+ T-cells and promote differentiation into  
T helper subsets (9, 134). Just as important, they play a role in the 
regulation of glucose and lipid metabolism, and in the inflam-
mation of adipose tissue (135). Macrophages have the ability 
to display remarkable phenotypic heterogeneity depending on 
the biological situation (136), leading to the establishment of 
M1 pro-inflammatory (CD11C+) and M2 anti-inflammatory 
macrophages. First discovered in adipose tissue (64, 137), it 
was shown that accumulation of macrophages leads to elevated 
inflammatory cytokines. In addition, the accumulation of these 
inflammatory cytokines is associated with insulin resistance. The 
mechanism behind the accumulation of these pro-inflammatory 
M1 macrophages is thought to occur through two main pro-
cesses. First, the adipocytes and resident macrophages secrete 
increased levels of chemokines, LTB3, MIP, MIF, and MCP-3 
to promote recruitment of blood monocytes (138). Once the 
monocytes arrive to the area, the inflammatory signals within 
the adipose tissue push the monocytes to differentiate into the 
pro-inflammatory M1 phenotype.

In sepsis, blood monocytes have endotoxin tolerance, with 
the reduced ability to release pro-inflammatory cytokines after 
an LPS challenge (9). This has been suggested to facilitate poor 
short- and long-term sepsis outcomes (139, 140). Although 
a sundry of complex mononuclear cell signaling pathways 
are altered and contribute to the establishment of endotoxin 
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tolerance, the major implication on monocytes, and to a lesser 
extent macrophages, is reduced antigen presentation related to 
diminished HLA-DR cell surface expression (141). In addition, 
the reduced monocyte capacity to secrete pro-inflammatory 
cytokines suggest that intracellular signaling has shifted 
toward the production of anti-inflammatory mediators, which 
are associated with hospital-acquired, ongoing, and secondary 
infections that ultimately increase sepsis-associated mortal-
ity. Although the mechanisms accounting for monocyte LPS 
tolerance are not clear, sepsis-induced monocyte epigenetic 
reprogramming may play a pivotal role in the establishment 
of LPS tolerance, myeloid anergy, and the overall immune 
suppressive monocyte phenotype (142). Analysis of human 
monocyte mRNA clearly shows increased levels of inhibi-
tory cytokine genes and reduced levels of pro-inflammatory 
chemokine genes (143).

These findings make us question what happens to monocytes 
and macrophages in T2D individuals with sepsis. At baseline, 
obese T2D individuals have a shift toward pro-inflammatory 
macrophages; however, the fate of these recruited macrophages 
and their contributions to infection eradication remain less 
studied. Unlike in a resolving acute infection where homeostasis 
is restored, adipose tissue inflammation fails to resolve naturally 
(144). When a T2D individual is exposed to an acute infection, 
it is unclear how monocyte and macrophage populations change 
and if these changes are affected by the baseline obesity and 
chronic inflammation.

Natural Killer (NK) Cells
Natural killer cells act as immune complex regulators. NK cells 
have the ability to destroy target cells spontaneously, without 
prior exposure, and without MHC restrictions (145). In sepsis, 
NK cell cytotoxic function is greatly decreased (146) and specific 
subsets of NK cells are significantly altered. These changes have 
been associated with increased lethality (147). Recent studies 
show that individuals with T2D have abnormal NK cell pheno-
types, with a significant decrease in NKp46, a NK receptor that 
recognizes influenza hemagglutinins, and tumor ligand NKG2D, 
an activating receptor on NK and CK8+ lymphocytes. They also 
have functional defects with reduced degranulation (148). In 
T2D patients, it is unknown what happens when these altered 
NK phenotypes are further affected during a septic episode.

Dendritic Cells (DCs)
Dendritic cells are characterized as conventional DCs (cDCs) 
or plasmacytoid DCs (pDCs). cDCs secrete IL-12 and are com-
parable to monocytes. pDCs secrete IFNα and are comparable 
to plasma cells. cDCs and pDCs have enhanced apoptosis in 
patients with sepsis, as well as in patients who developed noso-
comial infections (9). In T2D, elevated glucose induces a pro-
inflammatory cytokine profile in DCs leading to their maturation 
(149). It addition, hyperinsulinemia promotes DC activation and 
upregulation of scavenger receptors including SR-A and CD36, 
a receptor found on many cells including ECs, cardiomyocytes, 
platelets, monocytes, and macrophages, all which are involved in 
the macrovascular complications of T2D (150). AGEs, through 
binding with SR-A, can also induce maturation of DCs (151).

In sepsis, just like monocytes, DCs have decreased HLA-DR 
expression and secrete increased amounts of IL-10, which 
is anti-inflammatory. In addition, when DCs are cocultured 
with T effector cells, T  cell anergy in induced and regulatory 
T cell (Treg) proliferation enhanced, both which correlate with 
sepsis-induced immune dysfunction (152). A couple of recent 
investigations have also demonstrated that inhibition of sepsis-
induced DC apoptosis or amplification of DC function improves 
sepsis long-term survival (153, 154). These observations reveal 
that adaptations in DCs contribute to the pathogenesis of T2D 
and sepsis and that targeted manipulation of DCs may provide 
a therapeutic strategy.

Myeloid-Derived Suppressor Cells (MDSCs)  
and Myelopoiesis
Myeloid-derived suppressor cells are a heterogeneous popula-
tion of undeveloped myeloid cells. They expand during trauma 
and sepsis, impede immune responses, and signal through 
TLR-mediated pathways (155, 156). MDSCs inhibit CD8+ T cell 
function; however, their impact during sepsis is uncertain. 
Current literature implies a beneficial role, by focusing on their 
ability to restore innate immune cell function and surveillance 
through “emergency” granulopoiesis (132). Prior to MDSC 
increase, there is a brief period of host vulnerability to second-
ary microbial infections. This brief period is associated with 
overall mortality secondary to reduced numbers of bone mar-
row cells and a reduction in neutrophil and monocyte numbers 
and function (130). It has also been demonstrated that robust 
MDSC expansion, via augmented granulopoiesis, imparts last-
ing immunity to secondary and nosocomial infections during 
sepsis (157). Given these findings, there is mounting interest 
in exploring myelopoiesis, MDSC expansion, “emergency” 
granulopoiesis, and hematopoietic stem cell (HSC) production 
and function (130, 155, 157–159). Due to the importance of 
efficiently regenerating functioning neutrophils, monocytes, 
and DCs during sepsis, MDSCs expansion is a necessity to 
replenish the pool of functional innate immune cells. However, 
in T2D and obese patients, hematopoiesis and myelopoiesis are 
significantly altered (9). This observation raises the question as 
to the combined impact of myelopoietic derangement promot-
ing ongoing infection, depressed wound healing, and increased 
mortality following sepsis.

It has been demonstrated that HSCs and myeloid lineage 
expansion all occur through c-KIT-, type-I IFN- (IFN-I), and 
CXCL10-dependent signaling that involves IFN-I-secreting 
B cells (158, 159). Impaired HSC proliferation, development, 
and function in human bone marrow transplant and diabetic 
models (160) is clearly associated with increased mortality from 
chronic, secondary, nosocomial infections (161). Humans with 
altered granulopoiesis ability undoubtedly experience more 
frequent, severe, and anomalous infections, demonstrating 
the essential requirement for effective neutrophil production 
especially in T2D (23). Recently, patients with sepsis have 
been shown to have persistently increased MDSCs that are 
functionally immune suppressive. These are associated with 
adverse outcomes including increased nosocomial infections, 
prolonged ICU stays, and poor functional status at discharge 
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(162). On the other hand, overabundant MDSC proliferation 
may provoke a physiological state of persistent inflammation, 
such as in adult respiratory distress syndrome, leading to 
septic patients having poor outcomes (12). Recent work has 
demonstrated that acute inflammation causes the reduction of 
peripheral lymphocytes and common lymphoid progenitors 
in the bone marrow, which has been connected with a pro-
found reduction in the number of osteoblasts (9). The specific 
contributions of lymphopoiesis, myelopoiesis, and MDSCs to 
sepsis recovery in T2D populations versus persistent inflam-
mation and catabolism remain poorly understood. However, 
new insights into these processes and their roles in sepsis 
resolution and recovery will hopefully present new targets for 
immune-modulatory therapy to improve sepsis outcomes in 
T2D cohorts.

Adaptive immunity
Lymphoid Apoptosis and Immune Suppression
Apoptosis plays a crucial role is tissue homeostasis and the size 
and duration of immune responses. Once an infection is success-
fully cleared, activated lymphocytes undergo apoptosis to curtail 
the immune response. In the periphery, lymphocyte numbers 
are tightly regulated. Increased lymphocyte apoptosis leads to 
immunodeficiency, whereas decreased lymphocyte apoptosis 
leads to cancer and autoimmune diseases (163). Lymphocyte 
apoptosis is accepted as a critical step in the pathogenesis of sepsis 
and contributes to septic immunosuppression (164). It has been 
shown that T2D patients have an overall leukocytosis; however, 
analyses of these leukocytes show an overall lymphocytosis (163). 
Given these findings, blockade of lymphocyte apoptosis may have 
a therapeutic benefit in septic T2D patients.

Gamma Delta T Cells (γδ T Cells)
Gamma delta T  cells are a diminutive subset of T  cells that 
have a T cell receptor made up of one γ chain and one δ chain. 
This uniquely distinct group of T cells exists in the skin, lungs, 
adipose tissue, peripheral blood, and intestinal epithelium. Once 
activated, γδ T cells release interferon gamma (IFNγ), IL-17, and 
other inflammatory chemokines (9).

Obese individuals have a decreased amount of γδ T  cells, 
which is inversely proportionate to body mass index. In addi-
tion, the remaining γδ T cells have a reduced ability to secrete 
IFNγ (165). This is significant because despite obesity being a 
pro-inflammatory condition, they have a decreased ability to 
mount an inflammatory response. The number of circulating γδ 
T cells is also significantly diminished when individuals have an 
episode of sepsis. Reductions in the γδ T  cell population have 
been correlated with high rates of sepsis lethality (166). These 
findings suggest that γδ T  cells represent a possible target for 
immune enhancement.

T Helper Cell (Th Cell) Subpopulations
T helper cells assist other cell types with immunological processes. 
APCs present peptide antigens to CD4+ cells through MHC class 
II molecules. The CD4+ cells are quickly activated, proliferate, 
and efficiently secrete cytokines, which modulate adaptive and 
innate immune responses. Upon activation, CD4+ cells have the 

capability to differentiate into specialized T cell subsets, includ-
ing Th1, Th2, Th3, Th17, Th22, Th9, or T follicular helper. These 
subsets promote monocyte stimulation, B  cell differentiation, 
and cytotoxic T cell activation through cytokine generation and 
secretion (9, 167).

It is hypothesized that adipocytes upregulate class II MHC 
molecules and play a direct immunological role in antigen 
presentation (168). Several clinical studies have shown that there 
is a decline in naïve CD4+ T  cells, as well as an imbalance of 
CD4+ Th cell subsets toward Th17 and Th22 pro-inflammatory 
subsets in obese individuals with T2D. This leads to a cytokine-
induced hyperinflammatory response leading to further innate 
immune system activation and response (169). This shift to a 
pro-inflammatory environment is of significant importance in 
patients with T2D, as it has been shown that Th cells contribute 
to the complications associated with T2D, such as coronary artery 
disease (169).

In sepsis, CD4+ populations undergo apoptosis (13, 170). 
Compared to individuals who survive an episode of sepsis, 
in humans who die from sepsis there is more lymphocyte  
(specifically CD4+ cells) apoptosis. When evaluating the CD4+ 
cells that survive, there is reduced Th1- and Th2-associated 
cytokine production both during and long after sepsis subsides 
(171). In addition, Th17 cytokine production is reduced in sepsis 
and probably negatively impacts long-term mortality (172). 
These Th populations play a significant role in both T2D and 
sepsis. The mechanism by how they contribute is still unclear 
but it may be that Th cells contribute to the development of the 
macrovascular complications of T2D, which then contributes to 
long-term mortality in T2D patients.

Regulatory T Cells
Regulatory T cells are master regulators of the adaptive immune 
system. They help maintain self-tolerance and suppress responses 
of effector T  cells subsets (9). An appropriate balance of pro-
inflammatory (Th1 and Th17) and anti-inflammatory (Treg) cells 
are critical to maintain homeostasis. In T2D, there is a loss of 
homeostasis with a decreased amount of Tregs (173, 174). This 
imbalance is hypothesized to contribute to the clinical complica-
tions of T2D (175). Tregs have also been shown to induce M2 
macrophage differentiation. Therefore, it has been speculated that 
the decrease in Tregs in T2D contributes to the known polariza-
tion toward M1 macrophages.

During the period of inflammation, such as sepsis and critical 
illness, Tregs enhance the deleterious effector T  cell suppres-
sion, which subsequently prolongs recovery and may dispose to 
increased complications. There is an increased Treg ratio present 
early after episodes of sepsis, which is either due to an absolute 
increase in Treg number or effector Th cell loss from apoptosis. It 
could be that Tregs are not susceptible to sepsis-induced apopto-
sis (176). The fact that hospitalized patients who died from sepsis 
and T2D patients both have alterations in their Treg amounts 
make Treg function a possible therapeutic intervention.

B Cells
B cells are a very diverse immune cell population. Historically, 
B  cell function was thought to only encompass producing 
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antibodies and plasma cells for long-term antibody responses; 
however, recent data have focused on the role of B  cells in 
chronic inflammatory disease and sepsis (9). In T2D, TLR 
ligands activate B cell cytokine production, most significantly 
IL-8. This pro-inflammatory response then augments T2D 
patient’s B  cell inability to upregulate IL-10 production in 
response to TLR ligands (177). In ex vivo studies in both aging 
and sepsis patients, B cells demonstrated significant reductions 
in supernatant IgM production, which may explain why older 
individuals are more vulnerable to Gram-negative bacteria and 
fungal infection (178). It is unclear what happens to the B cells 
in elderly patients with T2D during sepsis, but clearly B  cell 
physiology contributes to the worsened morbidity and mortality 
experienced by this patient cohort.

iNFLAMMATiON ReSOLUTiON

As related to infection, inflammation is generally followed 
by inflammation resolution. In sepsis, compensatory anti-
inflammatory pathways are activated shortly after sepsis initia-
tion (37). The hallmark cytokine in these anti-inflammatory 
pathways is IL-10. IL-10 suppresses IL-6 and IFNγ, while 
stimulating the production of soluble TNF receptor and 
IL-1 receptor antagonist (IL-1RA). At the subcellular level, 
autophagy eliminates DAMPs and PAMPs by packaging 
pathogen components, damaged organelles, and cellular 
proteins into vesicles targeted for lysosomal degradation. This 
results in reduced inflammation and cellular activation (179). 
After a severe infection, resolution of inflammation involves an 
interdigitating, complex, and coordinated array of cellular pro-
cesses and molecular signals. The offending pathogen needs to 
be eliminated from the host, while damaged tissues, cells, and 
leukocytes need to be removed. These processes occur through 
activation of anti-inflammatory pathways with production of 
IL-10 and transforming growth factor β.

Sepsis differs from obesity and T2D since the latter has 
persistent inflammation that does not resolve. The secretion of 
pro-inflammatory adipokines [IL-6, TNF, and monocyte chem-
oattractant protein-1 (MCP-1)] is increased while the secretion of 
anti-inflammatory and insulin-sensitizing adiponectin is reduced 
(180). The formation of pro- and anti-inflammatory lipid media-
tors is also deregulated in obesity (181). In addition, deficiencies 
in IL-10 expression or IL-10 receptor signaling results in inflam-
matory diseases (182, 183). A recent study showed that T2D 
patients have decreased IL-10 function, through downstream 
signaling in the IL-10 pathway (184). Moreover, expression of 
IL-1RA is decreased in β cells from T2D patients, with an IL-1RA 
being a current FDA-approved therapeutic (185).

iMMUNe SUPPReSSiON

Type II diabetes patients have an increased susceptibility to 
pathological infections. These patients also have some of the 
worst long-term morbidity and mortality. This is secondary to the 
inability to eradicate pathological infections. In sepsis, in addition 
to immune activation, a component of immune suppression con-
comitantly exists, which enables individuals to develop recurrent, 

secondary, and nosocomial infections. This leads to worse 
outcomes and increased long-term mortality (26). The combina-
tion of chronic immune suppression from T2D, combined with 
sepsis-induced immune suppression, leads to innate and adaptive 
immune system changes that the human body cannot overcome. 
As illustrated in Figure 2, both the innate and adaptive immune 
systems are affected in T2D and sepsis, altering homeostasis. It is 
not known how these aberrant pathways interact when they are 
superimposed. However, we do know that these superimposed 
pathways lead to worsened morbidity and mortality.

When looking at immune suppression in the innate immune 
system, there are several key pathways to mention. Neutrophils 
are essential for bacterial eradication. In T2D and sepsis, 
neutrophils display defects in chemotaxis and recruitment to 
sites of infection (186, 187). This leads to the reduced ability 
to eradicate bacteria (99). T2D-associated hyperglycemia also 
increases cytosolic calcium in neutrophils, which inhibits the 
synthesis of ATP leading to reduced chemotactic, phagocytic, 
and bactericidal activity. The production and release of essential 
effector molecules, such as ROS and cytokines, is significantly 
impaired leading to bacterial persistence and the development 
of infectious complications (133, 187, 188). In addition, T2D is 
associated with elevated FFAs from dysregulated carbohydrate 
metabolism, which cause EC dysfunction and pathological 
cytokine fluctuations (189). In T2D, the antioxidant systems 
and humoral immunity are also depressed. Furthermore, T2D 
predisposes patients to micro- and macrovascular comorbidities 
leading to environments susceptible to infections (190).

In addition to diminished innate function, adaptive immu-
nity is similarly impaired. Splenocytes harvested from deceased 
sepsis patients demonstrate reduced numbers of CD4+ and CD8+ 
lymphocytes, due to substantial apoptosis (13). Apoptosis of 
lymphocytes and APCs (DCs, T cells, and B cells) is considered 
a hallmark of septic immune suppression (191, 192). Moreover, 
CD4+ cell loss is associated with a reduced ability to mount 
immune responses to viral infections after septic insults (193). 
However, reduced lymphocyte numbers are not just reflective 
of the risk for viral reactivation following sepsis. Lymphopenia 
4 days after the onset of sepsis is associated with the development 
of secondary infections and is predictive of long-term mortality 
at 1 year after sepsis (194).

Several studies have examined the link between increased 
infectious morbidity and T2D. It is hypothesized that T2D patients 
are predisposed to infection due to impaired neutrophil func-
tion, decreased adaptive immune response, and dysfunctional 
immune cell function through high serum levels of inflammatory 
mediators (195). The cellular alterations observed in T2D and 
sepsis combine to create a chronic state of immune suppression, 
characterized by recurrent, secondary, and nosocomial infectious 
complications (196). These infectious complications often result 
in hospital readmissions (197–199) and poor long-term survival 
(200). Compared to patients without sepsis, sepsis survivors 
require more antibiotics, have more ICU days, and consume more 
hospital resources (201). T2D patients are also associated with 
bacterial pathogens with increased antibiotics resistance, such as 
MRSA, Pseudomonas, and Acinetobacter, which are associated 
with ICU-related mortality (202).
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It is evident that sepsis induces a pathological state of immune 
suppression that prompts the development of secondary infec-
tions while still in the ICU setting (203). In addition, several 
reports demonstrate that sepsis survivors and T2D patients 
experience dramatically higher rates of subsequent infections 
long after the initial episode of sepsis has abated (204, 205). 
The increased hospital readmission rates due to infectious 
complications among T2D patients and sepsis survivors is a sign 
of ongoing immune suppression and dysregulation that if not 
corrected, diminishes life quality and durable survival. With the 
ever increasing, comorbidity challenged, elderly T2D population 
experiencing persistent inflammation, immune suppression, and 

immune senescence, the number of T2D sepsis survivors who 
develop subsequent infections is predicted to rise substantially in 
the next decades (200, 206).

iMMUNe-MODULATORY THeRAPieS  
iN T2D

Below we will address immune modulators/modulatory 
pathways that deserve further consideration as disease-
modifying therapeutics. These immune modulators, their 
proposed benefits, and some possible combinations are also 
listed in Table 1.
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TABLe 1 | Immune modulators.

immune 
modulators, 
diabetes

iL-1 inhibition TNF inhibition NF-κβ inhibition Diacerin MCP-1 antagonism iL-6 
inhibition

Sirtuins 
augmentation

PPAR-γ agonists

Proposed benefit ↓ acute phase 
inflammation

↓ risk of developing T2 ↓ release of TNF-α, 
IL-1B, IL-8, and MCP-1

↓ concentrations of  
TNF-α and IL-1B

↓ monocyte/macrophage 
migration/infiltration

↓ inflammation ↑ insulin secretion ↓ insulin resistance

↓ pancreatic β-cell 
apoptosis

↓ hemoglobin A1c ↑ insulin secretion ↓ insulin resistance ↑ insulin sensitivity ↓ hemoglobin A1c

↑ insulin secretion ↓ insulin clearane ↑ metabolic control ↓ macrophage 
concentration

Potential cells 
affected

T cells, 
Lymphocytes

Neutrophils, 
macrophages, 
endothelial cells

T cells, lymphocytes Neutrophils, 
macrophages

Monocytes, 
Macrophages

T cells, 
monocytes, 
neutrophils, 
lymphocytes

T cells, 
monocytes, 
neutrophils, 
lymphocytes

Macrophages

immune 
modulators, 
sepsis

g-CSF gM-CSF iFNγ PD-1 and PD-L1

Proposed benefit ↑ neutrophil and 
monocyte production 
and release

↑ neutrophil/monocyte 
production and function

↑ monocyte HLA-DR 
expression and function

↓ T cell exhaustion

↑ myelopoiesis and 
granulopoiesis

↑ monocyte/lymphocyte 
cytotoxicity

↓ infection and related 
complications

↑ lymphocyte 
proliferation

↑ T cell responses ↑ immunity against 
fungal infections

↑ neutrophil and 
monocyte cytotoxicity

↓ nosocomial infection 
acquisition

↑ opportunistic infections

↓ ventilator days

Potential cells 
affected

T cells, monocytes, 
neutophils, 
lymphocytes

T cells, monocytes, 
neutrophils, 
lymphocytes

T cells, monocytes, 
neutophils, 
lymphocytes

T cells, monocytes, 
neutrophils

Proposed 
combinations

PD-1 and MCP-1 PD-L1 and diacerin iFNγ and diacerin

Proposed benefit ↓ monocyte infiltration ↓ inflammation ↑ monocyte function

↑ lymphocyte 
proliferation

↑ neutrophil and monocyte 
cytotoxicity

↓ inflammation

↑ T cell function ↓ opportunistic infections ↓ fungal infections

Potential cells 
affected

Lymphocyte,  
T cells, monocytes

Neutrophils, monocytes Monocytes
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iL-1
IL-1 has long been given to patients after transplantation 
to enhance recovery (207). Since these patients developed 
symptoms and signs of a systematic inflammatory reaction 
during treatment, subsequent research focused on blocking 
IL-1 during sepsis by using anakinra, a naturally occurring 
IL-1RA. There have been multiple controlled trials of anakinra 
in human sepsis. In one placebo-controlled trial, there was a 
reduction in 28-day all-cause mortality, but the results did not 
reach statistical significance (208). Attention was then turned 
to focus on antagonism of IL-1 during noninfectious chronic 
inflammatory diseases, including myeloma and rheumatoid 
arthritis. IL-1β antagonism is now the standard of therapy in 
autoinflammatory diseases (209). T2D can be classified as an 
autoinflammatory disease, with the innate immune system 
inappropriately activated due to metabolic stress leading to 
a chronic inflammatory disease (210). IL-1 prevents insulin 
secretion while promoting pancreatic β-cell death via apoptosis 
(211). In patients with T2D, there is increased expression of 
IL-1 expression in pancreatic β-cells with subsequent reduction 
in IL-1RA (212). In these patients, anakinra lowered blood 
glucose levels and improves β cell secretory function and 
insulin sensitivity, as well as reducing evidence of systemic 
inflammation. Just as interesting, after withdrawal of anakinra 
treatment, improvement in insulin secretion lasted 39  weeks 
(212), suggesting that the therapeutic effect IL-1 antagonism is 
long-lasting, perhaps due to interruption of IL-1 autoinduction 
(213). However, anakinra has a short half-life requiring daily 
administration to maintain adequate suppression of IL-1β and 
often causes injection-site reactions, limiting its ability to serve as 
a long-term therapy option (214). Subsequent studies therefore 
focused on humanized monoclonal antibodies, Gevokizumab, 
Canakinumab, and LY2189102, against IL-1β. Gevokizumab 
improved glycemic control (potentially by restoring insulin 
production) and reduced inflammation in patients with T2D 
(210, 215). Given the half-life of around 3 weeks, preliminary 
studies indicated that monthly or longer administration might 
be possible. Clinical trial NCT00900146 utilized Canakinumab 
and showed a numerical reduction in hemoglobin A1C, with a 
trend toward improved insulin secretion rate (216). LY2189102 
improved glycated hemoglobin levels and corrected fasting and 
postprandial glycemia, as compared to placebo (217). In addi-
tion, just like the studies on anakinra, treatment effects were 
noted to be long lasting, even after treatment was stopped. These 
trials show the potential therapeutic benefit of inhibiting the 
IL-1 pathway. To further support this, a current diabetic sulfo-
nylurea medication Glibenclamide has actually been shown as 
a powerful inhibitor of IL-1β in islet cells (93).

TNF
The role of TNF in insulin resistance and T2D was first observed 
in 1993 (218). Numerous clinical trials have evaluated the ben-
efits of TNF antagonism but have failed to demonstrate advan-
tageous effects on glucose metabolism (219–221). However, 
these trials were underpowered, with limited patients over a 
short amount time, and did not account for inter-individual 
variations (genetic background, body weight, food intake, 

and exercise). Trials on TNF for other inflammatory diseases, 
including Crohn’s disease, rheumatoid arthritis, and psoriasis, 
implicate TNF blockade in altering insulin sensitivity (222, 
223). Large cohort studies in patients with rheumatoid arthritis 
and psoriasis showed that TNF inhibition is associated with a 
reduction in T2D rates (224, 225). Further clinical trials specifi-
cally focusing on T2D with prolonged antagonism of TNF will 
likely prove to be therapeutically beneficial.

Nuclear Factor-Kappa Beta (NF-κβ)
Lipopolysaccharides from bacterial cell walls and FFAs bind 
Fetuin-A to activate TLR2 and TLR4, leading to nuclear trans-
location of NF-κβ, which induces an inflammatory response 
(226, 227) through the release of TNF, IL-1β, IL-8, and MCP-1 
(93). Since 2001, we have known that salsalate, a prodrug 
form of salicylic acid, can ameliorate T2D via inhibition of 
NF-κβ (228). Multiple trials have been completed to evaluate 
the potential therapeutic role of salsalate. An initial proof-of-
concept study showed improvement in glycemia, decreased 
C-reactive protein levels, and higher adiponectin in plasma 
(229). Follow-up studies supported this initial observation 
(230, 231) with two multicenter, placebo-controlled studies, 
including clinical trial NCT00799643, showing that salsalate 
can decrease hemoglobin A1c and improve other markers of 
glycemic control (232, 233). However, salsalate also reduces 
the clearance of insulin, and thus lowers glucose concentra-
tions through a non-inflammatory mechanism (229, 232). 
Metformin, a current widely accepted diabetic drug, has 
been shown to inhibit release of pro-inflammatory cytokines 
via IL-1β mechanisms by antagonizing NF-κβ in cells of the 
vascular wall as well as in macrophages (234). Metformin also 
inhibits the maturation of IL-1β in macrophages (235).

Diacerein
Diacerein is a common medication for inflammatory joint 
disease. It decreases concentrations of cytokines such as TNF 
and IL-1β (236, 237). Given the benefits seen in long-term use 
in inflammatory joint disease, it was hypothesized that diacerein 
could provide benefit in T2D. The randomized, double-blind 
placebo-controlled clinical trial NCT01298882 showed increased 
insulin production and improved glycemic control after treat-
ment with diacerein in patients who were drug naïve. Further 
studies investigating the mechanism of action and the role it 
plays in immune dysfunction could reveal a therapeutic role for 
diacerein in T2D patients.

MCP-1 Antagonism
Monocyte chemoattractant protein-1 (or CCL2) is an essential 
chemokine active in the migration and infiltration of monocytes/
macrophages (238). MCP-1 levels are increased in patients with 
T2D (239, 240). The gene expression of MCP-1 and its recep-
tor CCR2 is elevated within visceral and subcutaneous adipose 
tissue of patients with obesity, as contrasted to lean controls 
(241). In addition, there is increased expression in omental fat 
with increased macrophage proliferation, when compared with 
the fat within the subcutaneous tissue (242). CCX140-B is a 
CCR2 antagonist. A pilot study in patients with T2D showed 
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that administration of CCX140-B decreased placebo-corrected 
glycated hemoglobin (93). Multiple studies have shown that 
downregulation of MCP-1 cooccurs with improvement in the 
symptoms of T2D. These results implicate a close relationship 
and support further studies that investigate the role of MCP-1 as 
a therapeutic target (240).

iL-6
IL-6 is a one of the main cytokines that is responsible for an 
inflammatory processes and responses. It is produced by mac-
rophages, T  cells, osteoblasts, kidney cells, muscle cells, and 
adipocytes (243). It has pleiotropic effect on glucose metabolism 
that is dependent on tissue type and the surrounding milieu. 
Increased levels of IL-6 are associated with obesity, T2D, and car-
diovascular disease (244). Under specific conditions, IL-6 may 
either decrease or enhance insulin resistance, as well as improve 
glucagon-like peptide-1-mediated insulin section. In the para-
digm of inflammation within obesity, it is hypothesized that IL-6 
enhances the prevailing inflammation, thus precipitating insulin 
resistance and leading to further micro- and macrovascular 
complications (245).

Sirtuins
Sirtuins represent a class of NAD+-dependent deacetylases 
that have a wide array of biological functions, one being to 
coordinate the body’s reaction to caloric intake. Sirtuins are 
associated with metabolic disorders (246) and play a critical 
role in restoring homeostasis during stress responses (247). 
Emerging evidence supports that failure to maintain homeo-
stasis during metabolism and bioenergy reprogramming result 
in acute and chronic inflammatory disease (247). In obesity, 
there is a decrease in sirtuin 1 levels and activity. This is likely 
secondary to upregulation of peroxisome proliferator-activated 
receptor gamma (PPAR-γ) genes that regulate fatty acid uptake 
and triglyceride synthesis in mature adipocytes (248). Increased 
sirtuin 1 expression and activation is associated with increased 
insulin secretion (249). There are substantial data to support 
that increased sirtuin 1 activity counters obesity, the metabolic 
syndrome, and T2D with or without obesity (247) making it a 
desirable therapeutic target.

Peroxisome Proliferator-Activated 
Receptor gamma
A current antidiabetic therapeutic group, the thiazolidinedi-
ones which include rosiglitazone and pioglitazone, are PPAR-γ 
agonists. PPAR-γ is a type II nuclear receptor found mainly 
in macrophages, adipose tissue, and in the colon. These drugs 
effectively improve insulin resistance and reduce hemoglobin 
A1c though multiple mechanisms. One mechanism is that they 
can inhibit pro-inflammatory pathways leading to decreased 
macrophage concentration in adipose tissue (250, 251). The 
overall clinical effect from the improved insulin resistance and 
anti-inflammatory effects of these agents are not clearly defined; 
however, they reveal multiple mechanistic pathways to further 
evaluate (252).

iMMUNe-MODULATORY THeRAPieS iN 
SePSiS

granulocyte Colony-Stimulating Factor 
(g-CSF) and gM-CSF
Granulocyte colony-stimulating factor stimulates the produc-
tion of stem cells, progenitors, and granulocytes (253). Two 
randomized controlled human trials with recombinant G-CSF 
were performed to test its effect on neutrophil production, 
maturity, and overall function. Although an increase in blood 
leukocyte counts was observed, there was no improvement in 
28-day patient mortality (254, 255). This makes one wonder if 
a longer study therapy or observation time would have changed 
the investigation outcomes. Given the ongoing and continuous 
alterations observed in granulocyte production, myelopoiesis, 
and neutrophil function in T2D and septic patients, prolonged 
G-CSF administration may be efficacious for improved immune 
surveillance, infection eradication, tissue regeneration, and 
survival during sepsis.

GM-CSF is an additional cytokine that enhances stem cells 
to differentiate into macrophages, monocytes, and neutrophils 
(256). In one study, ventilator-dependent septic patients who 
were prescribed GM-CSF during the immune suppressive phase 
had fewer days on the ventilator and within the ICU (257, 258). 
Recombinant GM-CSF treatment in septic children improved 
lymphocyte TNF production and significantly reduced hospital-
associated infections (259). Further evidence for GM-CSF 
therapy from a meta-analysis of over 12 clinical studies using 
GM-CSF or G-CSF showed that treatment with either reduces 
infectious complications (260). In light of the fact that 70–80% 
patients who succumb to sepsis harbor persistent, chronic, ongo-
ing, or secondary infections (13), G-CSF or GM-CSF combined 
with other immune regulators may bolster immune response 
and eradicate infection in septic T2D populations, potentially 
improving overall survival (254, 261).

interferon gamma
Interferon gamma is the sole protein within the family of type II 
interferons. Adequate IFNγ production and signaling is critical 
for appropriate immune targeting of microbial invaders. IFNγ is 
also a central inducer of macrophage activation, stimulating class 
I MHC expression (141). Patients with severe sepsis treated with 
recombinant IFNγ demonstrate reversal of sepsis-induced mono-
cytic dysfunction, as well as having better overall survival (262). 
It is important to note that even though the patient population of 
most trials involving IFNγ were mixed cohorts of severe trauma 
patients, the largest study reports a clear decrease in mortality 
due to infections (263). A recent report on severe trauma patients 
shows that 42 of 63 genes were within the interferon pathway and 
differentially expressed in patients with uncomplicated versus 
complicated outcomes. Recombinant IFNγ treatment was also 
able to partially restore immune metabolic defects associated 
with immune paralysis in humans after sepsis, further suggesting 
that IFNγ therapy after sepsis may benefit a multitude of cellular 
immune functions (264). IFNγ is a very promising agent if it is 
targeted to specific patient populations, such as T2D patients who 
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have immune suppression, adaptive immune dysfunction, and 
chronic inflammation.

Programmed Cell Death Protein-1 and 
Ligand (PD-1 and PD-L1)
The PD-1 protein is expressed on myeloid lineage cells and most 
B- and T-lymphocytes, while its ligand (PD-L1) is expressed 
universally on monocytes, macrophages, epithelial cells, ECs, and 
DCs (265). Its ultimate effect is inhibitory, reducing CD8+ T cells 
from proliferating or accumulating in lymphoid organs. PD-1 
becomes upregulated during viral infections and cancer states 
and is associated with “T cell exhaustion from prolonged periods 
of exposure to self-antigens” (266). Subsequently, patients in 
septic shock exhibit higher levels of PD-1 and PD-L1 on their 
monocytes and T-lymphocytes (267). Anti-PD-1 and anti-PD-
L1 have demonstrated encouraging results in clinical trials on 
human with viral infection or cancer (267). Studies have dem-
onstrated that upregulation of granulocyte PD-L1 potentiates 
lymphocyte apoptosis via contact inhibition, which correlates 
with outcome (268). Given PD-1 and PD-1L’s positive effect on 
adaptive immunity as well as tumor growth, they both could be 
used as biomarkers of immune suppression from sepsis. They are 
also potential targets to ameliorate adaptive immune dysfunction 
or increase overall survival in the long-term (9).

CONCLUSiON

Type II diabetes is a disease of altered immunity that results in 
protracted inflammation, immune suppression, and significant 
infection morbidity. Clinically, it is obvious that patients with 
T2D are more susceptible to infections. In sepsis, despite the best 

goal-directed therapies that control hyperglycemia, administer 
antibiotics early, and prevent organ damage, T2D patients still 
have worse morbidity and mortality for reasons that are poorly 
understood. However, the link between the two appears to be 
the dysregulated immune pathways. We believe that immune-
modulatory therapies that are strategically introduced and 
influence the interdigitating immune derangements between 
these two diseases have the potential to substantially improve the 
overall morbidity and mortality that these individuals experience.
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