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Abstract

We propose a protocol to perform quantum reinforcement learning with quantum technolo-

gies. At variance with recent results on quantum reinforcement learning with superconduct-

ing circuits, in our current protocol coherent feedback during the learning process is not

required, enabling its implementation in a wide variety of quantum systems. We consider

diverse possible scenarios for an agent, an environment, and a register that connects them,

involving multiqubit and multilevel systems, as well as open-system dynamics. We finally

propose possible implementations of this protocol in trapped ions and superconducting cir-

cuits. The field of quantum reinforcement learning with quantum technologies will enable

enhanced quantum control, as well as more efficient machine learning calculations.

Introduction

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that has attracted increasing

attention in the last years. ML usually refers to a computer program which can learn from

experience E with respect to some class of task T and performance measure P, if its perfor-

mance at tasks in T, as measured by P, improves with experience E [1]. In other words,

Machine Learning addresses the problem of how a computer algorithm can be constructed to

automatically improve with experience. Several applications in this field have been imple-

mented such as handwriting pattern recognition [2], speech recognition [3] and the develop-

ment of a computer able to beat an expert Go player [4], just to name a few.

The learning process in ML can be divided in three types: supervised learning, unsupervised

learning and reinforcement learning [5]. In supervised machine learning, an initial data set has

the function of training the system for later prediction making or to classify data. Usually,

supervised learning problems are categorized into regression (continuous output) or classifica-

tion (discrete output). Unsupervised learning allows one to address problems where the train-

ing data is not necessary and only correlations between subsets in the data (clustering) are

considered and analyzed. Finally, reinforcement learning [6] differs from supervised and
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Citation: Cárdenas-López FA, Lamata L, Retamal

JC, Solano E (2018) Multiqubit and multilevel

quantum reinforcement learning with quantum

technologies. PLoS ONE 13(7): e0200455. https://

doi.org/10.1371/journal.pone.0200455

Editor: Zoltan Zimboras, Wigner Research Centre,

HUNGARY

Received: April 12, 2018

Accepted: June 25, 2018

Published: July 19, 2018

Copyright: © 2018 Cárdenas-López et al. This is an
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unsupervised learning in that it takes into account a scalar parameter (reward) to evaluate the

input-output relation in a trial and error way. In this case, the system (so-called “agent”)

obtains information from its outer world (“environment”) to decide which is the better way to

optimize itself, for adapting to the environment.

Quantum information processing (QIP) could contribute positively in the future in the

development of the machine learning field, with several quantum algorithms for machine

learning with significant possible gains with respect to their classical counterparts [7–11].

More specifically, quantum algorithms have been developed and in some cases implemented

for supervised and unsupervised learning problems [12–18]. However, quantum reinforce-

ment learning has not been widely explored and just a few results have been obtained up to

now [19–26]. Related topics in biomimetic quantum technologies are quantum memristors

[27–30], as well as quantum Helmholtz and Boltzmann machines [31–33]. These, together

with quantum reinforcement learning, may set the stage for the future development of semi-

autonomous quantum devices.

The field of quantum technologies has grown extensively in the past decade. In particular,

two architectures which are very promising for the implementation of a quantum computer,

in terms of numbers of qubits and gate fidelities, are trapped ions [34, 35] and superconduct-

ing circuits [36–38]. Current technological progress in trapped ions has allowed us to imple-

ment quantum protocols with several ions involving high-fidelity single and two-qubit gates as

well as high-fidelity readout [39, 40]. Superconducting circuits have also proven to be an excel-

lent platform to perform quantum information processing protocols because of their individ-

ual addressing and scalability. Two-qubit quantum gates have achieved fidelities larger than

99% [41, 42] in this platform. Furthermore, technological progress in this architecture has

made possible to build artificial atoms with high coherence time in coplanar [43] and 3D

architecture [44], allowing for the development of feedback control with superconducting cir-

cuits [45, 46]. This feedback mechanism has inspired protocols for quantum reinforcement

learning with superconducting circuits [23] where the feedback loop control allows one to

reward and restart the system to obtain maximal learning fidelity.

Here, we propose a general protocol to perform quantum reinforcement learning with

quantum technologies. We understand general in the sense that it goes beyond the context of

qubits for embedding information in agent or environment. In this sense, and at variance with

a previous result [23], we extend the realm of the quantum reinforcement learning protocol to

multi-qubit, multi-level, and open quantum systems, therefore permitting a wider set of sce-

narios. Our protocol considers a quantum system (the agent), which interacts with an external

quantum system (its environment) via an auxiliary quantum system (a register). The aim of

our quantum reinforcement learning protocol is for the agent to acquire information from its

environment and adapt to it, via a rewarding mechanism. In this fully quantum scenario the

meaning of the learning process is the establishment of quantum correlations among the par-

ties [21]. In our specific case, the quantum agent aims at attaining maximum quantum state

overlap with the environment state, in the sense that local measurements on agent and envi-

ronment will produce the same outcomes or, equivalently, that the agent and environment

entangled final state is invariant under the exchange of these two subsystems. An interpreta-

tion of this outcome is that the agent can learn about the information embedded in the envi-

ronment state, which has been consequently modified from a separable to an entangled state

with the agent and registers. After this process we are in position of evaluating any figure of

merit with the outcome measurements. Optimizing this figure of merit should be associated to

a particular learning process probably requiring particular actions to be applied on the agent.

Another possible result is obtained by considering projective measurements in the register sys-

tems. Only after these projective measurements agent and environment will be decoupled
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from them and the protocol assures that the former are in a pure correlated state, without

needing to know any information about their initial states. We analyze the case where the reg-

ister subspace is larger than agent and environment subspaces. The inclusion of more elements

in the register subspace allows for delaying the application of the rewarding criterion to the

end of the quantum protocol. This fact will enable its implementation in a wider variety of

quantum platforms, besides superconducting circuits with coherent feedback. We also study

quantum reinforcement learning in the case where agent, environment and register are com-

posed of qudits. In this case, we obtain that the maximal learning fidelity is achieved in a fixed

number of steps in the qudit dimension, and this number scales polynomially with the number

of subsystems in the environment subspace. In addition, we analyse quantum reinforcement

learning in the situation where the environment is larger than the agent. We highlight two

results: the first of them is obtained when considering that the register has the same elements

than the environment. In this case, two rewarding criteria are needed to obtain maximal learn-

ing fidelity and the entanglement between the agent and a specific part of the environment is a

key resource. The other case is the situation where the register has more elements than the

environment. In this case, only one measurement is needed to obtain maximal learning fidelity

and the environment-agent entanglement is not a key resource. Based on this fact, the reward-

ing criterion is applied at the end of the protocol. Finally, we describe how our quantum learn-

ing protocols can be implemented in quantum platforms as trapped ions and superconducting

circuits.

Quantum reinforcement learning protocol with final measurement

Here, we introduce a protocol to perform quantum reinforcement learning, which introduces

significant novelties with respect to the existing literature. Unlike a previous quantum rein-

forcement learning result [23], the protocol described here needs one measurement at the end

of the procedure and no feedback, allowing for its implementation in a variety of quantum

platforms including ions and photons. The improvement relies on adding more registers than

before [23] and making them interact conditionally with each other. The inclusion of ancillary

systems has proven to be useful in several implementations of quantum information, because

measurements on the ancillary system allow one in principle to obtain information about the

main system without destroying it. Moreover, the measurement associated with the rewarding

criterion is performed at the end of the protocol. This opens the possibility to implement quan-

tum reinforcement learning protocols in architectures for which implementing coherent feed-

back may be a challenging problem.

The quantum reinforcement learning protocol described here works in the following way.

We firstly consider an agent and environment, composed of one qubit each, and two register

qubits, see Fig 1. The first step is to encode the environment information in the register states

(usually this kind of operation in the context of classical reinforcement learning is called the

action). Subsequently, the internal states of the registers interact conditionally with the agent

(usually this kind of operation in classical reinforcement learning is called the percept). Finally,

an agent-register interaction changes the agent state (partial rewarding mechanism). At this

stage the rewarding criterion is satisfied, in the form of a correlated agent-environment state,

in the sense that local measurements on agent and environment will produce the same out-

comes. On the other hand, the agent-environment system is also entangled with the two regis-

ters, and in order to attain a correlated pure state of agent and environment, a single, final

measurement may be performed on the two register states. This will produce an agent-envi-

ronment state maximizing the learning fidelity defined as FAE ¼ jhcAj�Eij, where |ψAi is the

agent state and |fEi is the environment state, both after the protocol.
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To perform our quantum reinforcement learning protocol we consider that initially agent

and environment are in arbitrary single-qubit pure states, whereas the register states are in

their ground state, namely

fjAi ¼ a0
Aj0iA þ a1

Aj1iA; jEi ¼ a0
Ej0iE þ a1

Ej1iE; jRi ¼ j0i1j0i2g ð1Þ

jCi0 ¼ jAijEijRi: ð2Þ

The first step in the protocol is to extract information from the environment, updating the

information in the registers conditionally to the environment state. This process is done by

applying a pair of CNOT gates in the environment-register subspace. Here, the first system is

the control and the second the target,

jCi1 ¼ UCNOT
ðE;R2Þ

UCNOT
ðE;R1Þ
jCi0; ð3Þ

jCi1 ¼ ða0
Aj0iA þ a1

Aj1iAÞða
0
Ej0iEj0i1j0i2 þ a1

Ej1iEj1i1j1i2Þ: ð4Þ

Then, the information encoded on the registers is updated conditional on the agent state. As

the register subspace is larger than the agent subspace, we will choose which part of the register

subspace will the agent update. Without loss of generality, let us assume that the register R1

Fig 1. Proposed protocol to perform quantum reinforcement learning with final measurement. We consider a set composed of four qubits, corresponding to agent

A, environment E, and registers R1 and R2. The considered interactions agent-register, register-register and environment-register consist of CNOT gates. The

measurement in the register subspace is denoted by the rightmost box.

https://doi.org/10.1371/journal.pone.0200455.g001
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will be updated. The upgrade of agent subspace is performed by a CNOT gate acting in the A −
R1 subspace, where the agent state is the control and the register is the target,

jCi
2
¼ UCNOT

ðA;R1Þ
jCi

1
;

jCi2 ¼ ða0
Aa0

Ej0iAj0iEj0i1j0i2 þ a0
Aa1

Ej0iAj1iEj1i1j1i2 þ a1
Aa0

Ej1iAj0iEj1i1j0i2

þa1
Aa1

Ej1iAj1iEj0i1j1i2Þ:

ð5Þ

Subsequently, the register R2 is also updated with respect to the R1 state. This is accomplished

by applying a CNOT gate in the register subspace, where R1 acts as control and R2 as target,

jCi
3
¼ UCNOT

ðR1 ;R2Þ
jCi

2
;

jCi3 ¼ ða0
Aa0

Ej0iAj0iEj0i1j0i2 þ a0
Aa1

Ej0iAj1iEj1i1j0i2 þ a1
Aa0

Ej1iAj0iEj1i1j1i2

þa1
Aa1

Ej1iAj1iEj0i1j1i2Þ:

ð6Þ

Followingly, we update the agent state according to the information encoded in the register R1.

This is done by applying a CNOT gate in the R1 − A subspace, where R1 is the control and A is

the target,

jCi4 ¼ UCNOT
ðR1 ;AÞ
jCi3;

jCi
4
¼ ða0

Aa0
Ej0iAj0iEj0i1j0i2 þ a0

Aa1
Ej1iAj1iEj1i1j0i2 þ a1

Aa0
Ej0iAj0iEj1i1j1i2

þa1
Aa1

Ej1iAj1iEj0i1j1i2Þ:

ð7Þ

We point out that, in the previous state, agent and environment are already maximally corre-

lated, in the sense of having the same outcomes with respect to local measurements performed

on either of them, or, equivalently, the state is invariant under particle exchange with respect

to the agent-environment subsystem. We also remark that this state is general, valid for any

initial agent and environment states. The fact that agent and environment get entangled with

the two registers allows one to distinguish between identical agent-environment components

that originate from different initial states, namely, to distinguish between states arising from

a0
Aa0

E or a1
Aa0

E, as well as from a0
Aa1

E or a1
Aa1

E.

Finally, by performing a projective measurement on the register subspace, the rewarding

criteron is satisfied. It is easy to show that, independently of the measurement outcome, the

learning fidelity FAE ¼ jhcAj�Eij is maximal, given that agent and environment states end up

being in the same state, either |0i or |1i. In this case only one iteration of the protocol is suffi-

cient in order that the agent adapts to the environment. Moreover, throughout the protocol,

measurements on agent and/or environment are not required, which may allow its implemen-

tation in a variety of quantum platforms as trapped ions, superconducting circuits, and quan-

tum photonics.

In our protocol, we do not need coherent feedback given that the registers entangle with

agent and environment and as a result produce the desired agent-environment state that is

invariant under permutation. It is true that the entanglement with the registers produces a

mixed state in case the register states are discarded, but this is not a drawback in our protocol.

Indeed, what our protocol does is, for arbitrary initial agent and environment states, which

need not be known, to give a constructive way to produce a final agent-environment state per-

fectly correlated, in the sense of invariant under permutations in agent-environment subspace.

This state is in general entangled, namely, quantum, and we do not need to perform any mea-

surement on agent and environment during the protocol, namely, it can equally well work

with photons, ions, and superconducting circuits, among others. After the production of the

agent-environment-register entangled state, the registers are entangled with agent and
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environment, but this does not prevent us from measuring the registers at a certain desired

time, and decoupling agent and environment from them. This way, we will not have measured

agent and environment at any time of the protocol, and we can assure that they are perfectly

correlated irrespective of their initial states, and without having any prior information about

them. This may be useful, e.g., for distributing private keys in quantum cryptography for arbi-

trary, unknown, initial states, without the need to initialize agent and register in reference

states.

Quantum reinforcement learning for multiqubit systems with final

measurement

In the previous section, we have showed that by considering more than just one register the

rewarding criterion in the quantum reinforcement learning algorithm can be done at the end

of our protocol. The same results can be obtained when we consider more complex configura-

tions. Indeed, by assuming that agent and register are composed of two qubits each, and four

qubits act as registers, we show that the rewarding criterion can also be applied at the end of

the quantum protocol. Let us illustrate this fact with an analysis for multiqubit agent, environ-

ment, and register states,

jAi ¼ a00
A j00iA þ a01

A j01iA þ a10
A j10iA þ a11

A j11iA; ð8Þ

jEi ¼ a00
E j00iE þ a01

E j01iE þ a10
E j10iE þ a11

E j11iE; ð9Þ

jRi ¼ j0i
1
j0i

2
j0i

3
j0i

4
; ð10Þ

jCi
0
¼ jAijEijRi: ð11Þ

Following the same procedure described previously, the protocol consists mainly in three

types of interaction, as shown in Fig 2. Firstly, we update the registers conditionally to the envi-

ronment states. More specifically, we consider an interaction between the environment qubits

E1 and E2 with the registers R1 and R2, respectively. In this description, the environment acts as

control and the registers act as targets in the CNOT gates,

jCi
1
¼ UCNOT

ðE1 ;R1Þ
UCNOT
ðE2;R2Þ

; jCi
0
;

jCi1 ¼ jAiða00
E j00iEj0i1j0i2j0i3j0i4 þ a01

E j01iEj0i1j1i2j0i3j0i4

þa10
E j10iEj1i1j0i2j0i3j0i4 þ a11

E j11iEj1i1j1i2j0i3j0i4Þ:

ð12Þ

Thereafter, we update similarly the remaining registers, that is, we apply a CNOT gate between

the environment qubits E1 and E2 and the register qubits R3 and R4, respectively, obtaining

jCi2 ¼ UCNOT
ðE1 ;R3Þ

UCNOT
ðE2;R4Þ
jCi1;

jCi2 ¼ jAiða00
E j00iEj0i1j0i2j0i3j0i4 þ a01

E j01iEj0i1j1i2j0i3j1i4

þa10
E j10iEj1i1j0i2j1i3j0i4 þ a11

E j11iEj1i1j1i2j1i3j1i4Þ:

ð13Þ

Next step consists in updating a part of the register subspace conditionally to the agent state.

Multiqubit and multilevel quantum reinforcement learning with quantum technologies

PLOS ONE | https://doi.org/10.1371/journal.pone.0200455 July 19, 2018 6 / 25

https://doi.org/10.1371/journal.pone.0200455


Thus, the registers R1 and R2 will be updated via A1 and A2, respectively,

jCi3 ¼ UCNOT
ðA1 ;R1Þ

UCNOT
ðA2 ;R2Þ

jCi2;

jCi3 ¼ a00
A a00

E j00iAj00iEj0i1j0i2j0i3j0i4 þ a00
A a01

E j00iAj01iEj0i1j1i2j0i3j1i4

þa00
A a10

E j00iAj10iEj1i1j0i2j1i3j0i4 þ a00
A a11

E j00iAj11iEj1i1j1i2j1i3j1i4

þ a01
A a00

E j01iAj00iEj0i1j1i2j0i3j0i4 þ a01
A a01

E j01iAj01iEj0i1j0i2j0i3j1i4

þa01
A a10

E j01iAj10iEj1i1j1i2j1i3j0i4 þ a01
A a11

E j01iAj11iEj1i1j0i2j1i3j1i4

þa10
A a00

E j10iAj00iEj1i1j0i2j0i3j0i4 þ a10
A a01

E j10iAj01iEj1i1j1i2j0i3j1i4

þa10
A a10

E j10iAj10iEj0i1j0i2j1i3j0i4 þ a10
A a11

E j10iAj11iEj0i1j1i2j1i3j1i4

þa11
A a00

E j11iAj00iEj1i1j1i2j0i3j0i4 þ a11
A a01

E j11iAj01iEj1i1j0i2j0i3j1i4

þa11
A a10

E j11iAj10iEj0i1j1i2j1i3j0i4 þ a11
A a11

E j11iAj11iEj0i1j0i2j1i3j1i4:

ð14Þ

Fig 2. Schematic representation of quantum reinforcement learning protocol for multiqubit systems. Agent, environment and registers are denoted as A, E and R1,

R2, R3 and R4, respectively. The measurement in the register subspace is denoted by the rightmost box.

https://doi.org/10.1371/journal.pone.0200455.g002
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Afterwards, to obtain orthogonal outcomes in the register subspace we perform a pair of

CNOT gates in this subspace. The interaction will be between the registers that interact with a

common environment, namely, register R1 interacts with R3 because both have interacted with

E1. Similarly for R2 and R4, which have interacted with E2. In this case, R1(R2) is the control

and R3(R4) is the target.

jCi4 ¼ UCNOT
ðR1 ;R3Þ

UCNOT
ðR2 ;R4Þ
jCi3;

jCi
4
¼ a00

A a00
E j00iAj00iEj0i1j0i2j0i3j0i4 þ a00

A a01
E j00iAj01iEj0i1j1i2j0i3j0i4

þa00
A a10

E j00iAj10iEj1i1j0i2j0i3j0i4 þ a00
A a11

E j00iAj11iEj1i1j1i2j0i3j0i4

þa01
A a00

E j01iAj00iEj0i1j1i2j0i3j1i4 þ a01
A a01

E j01iAj01iEj0i1j0i2j0i3j1i4

þa01
A a10

E j01iAj10iEj1i1j1i2j0i3j1i4 þ a01
A a11

E j01iAj11iEj1i1j0i2j0i3j1i4

þa10
A a00

E j10iAj00iEj1i1j0i2j1i3j0i4 þ a10
A a01

E j10iAj01iEj1i1j1i2j1i3j0i4

þa10
A a10

E j10iAj10iEj0i1j0i2j1i3j0i4 þ a10
A a11

E j10iAj11iEj0i1j1i2j1i3j0i4

þa11
A a00

E j11iAj00iEj1i1j1i2j1i3j1i4 þ a11
A a01

E j11iAj01iEj1i1j0i2j1i3j1i4

þa11
A a10

E j11iAj10iEj0i1j1i2j1i3j1i4 þ a11
A a11

E j11iAj11iEj0i1j0i2j1i3j1i4:

ð15Þ

Finally, we update the agent considering the states of the register in order that the rewarding

criterion is satisfied. This is done by applying two CNOT gates in the agent-register subspace,

where A1 is controlled by R1 and A2 is controlled by R2,

jCi
5
¼ UCNOT

ðR1 ;A1Þ
UCNOT
ðR2 ;A2Þ

jCi
4
;

jCi5 ¼ a00
A a00

E j00iAj00iEj0i1j0i2j0i3j0i4 þ a00
A a01

E j01iAj01iEj0i1j1i2j0i3j0i4

þa00
A a10

E j10iAj10iEj1i1j0i2j0i3j0i4 þ a00
A a11

E j11iAj11iEj1i1j1i2j0i3j0i4

þa01
A a00

E j00iAj00iEj0i1j1i2j0i3j1i4 þ a01
A a01

E j01iAj01iEj0i1j0i2j0i3j1i4

þa01
A a10

E j10iAj10iEj1i1j1i2j0i3j1i4 þ a01
A a11

E j11iAj11iEj1i1j0i2j0i3j1i4

þa10
A a00

E j00iAj00iEj1i1j0i2j1i3j0i4 þ a10
A a01

E j01iAj01iEj1i1j1i2j1i3j0i4

þa10
A a10

E j10iAj10iEj0i1j0i2j1i3j0i4 þ a10
A a11

E j11iAj11iEj0i1j1i2j1i3j0i4

þa11
A a00

E j00iAj00iEj1i1j1i2j1i3j1i4 þ a11
A a01

E j01iAj01iEj1i1j0i2j1i3j1i4

þa11
A a10

E j10iAj10iEj0i1j1i2j1i3j1i4 þ a11
A a11

E j11iAj11iEj0i1j0i2j1i3j1i4:

ð16Þ

From the latter Eq (16), it is straightforward to see that independently of the measurement out-

comes the learning fidelity is maximal. Moreover, as in the previous case, one iteration of the

quantum reinforcement protocol is needed to obtain maximal learning fidelity,

FAE ¼ jhcAj�Eij.

Quantum reinforcement learning for qudit systems

So far, we have studied quantum reinforcement learning processes only for two-level systems

or in pairs of them. However, there are several quantum systems which cannot be described in

terms of a two-level system. For instance, quantum harmonic oscillators, electronic energy lev-

els in an ion, and superconducting artificial atoms such as transmons [47], where for some

regimes of Josephson energy they must be considered as a three-level system. In this context, it

is interesting to extend the quantum reinforcement learning protocol developed here for cases

where multilevel systems compound the agent, environment, and register.

To perform the previous task, we first need to define a set of logic operations that we will

perform on our system. In the qubit case, the main logical operation applied is the CNOT gate,

Multiqubit and multilevel quantum reinforcement learning with quantum technologies
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which considers a conditional interaction between two qubits, where one acts as a control

while the other acts as a target. The control qubit remains unchanged whereas the target qubit

output is modified by the addition modulo 2. Then, it is wise to assume that the set of logic

operations between multilevel systems could be defined in terms of an addition modulo D,

where D stands for the dimension of one subsystem (agent, environment or register sub-

spaces), according to

Ujii1jji2 ¼ jii1ji� ji2: ð17Þ

Here, i� j stands for the addition modulo D. This gate is usually known as XOR gate [48]. For

two-dimensional systems, this gate corresponds to the CNOT gate. Nevertheless, for higher

dimensional systems this definition presents several disadvantages. For instance, the XOR gate

defined as in Eq (17) is unitary but not Hermitian for D > 2. Moreover, this logical operation

is no longer its own inverse. To avoid these problems, in the literature [48] the generalized

XOR gate (GXOR) has been defined as

GXOR1;2jii1jji2 ¼ jii1ji	 ji
2
; ð18Þ

where the operation	 denotes the difference i − j modulo D. The GXOR gate of Eq (18) does

not present the disadvantages pointed out in the definition of Eq (17). That is, the GXOR gate

is Hermitian, unitary and i	 j = 0 only when i = j.
Considering our proposed protocol for single-qubit cases, we show that when we take into

account multilevel systems, the number of interactions to obtain maximal learning fidelity is

fixed and depends only on the number of agent subsystems in the protocol. Let us illustrate

this with an example of multilevel agent-environment-register state,

jC0i ¼
XN� 1

n¼0

XN� 1

m¼0

an
Aam

E jniAjmiEj0i1j0i2: ð19Þ

The first step in our protocol is identical to the equivalent one in the single-qubit case. We

update the register conditionally on the environment state, that is, we transfer information of

the environment and encode it in the register system. This is done by applying a pair of GXOR

gates acting in the environment-register subsystem. In this case, the environment interacts

with both registers R1 and R2. The environment acts as control and both registers are targets,

jC1i ¼ UGXOR
ðE;R1Þ
jC0i;

jC1i ¼
XN� 1

n¼0

XN� 1

m¼0

an
Aam

E jniAjmiEjmi1j0i2:
ð20Þ

jC2i ¼ UGXOR
ðE;R2Þ
jC1i;

jC2i ¼
XN� 1

n¼0

XN� 1

m¼0

an
Aam

E jniAjmiEjmi1jmi2:
ð21Þ

Once the information has been transferred to the register, we update the register R1 based

on the agent state. That is, we perform a GXOR gate in the subspace composed of agent and

register. Here, the agent act as a control and the register R1 is the target,

jC3i ¼ UGXOR
ðA;R1Þ
jC2i;

jC3i ¼
XN� 1

n¼0

XN� 1

m¼0

an
Aam

E jniAjmiEjn	mi
1
jmi

2
:

ð22Þ
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Orthogonal outcome measurements in the register subspace are provided by interactions

between the registers in this subspace. Thus, we apply a GXOR gate in the register subspace,

where R1 is the control and R2 is the target,

jC4i ¼ UGXOR
ðR1 ;R2Þ
jC3i;

jC4i ¼
XN� 1

n¼0

XN� 1

m¼0

an
Aam

E jniAjmiEjn	mi1jðn	mÞ 	mi2:
ð23Þ

Subsequently, the agent state is updated conditionally to the information encoded in the state

of the register R1. The GXOR gate is applied in the register-agent subspace. In this case, R1 is

the control and the agent is the target,

jC5i ¼ UGXOR
ðR1 ;AÞ
jC4i;

jC5i ¼
XN� 1

n¼0

XN� 1

m¼0

an
Aam

E j0	miAjmiEjn	mi
1
jn	 2mi

2
:

ð24Þ

For the case where the multi-level system contains D ¼ 2, we recover the result discussed pre-

viously because of 0	m = m for that dimension. On the other hand, we are interested in sys-

tems with more energy levels, such that we need to adapt the protocol to obtain maximal

learning fidelity for a fixed number of steps. In this case, we will update the agent subsystem by

an iterative interaction with registers R1 and R2 as shown in Fig 3. Here, the agent always acts

as target, while the registers are the controls. Therefore, we apply a GXOR gate between the

register R2 and the agent,

jC6i ¼ UGXOR
ðR2 ;AÞ
jC5i;

jC6i ¼
XN� 1

n¼0

XN� 1

m¼0

an
Aam

E jn	miAjmiEjn	mi1jn	 2mi2:
ð25Þ

Now, by applying a GXOR gate between the register R1 and the agent we obtain,

jC7i ¼ UGXOR
ðR1 ;AÞ
jC6i;

jC7i ¼
XN� 1

n¼0

XN� 1

m¼0

an
Aam

E j0iAjmiEjn	mi1jn	 2mi2:
ð26Þ

We perform subsequently a GXOR gate in the subspace composed of R2 and agent A,

jC8i ¼ UGXOR
ðR2;AÞ
jC7i;

jC8i ¼
XN� 1

n¼0

XN� 1

m¼0

an
Aam

E jn	 2miAjmiEjn	mi
1
jn	 2mi

2
:

ð27Þ

Finally, applying a GXOR gate on the register-agent subspace we obtain the desired result. By

considering a fixed number of interactions between the set of agent, environment and register,

the learning fidelity becomes maximal independently of the outcome measurement on the reg-

ister subspace, which can again be carried out at the end of the protocol,

jC9i ¼ UGXOR
ðR1 ;AÞ
jC8i;

jC9i ¼
XN� 1

n¼0

XN� 1

m¼0

an
Aam

E jmiAjmiEjn	mi
1
jn	 2mi

2
:

ð28Þ

Thus, in a machine learning protocol where the learning units are composed by multilevel
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systems (see Fig 3), the number of logical operations required to obtain maximal learning

fidelity does not depend on the system dimension.

Example

Here, we exemplify how our reinforcement learning protocol works in qudit systems. We con-

sider, without loss of generality, the case for dimension D ¼ 4. In this case, the agent-environ-

ment-register state has the following form,

jAi ¼ a0
Aj0iA þ a1

Aj1iA þ a2
Aj2iA þ a3

Aj3iA; ð29Þ

jEi ¼ a0
Ej0iE þ a1

Ej1iE þ a2
Ej2iE þ a3

Ej3iE ð30Þ

jRi ¼ j0i
1
j0i

2 ð31Þ

jCi0 ¼ jAijEijRi: ð32Þ

As mentioned previously, the considered quantum gate is a GXOR gate with subtraction mod-

ulo 4. The first step is to update the register according to the environment information,

jCi1 ¼ UGXOR
ðE;R1Þ
jCi0;

jCi
1
¼ ða0

Aj0iA þ a1
Aj1iA þ a2

Aj2iA þ a3
Aj3iAÞ

ða0
Ej0iEj0i1j0i2 þ a1

Ej1iEj1i1j0i2 þ a2
Ej2iEj2i1j0i2 þ a3

Ej3iEj3i1j0i2Þ;

ð33Þ

jCi2 ¼ UGXOR
ðE;R2Þ
jCi1;

jCi
2
¼ ða0

Aj0iA þ a1
Aj1iA þ a2

Aj2iA þ a3
Aj3iAÞ

ða0
Ej0iEj0i1j0i2 þ a1

Ej1iEj1i1j1i2 þ a2
Ej2iEj2i1j2i2 þ a3

Ej3iEj3i1j3i2Þ:

ð34Þ

Fig 3. Quantum reinforcement learning protocol for qudits. The systems involved are denoted as agent A, environment E and registers R1, R2. In this case, the logical

quantum gates which are applied in the learning protocol correspond to GXOR gates. The measurement process in the register subspace is denoted with the rightmost

box.

https://doi.org/10.1371/journal.pone.0200455.g003
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Subsequently, the register is updated conditional to the agent state,

jCi
3
¼ UGXOR

ðA;R1Þ
jCi

2
;

jCi3 ¼ a0
Aa0

Ej0iAj0iEj0i1j0i2 þ a0
Aa1

Ej0iAj1iEj3i1j1i2 þ a0
Aa2

Ej0iAj2iEj2i1j2i2

þa0
Aa3

Ej0iAj3iEj1i1j3i2 þ a1
Aa0

Ej1iAj0iEj1i1j0i2 þ a1
Aa1

Ej1iAj1iEj0i1j1i2

þa1
Aa2

Ej1iAj2iEj3i1j2i2 þ a1
Aa3

Ej1iAj3iEj2i1j3i2 þ a2
Aa0

Ej2iAj0iEj2i1j0i2

þa2
Aa1

Ej2iAj1iEj1i1j1i2 þ a2
Aa2

Ej2iAj2iEj0i1j2i2 þ a2
Aa3

Ej2iAj3iEj3i1j3i2

þa3
Aa0

Ej3iAj0iEj3i1j0i2 þ a3
Aa1

Ej3iAj1iEj2i1j1i2 þ a3
Aa2

Ej3iAj2iEj1i1j2i2

þa3
Aa3

Ej3iAj3iEj0i1j3i2:

ð35Þ

Then, to obtain orthogonal outcome measurements in the register basis, we perform an inter-

action in the register subspace,

jCi4 ¼ UGXOR
ðR1 ;R2Þ
jCi3;

jCi
4
¼ a0

Aa0
Ej0iAj0iEj0i1j0i2 þ a0

Aa1
Ej0iAj1iEj3i1j2i2 þ a0

Aa2
Ej0iAj2iEj2i1j0i2

þa0
Aa3

Ej0iAj3iEj1i1j2i2 þ a1
Aa0

Ej1iAj0iEj1i1j1i2 þ a1
Aa1

Ej1iAj1iEj0i1j3i2

þa1
Aa2

Ej1iAj2iEj3i1j1i2 þ a1
Aa3

Ej1iAj3iEj2i1j3i2 þ a2
Aa0

Ej2iAj0iEj2i1j2i2

þa2
Aa1

Ej2iAj1iEj1i1j0i2 þ a2
Aa2

Ej2iAj2iEj0i1j2i2 þ a2
Aa3

Ej2iAj3iEj3i1j0i2

þa3
Aa0

Ej3iAj0iEj3i1j3i2 þ a3
Aa1

Ej3iAj1iEj2i1j1i2 þ a3
Aa2

Ej3iAj2iEj1i1j3i2

þa3
Aa3

Ej3iAj3iEj0i1j1i2:

ð36Þ

Now, we need to apply iterative interactions in the register-agent subspace to update the agent

in each step until we get maximal learning fidelity with respect to the environment. We start

by performing a GXOR gate between the register R1 and the agent,

jCi
5
¼ UGXOR

ðR1 ;AÞ
jCi

4
;

jCi5 ¼ a0
Aa0

Ej0iAj0iEj0i1j0i2 þ a0
Aa1

Ej3iAj1iEj3i1j2i2 þ a0
Aa2

Ej2iAj2iEj2i1j0i2

þa0
Aa3

Ej1iAj3iEj1i1j2i2 þ a1
Aa0

Ej0iAj0iEj1i1j1i2 þ a1
Aa1

Ej3iAj1iEj0i1j3i2

þa1
Aa2

Ej2iAj2iEj3i1j1i2 þ a1
Aa3

Ej1iAj3iEj2i1j3i2 þ a2
Aa0

Ej0iAj0iEj2i1j2i2

þa2
Aa1

Ej3iAj1iEj1i1j0i2 þ a2
Aa2

Ej2iAj2iEj0i1j2i2 þ a2
Aa3

Ej1iAj3iEj3i1j0i2

þa3
Aa0

Ej0iAj0iEj3i1j3i2 þ a3
Aa1

Ej3iAj1iEj2i1j1i2 þ a3
Aa2

Ej2iAj2iEj1i1j3i2

þa3
Aa3

Ej1iAj3iEj0i1j1i2:

ð37Þ

Hereafter, we apply the GXOR gate in the R2-agent subspace,

jCi6 ¼ UGXOR
ðR2 ;AÞ
jCi5;

jCi
6
¼ a0

Aa0
Ej0iAj0iEj0i1j0i2 þ a0

Aa1
Ej3iAj1iEj3i1j2i2 þ a0

Aa2
Ej2iAj2iEj2i1j0i2

þa0
Aa3

Ej1iAj3iEj1i1j2i2 þ a1
Aa0

Ej1iAj0iEj1i1j1i2 þ a1
Aa1

Ej0iAj1iEj0i1j3i2

þa1
Aa2

Ej3iAj2iEj3i1j1i2 þ a1
Aa3

Ej2iAj3iEj2i1j3i2 þ a2
Aa0

Ej2iAj0iEj2i1j2i2

þa2
Aa1

Ej1iAj1iEj1i1j0i2 þ a2
Aa2

Ej0iAj2iEj0i1j2i2 þ a2
Aa3

Ej3iAj3iEj3i1j0i2

þa3
Aa0

Ej3iAj0iEj3i1j3i2 þ a3
Aa1

Ej2iAj1iEj2i1j1i2 þ a3
Aa2

Ej1iAj2iEj1i1j3i2

þa3
Aa3

Ej0iAj3iEj0i1j1i2:

ð38Þ

Multiqubit and multilevel quantum reinforcement learning with quantum technologies

PLOS ONE | https://doi.org/10.1371/journal.pone.0200455 July 19, 2018 12 / 25

https://doi.org/10.1371/journal.pone.0200455


Afterwards, we perform a GXOR gate between R1 and A,

jCi7 ¼ UGXOR
ðR1 ;AÞ
jCi6;

jCi
7
¼ a0

Aa0
Ej0iAj0iEj0i1j0i2 þ a0

Aa1
Ej0iAj1iEj3i1j2i2 þ a0

Aa2
Ej0iAj2iEj2i1j0i2

þa0
Aa3

Ej0iAj3iEj1i1j2i2 þ a1
Aa0

Ej0iAj0iEj1i1j1i2 þ a1
Aa1

Ej0iAj1iEj0i1j3i2

þa1
Aa2

Ej0iAj2iEj3i1j1i2 þ a1
Aa3

Ej0iAj3iEj2i1j3i2 þ a2
Aa0

Ej0iAj0iEj2i1j2i2

þa2
Aa1

Ej0iAj1iEj1i1j0i2 þ a2
Aa2

Ej0iAj2iEj0i1j2i2 þ a2
Aa3

Ej0iAj3iEj3i1j0i2

þa3
Aa0

Ej0iAj0iEj3i1j3i2 þ a3
Aa1

Ej0iAj1iEj2i1j1i2 þ a3
Aa2

Ej0iAj2iEj1i1j3i2

þa3
Aa3

Ej0iAj3iEj0i1j1i2:

ð39Þ

Subsequently, an interaction in the R2-agent subspace is performed,

jCi8 ¼ UGXOR
ðR2 ;AÞ
jCi7;

jCi
8
¼ a0

Aa0
Ej0iAj0iEj0i1j0i2 þ a0

Aa1
Ej2iAj1iEj3i1j2i2 þ a0

Aa2
Ej0iAj2iEj2i1j0i2

þa0
Aa3

Ej2iAj3iEj1i1j2i2 þ a1
Aa0

Ej1iAj0iEj1i1j1i2 þ a1
Aa1

Ej3iAj1iEj0i1j3i2

þa1
Aa2

Ej1iAj2iEj3i1j1i2 þ a1
Aa3

Ej3iAj3iEj2i1j3i2 þ a2
Aa0

Ej2iAj0iEj2i1j2i2

þa2
Aa1

Ej0iAj1iEj1i1j0i2 þ a2
Aa2

Ej2iAj2iEj0i1j2i2 þ a2
Aa3

Ej0iAj3iEj3i1j0i2

þa3
Aa0

Ej3iAj0iEj3i1j3i2 þ a3
Aa1

Ej1iAj1iEj2i1j1i2 þ a3
Aa2

Ej3iAj2iEj1i1j3i2

þa3
Aa3

Ej1iAj3iEj0i1j1i2:

ð40Þ

Finally, we apply a GXOR gate between R1 and the agent,

jCi9 ¼ UGXOR
ðR1 ;AÞ
jCi8;

jCi
9
¼ a0

Aa0
Ej0iAj0iEj0i1j0i2 þ a0

Aa1
Ej1iAj1iEj3i1j2i2 þ a0

Aa2
Ej2iAj2iEj2i1j0i2

þa0
Aa3

Ej3iAj3iEj1i1j2i2 þ a1
Aa0

Ej0iAj0iEj1i1j1i2 þ a1
Aa1

Ej1iAj1iEj0i1j3i2

þa1
Aa2

Ej2iAj2iEj3i1j1i2 þ a1
Aa3

Ej3iAj3iEj2i1j3i2 þ a2
Aa0

Ej0iAj0iEj2i1j2i2

þa2
Aa1

Ej1iAj1iEj1i1j0i2 þ a2
Aa2

Ej2iAj2iEj0i1j2i2 þ a2
Aa3

Ej3iAj3iEj3i1j0i2

þa3
Aa0

Ej0iAj0iEj3i1j3i2 þ a3
Aa1

Ej1iAj1iEj2i1j1i2 þ a3
Aa2

Ej2iAj2iEj1i1j3i2

þa3
Aa3

Ej3iAj3iEj0i1j1i2:

ð41Þ

As we can see, based in the quantum protocol described previously (see Fig 3), we have shown

that for a fixed number of interactions, we obtain maximal learning fidelity even though the

system has an arbitrary dimension.

Quantum reinforcement learning in multiqudit systems

In the previous section, we proved that for an agent and environment composed of a multilevel

system each, the quantum reinforcement learning protocol entails maximal learning fidelity

for a fixed number of steps, irrespective of the dimension. Here, using this result, we also

prove that for more than one multilevel system in agent, environment, and register subspaces,

the number of steps is also fixed and scales with the number of individual subsystems that

compose both agent and environment subsystems. To be more specific, in the single-multilevel

case the needed total steps are nine. For two multilevel systems, we show that the number of

required steps are eighteen, and in general, 9n, with n being the number of multilevel subsys-

tems. The possible initial states of our protocol consist in arbitrary superpositions for both
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agent and environment states and the register states are in their ground state,

jC0i ¼
XN� 1

n;m¼0

XN� 1

p;q¼0

anm
A a

pq
E jniAjmiAjpiEjqiEj0i1j0i2j0i3j0i4: ð42Þ

The first step in the protocol consists in encoding the environment information in the register

states. This is done by applying a pair of GXOR gates. The gates are applied in the environ-

ment-register subspace, while the interaction in this case is the same as the one described pre-

viously. Namely, E1 controls R1 and E2 controls R2.

jC1i ¼ UGXOR
ðE2;R2Þ

UGXOR
ðE1 ;R1Þ
jC0i;

jC1i ¼
XN� 1

n;m¼0

XN� 1

p;q¼0

anm
A a

pq
E jniAjmiAjpiEjqiEjpi1jqi2j0i3j0i4:

ð43Þ

Similarly, in the second step we encode the environment information in the other two registers

(R3 and R4) through GXOR gates. Here, the control system is the environment while the tar-

gets are the registers.

jC2i ¼ UGXOR
ðE2 ;R4Þ

UGXOR
ðE1 ;R3Þ
jC1i;

jC2i ¼
XN� 1

n;m¼0

XN� 1

p;q¼0

anm
A a

pq
E jniAjmiAjpiEjqiEjpi1jqi2jpi3jqi4:

ð44Þ

Subsequently, a part of the register subspace is updated conditional on the agent information.

Therefore, we apply a pair of GXOR gates on the agent-register subspace. In this case, agents

A1 and A2 are controls and registers R1 and R2 targets.

jC3i ¼ UGXOR
ðA2 ;R2Þ

UGXOR
ðA1;R1Þ

jC2i;

jC3i ¼
XN� 1

n;m¼0

XN� 1

p;q¼0

anm
A a

pq
E jniAjmiAjpiEjqiEjn	 pi

1
jm	 qi

2
jpi

3
jqi

4
:

ð45Þ

Now, we update the register subspace considering interactions between register components

which have been acted upon with the same part of the environment. Namely, the register R3

will be updated with the control of R1 (Similarly with R4 being controlled with R2).

jC4i ¼ UGXOR
ðR2 ;R4Þ

UGXOR
ðR1 ;R3Þ
jC3i;

jC4i ¼
XN� 1

n;m¼0

XN� 1

p;q¼0

anm
A a

pq
E jniAjmiAjpiEjqiEjn	 pi

1
jm	 qi

2
jn	 2pi

3
jm	 2qi

4
:

ð46Þ

Subsequently, we need to apply successive interactions between agent states and register states

to obtain maximal learning fidelity. We show that applying the same interactions as for the sin-

gle multilevel case for the triplet formed by agent A1 with the environment parts R1 and R3

(similarly A2 with R2 and R4), the maximal learning fidelity is reached. It is straightforward to
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show that

jC9i ¼ UGXOR
ðR2 ;A2Þ

UGXOR
ðR1;A1Þ

UGXOR
ðR4 ;A2Þ

UGXOR
ðR3 ;A1Þ

�

UGXOR
ðR2 ;A2Þ

UGXOR
ðR1;A1Þ

UGXOR
ðR4 ;A2Þ

UGXOR
ðR3 ;A1Þ

UGXOR
ðR2 ;A2Þ

�

UGXOR
ðR1 ;A1Þ

jC4i;

jC9i ¼
XN� 1

n;m¼0

XN� 1

p;q¼0

anm
A a

pq
E jpiAjqiAjpiEjqiEjn	 pi

1
jm	 qi

2
jn	 2pi

3
jm	 2qi

4
:

ð47Þ

Summarizing, for the case studied in this section, we demonstrate that the number of opera-

tions required to obtain maximal learning fidelity does not depend on the learning unit

dimension and it is equal to eighteen operations, which correspond to the double of the

required steps in the single multiqubit case. It is straightforward to realize that the number of

needed operations to achieve maximal learning fidelity in a machine learning protocol com-

posed by n subsystems for agent and environment is equal to 9n. Namely, the number of oper-

ations scales polynomially, indeed linearly, with the number of subsystems.

Quantum reinforcement learning in larger environments

Up to now, the quantum reinforcement learning protocol described here always considers that

the agent and the environment have the same number of subsystems, as well as the same

dimension. In these cases, we have shown that by adding more system registers the quantum

protocol improves in the sense that only one iteration and one measurement is enough to

obtain maximal learning fidelity. Nevertheless, in more realistic scenarios, the agent must

adapt to larger or more complex surroundings. Here, we discuss the situation where the envi-

ronment has more subsystems than the agent, and therefore a larger dimension. As the envi-

ronment has more information than the agent, it is expect that not all available surrounding

information will be transferred to the agent. Indeed, we prove that by depending on the regis-

ter-environment interaction, the agent can encode the information from one specific part of

the environment. In this case, unlike the protocol previously discussed, we achieve maximal

learning fidelity after applying one measurement and a rewarding iteration (feedback).

The proposed quantum protocol is shown in Fig 4. Here, one two-level system forms the

agent, while register and environment are constituted each by two qubits. Each environment

qubit interacts with one qubit from the register, such that this interaction updates the registers

conditionally to the environment information. Then, one part of the register subspace is also

upgraded conditionally to the agent state. Subsequently, we perform a measurement on the

register subspace, such that depending on the measurement outcomes we apply a conditional

operation in the agent-register subspace until the agent adapts to a specific part of the environ-

ment. To illustrate this, let us introduce a possible agent-register-subspace state which has the

following form,

jAi ¼ a0
Aj0iA þ a1

Aj1iA ð48Þ

jEi ¼ a00
E j00iE þ a01

E j01iE þ a10
E j10iE þ a11

E j11iE ð49Þ

jRi ¼ j0i1j0i2; ð50Þ

jCi
0
¼ jAijEijRi: ð51Þ

The first step is to transfer quantum information from the environment onto the registers.
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This is done by applying a pair of CNOT gates in the environment-register subspaces,

jCi1 ¼ UCNOT
ðE;R2Þ

UCNOT
ðE;R1Þ
jCi0;

jCi
1
¼ ða0

Aj0iA þ a1
Aj1iAÞ

ða00
E j00iEj0i1j0i2 þ a01

E j01iEj0i1j1i2 þ a10
E j10iEj1i1j0i2 þ a11

E j11iEj1i1j1i2Þ:

ð52Þ

Subsequently, the register R1 is updated conditionally to the agent information. Therefore, a

CNOT gate is applied in the agent-register subspace, where the agent qubit is the control and

the register R1 is the target,

jCi2 ¼ UCNOT
ðA;R1Þ
jCi1;

jCi
2
¼ a0

Aa00
E j0iAj00iEj0i1j0i2 þ a0

Aa01
E j0iAj01iEj0i1j1i2

þa0
Aa10

E j0iAj10iEj1i1j0i2 þ a0
Aa11

E j0iAj11iEj1i1j1i2

þa1
Aa00

E j1iAj00iEj1i1j0i2 þ a1
Aa01

E j1iAj01iEj1i1j1i2

þa1
Aa10

E j1iAj10iEj0i1j0i2 þ a1
Aa11

E j1iAj11iEj0i1j1i2:

ð53Þ

Fig 4. Quantum reinforcement learning for larger environment systems. The systems involved are denoted as agent A, environment E and registers R1, R2, where E

contains now two qubits while A just one. The logical gates applied between the different subsystems are CNOT gates. In this case, to obtain maximal learning fidelity, it

is required to perform two separate measurements denoted by the blue boxes.

https://doi.org/10.1371/journal.pone.0200455.g004
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Afterwards, we perform a measurement on the register subspace. In this case, the wave func-

tion is projected into the four possible measurement outcomes,

M1 ¼ ða0
Aa00

E j0iAj00iE þ a1
Aa10

E j1iAj10iEÞj0i1j0i2

¼ ða0
Aa00

E j0iAj0iE1
þ a1

Aa10
E j1iAj1iE1

Þj0iE2
j0i1j0i2;

M2 ¼ ða0
Aa01

E j0iAj01iE þ a1
Aa11

E j1iAj11iEÞj0i1j1i2

¼ ða0
Aa01

E j0iAj0iE1
þ a1

Aa11
E j1iAj1iE1

Þj1iE2
j0i1j1i2;

M3 ¼ ða1
Aa00

E j1iAj00iE þ a0
Aa10

E j0iAj10iEÞj1i1j0i2

¼ ða1
Aa00

E j1iAj0iE1
þ a0

Aa10
E j0iAj1iE1

Þj0iE2
j1i1j0i2;

M4 ¼ ða0
Aa11

E j0iAj11iE þ a1
Aa01

E j1iAj01iEÞj1i1j1i2

¼ ða0
Aa11

E j0iAj1iE1
þ a1

Aa01
E j1iAj0iE1

Þj1iE2
j1i

1
j1i

2
:

ð54Þ

As we can see, the projective measurement on the register subspace produces that agent and

one part of the environment subspace (E1) is in an entangled state. At this stage, we can apply

the rewarding criterion which consists in performing a CNOT gate operation in the register-

agent subspace. The register qubit R1 is the control and the agent is the target,

M1a ¼ UCNOT
ðR1 ;AÞ

M1 ¼ ða
0
Aa00

E j0iAj0iE1
þ a1

Aa10
E j1iAj1iE1

Þj0iE2
j0i1j0i2;

M2a ¼ UCNOT
ðR1 ;AÞ

M2 ¼ ða
0
Aa01

E j0iAj0iE1
þ a1

Aa11
E j1iAj1iE1

Þj1iE2
j0i

1
j1i

2
;

M3a ¼ UCNOT
ðR1 ;AÞ

M3 ¼ ða
1
Aa00

E j0iAj0iE1
þ a0

Aa10
E j1iAj1iE1

Þj0iE2
j1i1j0i2;

M4a ¼ UCNOT
ðR1 ;AÞ

M4 ¼ ða
0
Aa11

E j1iAj1iE1
þ a1

Aa01
E j0iAj0iE1

Þj1iE2
j1i

1
j1i

2
:

ð55Þ

Finally, we perform a CNOT gate in the agent-register subspace to obtain orthogonal measure-

ment outcomes. The qubit agent is the control and the qubit register R1 is the target, according

to

M1b ¼ UCNOT
ðA;R1Þ

M1a ¼ a0
Aa00

E j0iAj00iEj0i1j0i2 þ a1
Aa10

E j1iAj10iEj1i1j0i2;

M2b ¼ UCNOT
ðA;R1Þ

M2a ¼ a0
Aa01

E j0iAj01iEj0i1j1i2 þ a1
Aa11

E j1iAj11iEj1i1j1i2;

M3b ¼ UCNOT
ðA;R1Þ

M3a ¼ a1
Aa00

E j0iAj00iEj1i1j0i2 þ a0
Aa10

E j1iAj10iEj0i1j0i2;

M4b ¼ UCNOT
ðA;R1Þ

M4a ¼ a1
Aa01

E j0iAj01iEj1i1j1i2 þ a0
Aa11

E j1iAj11iEj0i1j1i2:

ð56Þ

In this quantum reinforcement learning protocol, we perform interactions between the envi-

ronment and the register subspaces. Nevertheless, the agent is updated only regarding the

information encoded in register R1. Thus, the maximal learning fidelity is achieved with

respect to the first qubit of the environment.

Let us now consider another configuration similar to the one studied previously in this arti-

cle, where the register is formed by a larger number of subsystems than the environment.

Here, additionally, the environment we consider is larger than the agent. We prove that, for

this system configuration, maximal learning fidelity between the agent and one part of the

environment is achieved in one rewarding process. For this configuration, the maximal fidelity

does not depend on the entanglement present in the agent-environment subspace. The general
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agent-register-environment state is

jAi ¼ a0
Aj0iA þ a1

Aj1iA; ð57Þ

jEi ¼ ða0
Ej0iE1

þ a1
Ej1iE1

Þj0iE2
þ ðb

0

Ej0iE1
þ b

1

Ej1iE1
Þj1iE2

; ð58Þ

jRi ¼ j0i1j0i2j0i3j0i4; ð59Þ

jCi0 ¼ jAijEijRi: ð60Þ

The quantum protocol consists in updating the registers R1,2 conditionally to the environment

state E1,2,

jCi
1
¼ UCNOT

ðE2 ;R2Þ
UCNOT
ðE1 ;R1Þ
jCi

0
;

jCi1 ¼ ða0
Aj0iA þ a1

Aj1iAÞða
0
Ej0iE1

j0iE2
j0i1j0i2j0i3j0i4 þ a1

Ej1iE1
j0iE2
j1i1j0i2j0i3j0i4

þb
0

Ej0iE1
j1iE2
j0i1j1i2j0i3j0i4 þ b

1

Ej1iE1
j1iE2
j1i1j1i2j0i3j0i4Þ:

ð61Þ

After this, we also update the information of the registers R3,4 conditionally to the environment

state E1,2,

jCi2 ¼ UCNOT
ðE2 ;R4Þ

UCNOT
ðE1 ;R3Þ
jCi1;

jCi
2
¼ ða0

Aj0iA þ a1
Aj1iAÞða

0
Ej0iE1

j0iE2
j0i

1
j0i

2
j0i

3
j0i

4
þ a1

Ej1iE1
j0iE2
j1i

1
j0i

2
j1i

3
j0i

4

þb
0

Ej0iE1
j1iE2
j0i

1
j1i

2
j0i

3
j1i

4
þ b

1

Ej1iE1
j1iE2
j1i

1
j1i

2
j1i

3
j1i

4
Þ:

ð62Þ

Now, the register R1 is updated conditionally to the agent state,

jCi3 ¼ UCNOT
ðA;R1Þ
jCi2;

jCi
3
¼ a0

Aa0
Ej0iAj0iE1

j0iE2
j0i

1
j0i

2
j0i

3
j0i

4
þ a0

Aa1
Ej0iAj1iE1

j0iE2
j1i

1
j0i

2
j1i

3
j0i

4

þa0
Ab

0

Ej0iAj0iE1
j1iE2
j0i

1
j1i

2
j0i

3
j1i

4
þ a0

Ab
1

Ej0iAj1iE1
j1iE2
j1i

1
j1i

2
j1i

3
j1i

4

þa1
Aa0

Ej1iAj0iE1
j0iE2
j1i1j0i2j0i3j0i4 þ a1

Aa1
Ej1iAj1iE1

j0iE2
j0i1j0i2j1i3j0i4

þa1
Ab

0

Ej1iAj0iE1
j1iE2
j1i1j1i2j0i3j1i4 þ a1

Ab
1

Ej1iAj1iE1
j1iE2
j0i1j1i2j1i3j1i4:

ð63Þ

Then, the next step would consist in updating a part of the register subspace from the informa-

tion encoded in the other part. However, this step is not necessary because the number of

terms in Eq (63) is smaller than all the possible measurement outcomes in the register sub-

space. Thus, the register is always projected onto orthogonal measurement outcomes. On the

other hand, we update the agent state from the information encoding in the register R1. There-

fore, we perform a CNOT gate in the register-agent subspace, where the register R1 is the con-

trol and the agent is the target,

jCi
4
¼ UCNOT

ðR1 ;AÞ
jCi

3
;

jCi4 ¼ a0
Aa0

Ej0iAj0iE1
j0iE2
j0i1j0i2j0i3j0i4 þ a0

Aa1
Ej1iAj1iE1

j0iE2
j1i1j0i2j1i3j0i4

þa0
Ab

0

Ej0iAj0iE1
j1iE2
j0i1j1i2j0i3j1i4 þ a0

Ab
1

Ej1iAj1iE1
j1iE2
j1i1j1i2j1i3j1i4

þa1
Aa0

Ej0iAj0iE1
j0iE2
j1i

1
j0i

2
j0i

3
j0i

4
þ a1

Aa1
Ej1iAj1iE1

j0iE2
j0i

1
j0i

2
j1i

3
j0i

4

þa1
Ab

0

Ej0iAj0iE1
j1iE2
j1i1j1i2j0i3j1i4 þ a1

Ab
1

Ej1iAj1iE1
j1iE2
j0i1j1i2j1i3j1i4:

ð64Þ
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By measuring the register subspace, we obtain that agent and environment qubit E1 achieve

maximal fidelity.

Quantum reinforcement learning for mixed states

Let us consider now the situation where the environment evolves under a noisy mechanism

(for qubit states, noisy mechanisms can be depolarizing noise as well as amplitude damping).

In this case, the density matrix describing the environment state reads

r ¼
r00 r01

r�
01

r11

 !

: ð65Þ

We focus now our attention in the application of the quantum reinforcement learning proto-

col in this type of state. We will show that, by adding more registers, two main results will be

obtained. Firstly, even though the environment is in a mixed state, the learning fidelity will be

maximal for any measurement outcome in the register basis. Additionally, the measurement

outcomes provide relevant information about the coherences of the mixed state. To apply the

quantum protocol, we express the mixed state in term of its (non-unique) purification, such as

jCEþei ¼
ffiffiffiffiffiffi
r00

p
j0iE þ

r10
ffiffiffiffiffiffi
r00

p j1iE

" #

je1i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r11 �
jr10j

2

r00

s" #

j1iEje2i; ð66Þ

jcei ¼
r10
ffiffiffiffiffiffi
r00

p je1i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r11 �
jr10j

2

r00

s2

4

3

5je2i ! jCEþei ¼
ffiffiffiffiffiffi
r00

p
j0iEje1i þ

ffiffiffiffiffiffi
r11

p
j1iEj

�cei: ð67Þ

Here, j �cei is a normalized vector in the purification Hilbert space. As we can see, the coeffi-

cient of the quantum state written in its extended Hilbert space (environment + purification)

depends only on the diagonal terms of the mixed state. Moreover, to obtain additional infor-

mation about the mixed state, we need to perform unitary transformations on it in such a way

that the information related to the coherences is in the diagonal of the state after the transfor-

mation. To be more specific, we need to perform unitary transformations such that the mixed

state can be written as follows,

�r ! UyrUyy ¼
1

2

1þ ðr01 þ r�
01
Þ r11 � r00 þ ðr01 � r�

01
Þ

r11 � r00 � ðr01 � r�
01
Þ 1 � ðr01 þ r�

01
Þ

 !

; ð68Þ

~r ! UxrUyx ¼
1

2

1 � iðr01 � r�
01
Þ r01 þ r�

01
þ iðr11 � r00Þ

r01 þ r�
01
� iðr11 � r00Þ 1þ iðr01 � r�

01
Þ

 !

: ð69Þ

To carry out this task, we need to add three more registers, where each of them has the func-

tion to encode information of diagonal, real, and imaginary part of the coherence terms,

respectively. A possible state for the space composed of agent, mixed environment and register
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is given by

jAi ¼ a0
Aj0iA þ a1

Aj1iA; ð70Þ

jCEþei ¼
ffiffiffiffiffiffi
r00

p
j0iEje1i þ

ffiffiffiffiffiffi
r11

p
j1iEjcei ð71Þ

jRi ¼ j0i
1
j0i

2

1
ffiffiffi
3
p ðj1i

3
j0i

4
j0i

5
þ j0i

3
j1i

4
j0i

5
þ j0i

3
j0i

4
j1i

5
Þ ð72Þ

jCi
0
¼ jAijCEþeijRi: ð73Þ

The first step is to apply a unitary transformation, which is conditional to the state of the regis-

ter R3, R4 and R5. In case that the register state is |1i3|0i4|0i5, we apply the transformation

U1 ¼ IR3

 IR4


 IR5
. If the register state is in the state |0i3|1i4|0i5, we apply the transformation

U2 ¼ IR3

 Uy 
 IR5

. Finally, if the register state is in the state |0i3|0i4|1i5 the unitary transfor-

mation is given by U3 ¼ IR3

 IR4


 Ux. Hence, the state after this transformation is given by

unitary transformation in the environment state according to

jCi
1
¼ jAijcEþeij0i1j0i2j1i3j0i4j0i5 þ jAiUyjcEþeij0i1j0i2j0i3j1i4j0i5

þjAiUxjcEþeij0i1j0i2j0i3j0i4j1i5;

jC1i ¼
1
ffiffiffi
3
p ða0

Aj0iA þ a1

Aj1iAÞ½ð
ffiffiffiffiffiffi
r00

p
j0iEje1i þ

ffiffiffiffiffiffi
r11

p
j1iEjceiÞj0i1j0i2j1i3j0i4j0i5

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ Re ðr01Þ

r

j0iEje1i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� Re ðr01Þ

r

j1iEjcei

 !

j0i
1
j0i

2
j0i

3
j1i

4
j0i

5

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ Im ðr01Þ

r

j0iEje1i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� Im ðr01Þ

r

j1iEjcei

 !

j0i
1
j0i

2
j0i

3
j0i

4
j1i

5
�:

ð74Þ

Afterwards, we apply the quantum protocol as we did in the first section. Namely, we first

update the register conditionally to the information of the environment. Then, we update the

register R1 conditionally to the information of the agent. Subsequently, to obtain orthogonal

measurement outcomes we perform CNOT gates in the register subspace (R1 is the control

and R2 is the agent). Finally, the agent is updated in terms of the information encoded in
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register R1 (where A is the target and R1 is the control),

jCi
5
¼

1
ffiffiffi
3
p

�

a0

A
ffiffiffiffiffiffi
r00

p
j0iAj0iEje1ij0i1j0i2j1i3j0i4j0i5

þa0
A
ffiffiffiffiffiffi
r11

p
j1iAj1iEjceij1i1j0i2j1i3j0i4j0i5

þa1
A
ffiffiffiffiffiffi
r00

p
j0iAj0iEje1ij1i1j1i2j1i3j0i4j0i5

þa1
A
ffiffiffiffiffiffi
r11

p
j1iAj1iEjceij0i1j1i2j1i3j0i4j0i5

þa0
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ Re ðr01Þ

r

j0iAj0iEje1ij0i1j0i2j0i3j1i4j0i5

þa0
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� Re ðr01Þ

r

j1iAj1iEjceij1i1j0i2j0i3j1i4j0i5

þa1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ Re ðr01Þ

r

j0iAj0iEje1ij1i1j1i2j0i3j1i4j0i5

þa1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� Re ðr01Þ

r

j1iAj1iEjceij0i1j1i2j0i3j1i4j0i5

þa0
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ Im ðr01Þ

r

j0iAj0iEje1ij0i1j0i2j0i3j0i4j1i5

þa0
A
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ð75Þ

This quantum reinforcement learning protocol exhibits two features. First, by performing

projective measurements on registers R1, R2 and R3, we recover the result studied in the first

section, i.e., the learning fidelity is maximal independently of the measurement outcomes in

the register subspace. The second feature is that, for specific measurement outcomes in a part

of the register subspace, we obtain information about the population (diagonal) and the coher-

ences (off-diagonal) of the mixed state. This feature can be used in problems such as partial

cloning in cases where the system in which we can extract information evolves under loss

mechanisms.

Analysis of implementation in quantum technologies

An interesting result obtained in this manuscript is that in most of the cases, for the considered

quantum reinforcement learning protocols, adding more registers improves the rewarding

process. That is, via a purely unitary evolution, without coherent feedback, a maximally posi-

tively-correlated agent environment state is achieved, in the sense that the final agent contains

the same quantum information as the considered final environment. This means that the

agent has acquired the needed information about the environment and accordingly modified

it, being this a quantum process. In our formalism, typically, one measurement at the end of

the protocol is enough to obtain maximal learning fidelity in one iteration of the process. In

this sense, several quantum architectures could benefit of this fact, given that coherent feed-

back is not needed in this case. For instance, we focus our attention in two prominent plat-

forms, namely, trapped ions and superconducting circuits.
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Trapped ions

As we have pointed out along the manuscript, the performance of our proposed quantum pro-

tocols is based on the quality of the quantum gates between different subsystems. In this case,

the realization of high-fidelity quantum gates is essential to perform the quantum protocol

proposed here. Technological progress in trapped ions has enabled to implement single [49]

and two-qubit quantum gates [50] with a large fidelity. For the single-qubit gate, e.g., a Beryl-

lium hyperfine transition can be driven with microwave fields or lasers, being the error associ-

ated with single-qubit gates below 10−4. For two-qubit gates, the use of either microwaves or a

laser beam with modulated amplitude allows for the interaction of both qubits (electronic lev-

els of, e.g., Beryllium or Calcium ions) at the same time. Adiabatic elimination of the motion

allows one to obtain maximally entangled states of both ions. The fidelity of trapped-ion two-

qubit gates can reach nowadays above 99.9% [51, 52]. Trapped-ion technologies offer long

coherences times, which can reach up to the range of seconds [53] for Calcium atoms. In addi-

tion, this platform enables state preparation and readout with high fidelity [39, 54, 55]. Here,

the use of hyperfine states and the microwave fields improve the optical pumping fidelity and

improve the relaxation time T1 allowing to obtain fidelity readouts of 99.9999% [54].

Superconducting circuits

As in trapped ions, the technological progress in superconducting circuits has grown signifi-

cantly in the latter years. For instance, artificial atoms whose coherence times are in the micro-

second range have been built in coplanar [43] and 3D architectures [44]. On the other hand,

integrated Josephson quantum processors allows one to implement quantum gates between

two-level systems even in cases where the qubits do not have identical frequencies, as well as

making them interact via a quantum bus [56]. The Xmon qubits achieve two-qubit gate fideli-

ties above 99% [41, 42]. These technological progresses have developed feedback loop control

in this platform. This feedback protocol relies on high fidelity readout, as well as on condi-

tional control on the outcome of a quantum non-demolition measurement [45, 46]. Even

though in the quantum reinforcement learning protocols in this paper coherent feedback is

not required, this may be a useful ingredient in other quantum reinforcement learning propos-

als [23].

Discussion

In summary, we propose a protocol to perform quantum reinforcement learning which does

not require coherent feedback and, therefore, may be implemented in a variety of quantum

technologies. Our learning protocol, being mostly unitary (except with the final register mea-

surement) considers learning in a loose sense: while it does not depend on feedback, the proto-

col achieves its aim regardless of the initial state of agent and environment. In this aspect, it is

general, and obtains a similar goal than Ref. [23] without the need of feedback, enabling its

implementation in a variety of quantum platforms. We also point out that one may employ

different performance measures than the one considered here, depending on the agent possi-

ble aims. Adding more registers than in previous proposals in the literature [23], the rewarding

criterion can be applied at the end of the protocol, while agent and environment need not be

measured directly, although only via the registers. We also obtain that when the considered

systems are composed of qudits, the number of steps needed to obtain maximal learning fidel-

ity is fixed in each qudit dimension and scales polynomially with the number of qudit subsys-

tems. We consider as well environment states which are mixtures, while the agent can also in

this case acquire the appropriate information from them. Theoretically, all the cases consid-

ered of qubit, multiqubit, qudit, and multiqudit, have many similarities. Even though the
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protocols are not directly transformable into one another, a d-dimensional qudit can be rewrit-

ten as a log2(d) multiqubit system, while a multiqudit system with n qudits is equivalent to an

n log2(d) multiqubit system. Therefore, in this respect, it is intuitive that the results for all these

protocols (namely, that maximal fidelity can be attained) should be related. Nevertheless, it is

valuable to show that the protocol can be scaled up to multiqudit systems with many parties

and high dimensions, given that this will be an ultimate goal of a scalable quantum device.

Implementations of these protocols in trapped ions and superconducting circuits seem feasible

with current platforms.
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References
1. Michalski RS, Carbonell JG, Mitchell TM. Machine learning: An artificial intelligence approach. Springer

Science & Business Media; 2013.

2. Plamondon R, Srihari SN. Online and off-line handwriting recognition: a comprehensive survey. IEEE

Transactions on Pattern Analysis and Machine Intelligence. 2000; 22(1):63–84. https://doi.org/10.1109/

34.824821

3. Lee KF, Hon HW, Hwang MY, Mahajan S, Reddy R. The SPHINX speech recognition system. In: Inter-

national Conference on Acoustics, Speech, and Signal Processing,; 1989. p. 445–448 vol.1.

4. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of

Go with deep neural networks and tree search. Nature. 2016; 529(7587):484–489. https://doi.org/10.

1038/nature16961 PMID: 26819042

5. Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach (International Edition). Pearson US

Imports & PHIPEs; 2002.

6. Sutton RS, Barto AG. Reinforcement learning: An introduction. vol. 1. MIT press Cambridge; 1998.

7. Wittek P. Quantum machine learning: what quantum computing means to data mining. Academic

Press; 2014.

8. Schuld M, Sinayskiy I, Petruccione F. An introduction to quantum machine learning. Contemporary

Physics. 2015; 56(2):172–185. https://doi.org/10.1080/00107514.2014.964942

9. Adcock J, Allen E, Day M, Frick S, Hinchliff J, Johnson M, et al. Advances in quantum machine learning.

arXiv preprint arXiv:151202900. 2015;.

10. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. Quantum Machine Learning. Nature.

2017; 549, 195–202. https://doi.org/10.1038/nature23474 PMID: 28905917

11. Dunjko V, Briegel HJ. Machine learning & artificial intelligence in the quantum domain. Rep. Prog. Phys.

2018; 81:074001. https://doi.org/10.1088/1361-6633/aab406 PMID: 29504942

Multiqubit and multilevel quantum reinforcement learning with quantum technologies

PLOS ONE | https://doi.org/10.1371/journal.pone.0200455 July 19, 2018 23 / 25

https://doi.org/10.1109/34.824821
https://doi.org/10.1109/34.824821
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1038/nature23474
http://www.ncbi.nlm.nih.gov/pubmed/28905917
https://doi.org/10.1088/1361-6633/aab406
http://www.ncbi.nlm.nih.gov/pubmed/29504942
https://doi.org/10.1371/journal.pone.0200455


12. Bonner R, Freivalds R. A survey of quantum learning. Quantum Computation and Learning. 2003;

p. 106.

13. Aïmeur E, Brassard G, Gambs S. Quantum speed-up for unsupervised learning. Machine Learning.

2013; 90(2):261–287. https://doi.org/10.1007/s10994-012-5316-5

14. Lloyd S, Mohseni M, Rebentrost P. Quantum algorithms for supervised and unsupervised machine

learning. arXiv preprint arXiv:13070411. 2013;.

15. Rebentrost P, Mohseni M, Lloyd S. Quantum Support Vector Machine for Big Data Classification. Phys

Rev Lett. 2014; 113:130503. https://doi.org/10.1103/PhysRevLett.113.130503 PMID: 25302877

16. Alvarez-Rodriguez U, Lamata L, Escandell-Montero P, Martı́n-Guerrero JD, Solano E. Supervised

Quantum Learning without Measurements. Scientific Reports. 2017; 7(1):13645. https://doi.org/10.

1038/s41598-017-13378-0 PMID: 29057923

17. Cai XD, Wu D, Su ZE, Chen MC, Wang XL, Li L, et al. Entanglement-Based Machine Learning on a

Quantum Computer. Phys Rev Lett. 2015; 114:110504. https://doi.org/10.1103/PhysRevLett.114.

110504 PMID: 25839250

18. Li Z, Liu X, Xu N, Du J. Experimental Realization of a Quantum Support Vector Machine. Phys Rev Lett.

2015; 114:140504. https://doi.org/10.1103/PhysRevLett.114.140504 PMID: 25910101

19. Dong D, Chen C, Li H, Tarn TJ. Quantum Reinforcement Learning. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics). 2008; 38(5):1207–1220. https://doi.org/10.1109/TSMCB.

2008.925743

20. Paparo GD, Dunjko V, Makmal A, Martin-Delgado MA, Briegel HJ. Quantum Speedup for Active Learn-

ing Agents. Phys Rev X. 2014; 4:031002. doi: 10.1103/PhysRevX.4.031002

21. Dunjko V, Taylor JM, Briegel HJ. Quantum-Enhanced Machine Learning. Phys Rev Lett. 2016;

117:130501. https://doi.org/10.1103/PhysRevLett.117.130501 PMID: 27715099

22. Crawford D, Levit A, Ghadermarzy N, Oberoi JS, Ronagh P. Reinforcement Learning Using Quantum

Boltzmann Machines. arXiv preprint arXiv:161205695. 2016;.

23. Lamata L. Basic protocols in quantum reinforcement learning with superconducting circuits. Scientific

Reports. 2017; 7:1609. https://doi.org/10.1038/s41598-017-01711-6 PMID: 28487535

24. Friis N, Melnikov AA, Kirchmair G, and Briegel HJ. Coherent controlization using superconducting

qubits. Scientific Reports. 2015; 5:18036. https://doi.org/10.1038/srep18036 PMID: 26667893

25. Dunjko V, Friis N, and H. J. Briegel Quantum-enhanced deliberation of learning agents using trapped

ions New J. Phys. 2015; 17:023006.

26. T. Sriarunothai et al., Speeding-up the decision making of a learning agent using an ion trap quantum

processor arXiv:1709.01366.

27. Pfeiffer P, Egusquiza IL, Di Ventra M, Sanz M, Solano E. Quantum memristors. Scientific Reports.

2016; 6:29507 EP –. https://doi.org/10.1038/srep29507 PMID: 27381511

28. Salmilehto J, Deppe F, Di Ventra M, Sanz M, Solano E. Quantum Memristors with Superconducting Cir-

cuits. Scientific Reports. 2017; 7:42044 EP –. https://doi.org/10.1038/srep42044 PMID: 28195193

29. Sanz M, Lamata L, Solano E. Invited article: Quantum memristors in quantum photonics. APL Photon-

ics. 2018; 3:080801. https://doi.org/10.1063/1.5036596

30. Shevchenko SN, Pershin YV, Nori F. Qubit-Based Memcapacitors and Meminductors. Phys Rev

Applied. 2016; 6:014006. https://doi.org/10.1103/PhysRevApplied.6.014006
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