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Abstract

Background. Following the miniaturization of integrated circuitry and other computer hardware over the past several
decades, DNA sequencing is on a similar path. Leading this trend is the Oxford Nanopore sequencing platform, which
currently offers the hand-held MinION instrument and even smaller instruments on the horizon. This technology has been
used in several important applications, including the analysis of genomes of major pathogens in remote stations around
the world. However, despite the simplicity of the sequencer, an equally simple and portable analysis platform is not yet
available. Results. iGenomics is the first comprehensive mobile genome analysis application, with capabilities to align
reads, call variants, and visualize the results entirely on an iOS device. Implemented in Objective-C using the FM-index,
banded dynamic programming, and other high-performance bioinformatics techniques, iGenomics is optimized to run in a
mobile environment. We benchmark iGenomics using a variety of real and simulated Nanopore sequencing datasets of viral
and bacterial genomes and show that iGenomics has performance comparable to the popular BWA-MEM/SAMtools/IGV
suite, without necessitating a laptop or server cluster.
Conclusions. iGenomics is available open source (https://github.com/stuckinaboot/iGenomics) and for free on Apple’s App
Store (https://apple.co/2HCplzr).
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Background

DNA sequencing technology has made tremendous progress
over the past 30 years [1]. The earliest automated approaches,
beginning with the capillary-based Sanger sequencing devices
in the 1980s, were large bench-top instruments requiring ex-

tensive sequencing facilities to prepare and sequence the DNA.
In the 2000s, high-throughput second-generation sequencing
instruments advanced the field with more compact and sim-
pler designs. However, these advances have been limited in their
reach because they are not readily accessible by most individual
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laboratories and citizen scientists. Most substantially, the most
widely used alignment and analysis tools are not targeting citi-
zen scientists and require expert knowledge on using the com-
mand line to install several software packages, run the tools, and
understand a variety of file formats.

Within the past few years, Oxford Nanopore Technologies
(ONT, Oxford, UK) has introduced a small inexpensive hand-
held sequencing instrument that has made it possible to per-
form genomics experiments with minimal facilities and in es-
sentially any environment. Because of its small size, Nanopore
sequencing has been used in several environments that would
be unthinkable for alternative instruments as diverse as mon-
itoring the Ebola outbreaks in remote areas of Africa [2], mon-
itoring Zika outbreaks in South America [3], exploring reptile
specimens in the rainforest [4], and even on the International
Space Station [5]. Nanopore sequencing has also played an im-
portant role in monitoring the transmission of SARS-COVID-19
around the world [6–8]. Nanopore sequencing technology works
by measuring the change in ionic current as a DNA molecule
is passed through a nanopore [1]. The DNA molecules are typi-
cally a few hundred to tens of thousands of nucleotides long, and
the longest reported read has exceeded 2 million nucleotides [9].
Once sequenced, the raw signal data are base-called into nu-
cleotide strings called reads [10], which are typically stored in
fastq format and saved for further processing, especially read
alignment and variant analysis.

Several algorithms are available for this analysis. Modern
aligners, such as Bowtie [11] or BWA-MEM [12], often use the
Burrows-Wheeler transform (BWT) [13] and the closely related
FM-index [14] as their core indexing data structure. These new
approaches are suited to large datasets because of their com-
pact space requirements and fast alignment times. After align-
ment, variant-calling platforms, such as SAMtools [15] or GATK
[16], systematically scan the alignments to find well-supported
variants in the sample using a statistical model to distinguish
homozygous from heterozygous variants and rule out spurious
sequencing errors. After this automated variant identification,
high-priority variants are also often manually inspected using
IGV [17] and other genome browsers to review the evidence for
the variant calls and further rule out false-positive calls.

The standard approach for analyzing reads is to align the
reads to a reference genome on high-end laptops, servers, or
even supercomputers. While this is feasible for those with ac-
cess to these technologies, these requirements may be out of
reach for many researchers and citizen scientists. Instead, iGe-
nomics just requires the sequenced reads, which can be loaded
from the phone itself, the internet, or elsewhere, and can al-
low anyone to perform sequence analysis and mutation iden-
tification. As with other mobile applications (e.g., web brows-
ing, e-mail, social media), iGenomics can be used in a variety
of settings where it would be awkward to use a larger laptop,
and many users will also prefer the more intuitive user inter-
face. Furthermore, there are many important scenarios where
analyzing these data without high-end computing hardware is
desirable, especially in remote environments. Interestingly, cur-
rent iOS devices, including both iPads and iPhones, have signifi-
cant computing resources, with clock speeds and onboard RAM
approaching that of high-end laptop computers. That said, no
stand-alone genomics analysis software is currently available
for iOS devices.

Addressing this critical gap, we have developed iGenomics,
an iOS application that allows anyone to easily align and analyze
DNA sequences in a mobile environment. iGenomics uses the
same high-performance algorithms for read alignment and vari-

ant calling as mainstream software, although iGenomics marks
the first time these algorithms have been implemented in a mo-
bile iOS environment. Additionally, using the advanced user in-
terface features available in iOS, iGenomics allows for interactive
visualization and inspection of the read alignments and variant
calls, and contains additional features for reviewing critical mu-
tations of interest. For example, iGenomics comes bundled with
a listing of critical mutations in the influenza A virus that indi-
cate which antiviral agents are most likely to be ineffective [18].

Owing to the lower amount of processing power in mobile
devices compared with high-end desktop computers or servers,
iGenomics is limited in the size of the genome that can be
processed. However, the implementations in iGenomics have
been rigorously tested through direct comparisons with the
BWA-MEM/SAMtools framework for alignment and variant call-
ing for viral and microbial genomes. All alignment and anal-
ysis algorithms used by iGenomics have been tested on both
real and simulated datasets to ensure consistent speed, accu-
racy, and reliability of both alignments and variant calls. Con-
sequently, iGenomics is leading the shift of DNA analysis soft-
ware and sequencing tools towards mobile devices and marks a
great leap forward towards widespread DNA analysis by non-
bioinformatician students, researchers, and citizen scientists.
Furthermore, iGenomics is available open source to facilitate
mobile genomics technology research and, in turn, accelerate
the speed at which this technology is developed.

Results
Interactive sequence analysis on your smartphone

iGenomics brings a high level of interaction to DNA sequence
analysis (Fig. 1). Common touchscreen gestures allow for users
to browse the alignment data in an easy-to-use and intuitive
manner. This allows the app to be used with almost no learn-
ing curve.

The first step of analysis is selecting the reads and a refer-
ence genome for analysis in either fasta or fastq format. iGe-
nomics provides multiple options for inputting both reads and
reference files: selecting from a variety of default files for com-
mon bacterial genomes, using Dropbox to choose a file, or load-
ing a fasta or fastq file straight into iGenomics from another app
such as Google Drive, Files, or Airdrop. Then, from a single view,
the user can choose the reads file, the reference file, and, op-
tionally, a tab-delimited file annotating known important muta-
tions. For example, iGenomics comes with a preloaded known
mutations file that indicates certain mutations in the influenza
genome, which, if present, cause resistance to certain antiviral
agents [18]. This single-view design is meant to be simple and
requires minimal user effort. After choosing the files to align,
the user can either select the “Analyze” button to align reads to
the reference genome using the default parameters or choose
to configure certain parameters before aligning. The parameters
available include the maximum error rate for alignments and
enabling trimming for fastq files.

After alignment completes, the user is brought to the anal-
ysis pane. The main view, known as the alignments display, is
an IGV-like rendering of how the reads are aligned to a refer-
ence genome, with the ability to scroll left, right, up, and down
through all of the aligned reads. Aligned bases that differ from
the reference base are highlighted in a different color, as are con-
sensus calls. A long touch on a read presents additional details
about the read, including the read name, the edit distance of the
alignment, the gapped read and gapped substring of the refer-
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Figure 1: iGenomics iPhone screenshots (top left) alignments display, (top right) alignment display zoomed out, (middle left) coverage profile, (middle right) coverage
profile zoomed out, and (bottom) known mutations display. In the known mutations display, green indicates the mutation is not present, purple indicates the listed

mutation is present and the mutation is homozygous, and pink indicates the listed mutation is present and the mutation is heterozygous. In both the alignments
display and coverage profile, there is an indicator in the top right of the form [X, Y] that represents the minimum coverage X across all positions and maximum
coverage Y across all positions.

ence genome that the read aligned to, and whether the forward
read or the reverse complement aligned. The user can also use
the pinch gesture to zoom out, revealing a high-level overview
of the individual alignments as well as a coverage profile of the
number of reads that aligned at each position. Mutations are still
highlighted after zooming out, allowing the user to see where all
of the mutations occur in 1 view.

Another view within the analysis pane is the coverage pro-
file, which displays the count of each base that aligned at each
position. Positions where the reference base does not match the
base of the reads are highlighted so that the user can see that
this position contains a mutation (heterozygous mutations are
highlighted with a different color). To scroll through the cover-
age profile, the user simply has to swipe left or right. If a user
would like to view more detailed information about a given po-
sition, he/she simply holds down any of the boxes in that po-
sition and an informative view elaborating upon the position’s

contents will pop up. By using the pinch gesture to zoom out, the
user reveals a graph of the number of reads that aligned at each
position, resembling that of the zoomed-out alignments display
but with a full-screen graph.

The Summary window, accessible from within the analysis
pane, has 4 pages and provides some useful tools for a high-level
overview of the data. The first page provides buttons to view the
alignments display, coverage profile, coverage histogram, and
list of all found mutations. The coverage histogram graphs the
frequency of each level of coverage, specifically the frequency of
a particular number of reads aligned to a position, and is over-
laid by a Poisson curve for context. Within the list of all found
mutations, the user can scroll through all mutations and then
select one to inspect that position in the analysis pane. The sec-
ond page gives an overview of the alignments, including the per-
centage of reads matched, the total number of reads input, the
number of mutations, and the names of the reads and reference
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files. On this page the user can also search for positions in the
reference genome by position or by a query string, which uses
BWT exact match for rapid searching. The third page contains
a large picker view that allows the user to intuitively move be-
tween sequences/segments in the reference genome. The last
page contains a list of known mutations if the user selected a
known mutations file during the file input stage. This list con-
tains mutation position, mutation details (such as resistance to
antivirals), and a color-coded indicator denoting whether a mu-
tation was found at that position and whether that mutation
indicates a known mutation.

Simulated read runtime analysis

To observe the efficiency and accuracy of iGenomics running on
an iPhone 8, we first tested several simulated datasets. The ref-
erence genomes we used were as follows:

(1) phiX174, a widely used control sequence for Illumina se-
quencing (Genbank: NC 001422.1, 5,386 bp);

(2) a Zika virus genome (isolate Zika virus/H.sapiens-
tc/KHM/2010/FSS13025, 10,807 bp);

(3) an H3N2 influenza genome (A/California/7/2004(H3N2),
13,382 bp);

(4) an H1N1 influenza genome (A/New York/205/2001(H1N1),
13,568 bp); and

(5) an Ebola genome (isolate Ebola virus/H.sapiens-
wt/SLE/2014/Makona-G3686.1, 18,957 bp).

From these reference genomes, we then simulated reads
using DWGSIM [19] according to the following conditions: the
mean coverage is 100×, the genetic mutation rate was set to
0.5%, and the read characteristics would mirror reads produced
by real-world sequencers. Accordingly, reads of length 100 bp
and sequence error rate of 1.0% were simulated to mirror reads
generated by Illumina sequencers and reads of length 1,000 bp
and sequence error rate of 10.0% were simulated to mirror reads
generated by ONT sequencers. Sequencing errors were intro-
duced at random to mimic the errors produced by sequencers.
For comparison purposes, we also measured the runtime when
aligning and identifying variations using BWA-MEM [12] using
“-x ont2d” and SAMtools pipeline for the same datasets. Notably,
iGenomics uses an FM-index and banded dynamic programming
implementation similar to BWA-MEM, allowing the analysis to
focus on major differences in hardware.

When comparing the runtime of iGenomics against datasets
with different genome lengths, we observe a nearly linear rela-
tionship between genome length and alignment runtime (Fig. 2).
This is explained by a powerful feature of the BWT in which
the time for an alignment of a single read is essentially inde-
pendent of genome size. Consequently, because the simulations
use a consistent amount of coverage per genome, the linear in-
crease in runtime is explained by the linear increase in the num-
ber of reads to align. It is also worth noting that the iGenomics
trend lines closely follow the pattern of those of BWA-MEM +
SAMtools. This adds credibility both to iGenomics as a sequence
alignment and analysis tool and to the field of portable genomics
because all of these important viruses can be analyzed in <5 sec-
onds on a mobile device.

To further explore the performance of iGenomics, we also
compared the BWA+SAMtools pipeline described above with
that of Minimap2 [20] + SAMtools, using the exact same steps
in SAMtools after the SAM file was generated by the respective
alignment tool. For the simulated H1N1 reads with read length
100 bp, sequence error rate of 0.01 (1%), and mutation rate of

Figure 2: Runtimes for simulated reads from 5 reference genomes. The datasets

consisted of reads averaging 100× coverage and a reference file. Each dataset was
tested, defined as aligning then variant calling, using iGenomics running on an
iPhone and a BWA/SAMtools pipeline running on a laptop. The technical spec-
ifications of the iPhone and laptop used for testing are described in the Results

section. Each trend line indicates the runtime for each dataset using the denoted
alignment and analysis software; iG indicates iGenomics and bwa indicates the
BWA/SAMtools pipeline. The dotted lines indicate the specific measurements

recorded.

0.1 (10%), we found that the indexing and alignment time was
insignificant compared with the amount of time spent on vari-
ant calling: the alignment time for BWA was 0.899 s (22.42% of
the total runtime), 0.440 s for Minimap2 (12.39% of the total run-
time), and 3.11 s for identifying variants by converting the SAM
file to BAM (0.24 s), sorting the BAM file (0.24 s), identifying can-
didate variants in BCF format (2.62 s), and computing the final
variant calls (0.01 s). Thus, while Minimap2 is noticeably faster
than BWA, the majority of time is spent on variant calling.

Simulated read accuracy analysis

We next evaluated the accuracy of iGenomics using reads simu-
lated from the H1N1 Influenza genome (same sample as above).
In each trial, we simulated a mean of 100× coverage for all com-
binations of the following sets of parameters: sequence error
rates of 0.01, 0.1, and 0.2, mutation rates of 0.001, 0.01, and 0.1,
and read lengths of 100, 250, and 1,000 bp. Note that an error rate
of 0.2 represents a 20% error rate and exceeds the current mean
error rate for Nanopore sequencing [10]. The range of the simu-
lation parameters is designed to test iGenomics across a variety
of different possible sets of reads with which iGenomics could
be used. After simulating the read sets, each simulated sample
was independently aligned to an H1N1 reference genome using
iGenomics. For each sample, we recorded the runtime and the
reported list of mutations found. To check the validity of the mu-
tations found by iGenomics, the reported mutations were com-
pared to the DWGSIM-generated list of simulated mutations. We
then compared the variants reported by iGenomics to DWGSIM,
allowing for ≤5 bp differences to account for ambiguity that can
occur, especially indels within locally repetitive sequencing. Key
metrics that were evaluated relative to DWGSIM were precision,
recall, and F-score (the harmonic mean of precision and recall).

The results of the comparisons between iGenomics’ reported
mutations and DWGSIM’s list of mutations confirm iGenomics’
accuracy. Most datasets show a high degree of accuracy (F1) well
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over 90% (Fig. 3). The few experiments with lower precision or
recall occur with the most difficult scenarios of the highest se-
quencing error rate and the lowest mutation rate. For compar-
ison, the same results were also computed with input from a
BWA-MEM/SAMtools pipeline. Interestingly, iGenomics tends to
exhibit a higher degree of recall, precision, and overall accuracy
(Supplementary Fig. S1).

Another important consideration for iGenomics is the run-
time required. The runtime of iGenomics for each of these
simulated datasets was <3 seconds (Fig. 2). Furthermore, iGe-
nomics aligned reads and identified mutations in these simu-
lated datasets ∼4–5 times faster than the BWA-MEM/SAMtools
pipeline (Fig. 4). For context, the BWA-MEM/SAMtools runtime
for these datasets was computed on an early 2015 MacBook Pro
with a 2.9 GHz Intel Core i5 running OS X El Capitan while the
iGenomics runtime was computed on a 2017 iPhone 8 with a
2.39 GHz A11 Bionic Chip running iOS 12.3.1. All timing results
presented in this article use these hardware configurations, al-
though we tested iGenomics on several iPhone and iPad models
to ensure usability across screen sizes and system resources.

Viral genome analysis

iGenomics was next tested on several clinical and environmen-
tal viral samples sequenced using the ONT MinION to demon-
strate both the functionality and accuracy of iGenomics relative
to standard tools such as BWA-MEM and SAMtools. The purpose
of these tests is to show the overall utility of iGenomics as a mo-
bile counterpart to desktop aligners and analysis software typi-
cally used by researchers and as a novel sequence analysis plat-
form.

These tests focused on public MinION data from Ebola (sam-
ple [21] from [2]) and Zika (sample [22] from [23]), as well as
MinION and MiSeq data from a clinical H3N2 sample that we
previously collected (A/New York/A39/2015 (H3N2)) [24] (Meth-
ods). The Ebola trial focused on comparing mutations found by
iGenomics to those found by SAMtools using the isolate Ebola
virus/H.sapiens-wt/SLE/2014/Makona-G3686.1 as the reference
(GenBank: KM034562.1). For Zika, the test was based on using a
ground-truth set of mutations derived by comparing the consen-
sus genome with nucmer [25] to the isolate Zika virus/H.sapiens-
tc/KHM/2010/FSS13025 (GenBank: KU955593.1) as the reference.
The H3N2 test was designed to demonstrate iGenomics’ consis-
tency across data produced by different sequencers by compar-
ing the results of the Nanopore and MiSeq data when aligning
to the isolate (A/California/7/2004(H3N2)) genome.

In all of the cases examined, iGenomics had a faster runtime
than the desktop alignment pipeline of BWA-MEM/SAMtools
(Table 1). This is likely due to a difference in how iGenomics and
the desktop software store the alignments in memory. Because
iGenomics is targeted to be a focused mobile analysis platform
for small genomes, it needs to run very rapidly. Instead of sep-
arately reporting each alignment and writing the alignments to
disk, then separately sorting the alignments, and then scanning
for variations, as BWA-MEM/SAMtools does, iGenomics records
the full gapped alignments and coverage profile matrix in RAM
so that the subsequent mutation identification can avoid repeat-
ing computations. Furthermore, iGenomics keeps these data in
RAM until the user exits the analysis screen to allow for explor-
ing the various visualizations and performing interactive anal-
ysis with negligible lag time. This presents a standard time vs
RAM trade-off present in many software applications, and here
we have elected for fast processing to ensure that the applica-
tion is as responsive as possible.

Influenza typing

Influenza disease is caused by RNA viruses from the family Or-
thomyxoviridae [26]. There are 3 distinct viral types, A, B, and C,
that can infect humans. Influenza types A and B cause the an-
nual epidemics, while influenza C is generally less severe. The
influenza A genome is organized into 8 segments and is classi-
fied into subtypes based on genetic variants within the 2 pro-
teins on the surface of the virus: hemagglutinin (H) and neu-
raminidase (N). There are 18 different hemagglutinin subtypes
and 11 different neuraminidase subtypes (H1–H18 and N1–N11,
respectively). Many of the major influenza pandemics have been
caused by influenza type A infections. For example, the 1918 flu
pandemic (the “Spanish flu”), was caused by a deadly Influenza
A virus strain of subtype H1N1, and the Hong Kong Flu in 1968
was caused by the H3N2 subtype. Consequently, the type and
subtype of an unknown influenza sample are extremely impor-
tant and urgent to determine.

As a final demonstration of how iGenomics can be used,
we also considered an influenza identification task where in-
fluenza sequencing data are aligned to several strains of flu at
the same time in an attempt to determine the type and sub-
type. For this, we developed an influenza “pan-genome refer-
ence sequence” containing representatives for 3 different in-
fluenza genomes related to antigenic strains that were circu-
lating from 2009 to 2016: (H1N1)pdm09 (A/California/04/2009),
H3N2 (A/Brisbane/10/2007, A/Perth/16/2009, A/Texas/50/2012,
A/Victoria/361/2011, and A/NewYork/03/2015), and Influenza B
(B/New York/1352/2012). For this analysis, segments that are
shared across Influenza A subtypes were only reported once. For
the pan-genome, we also include a catalog of mutations in these
genomes that have specific variants known to reduce the effi-
cacy of antiviral treatments. The identity of the A segment is
identified by evaluating which of the potential segment types
has the largest number of alignments. In the context of iGe-
nomics, the pan-genome approach is preferable to aligning the
reads against multiple Influenza genomes in isolation because it
is much simpler and allows for typing and variant identification
at the same time. Worth noting, the pan-genome approach does
not sacrifice accuracy or performance, as shown below.

To test alignments against the pan-genome, we ran iGe-
nomics using simulated MinION (1,000 bp, sequence error rate
10.0%) and Illumina (100 bp, sequence error rate 1.0%) reads from
pH1N1 and H3N2 with mutation rates 0, 0.001, and 0.005. Af-
ter alignment, we evaluated whether the reads were correctly
aligned to the type and subtype from which they originated.
If the alignment matches the segment of origin, we consider
that alignment “passing.” The segment identification rate is
the number of passing alignments divided by the total num-
ber of alignments. The results of this experiment show that we
have a >93% identification rate, meaning that in most cases
this simple process can accurately and quickly determine the
type and subtype of the flu genome entirely on a mobile device
(Table 2).

Discussion

DNA sequencing has advanced tremendously over the past 3
decades; a process that once required hundreds of millions of
dollars can now be done on handheld devices costing only $1,000
[27]. However, it is important to consider that sequenced DNA
reads themselves provide little information without software to
align and analyze them. For high-end servers and laptops, this
software already exists; for mobile devices, iGenomics is the first
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Figure 3: Mutation identification accuracy for simulated H1N1 flu datasets of varying mutation rates and error rates for iGenomics (left) and the BWA-MEM/SAMtools
(right) pipeline. The top, middle, and bottom plots show recall, precision, and F-score, respectively.

comprehensive solution for researchers and citizen scientists to
easily analyze sequence data.

iGenomics can be used in virtually any location because
of the inherent portability of mobile devices like the iPad and
iPhone. iGenomics implements the same advanced bioinformat-
ics algorithms that are used for rapid alignment and analysis for

other platforms. Consequently, the true novelty of this applica-
tion is not in the algorithms used but rather how they have been
implemented in a mobile environment. The entire workflow for
iGenomics is designed to be simple and intuitive. A user effort-
lessly picks a reads file to analyze and, once selected, the align-
ment, variant calling, and visualization are completed within
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Table 1: Comparison between iGenomics and BWA-MEM/SAMtools pipeline for real reference genomes and reads obtained from MinION
(Nanopore) and MiSeq sequencers

Parameter iGenomics∗ BWA + SAMtools iGenomics∗ BWA + SAMtools

MinION Ebola data MinION Zika data

Alignment rate (%) 99.24 100 81.46 94.11
Runtime (seconds) 24.71 428.96 13.11 189.19
Precision, recall, accuracy (%)

Compared with SAM calls
+

61.54, 66.67, 64.00 N/A 86.79, 79.77, 83.13 N/A
Compared with nucmer calls

+
N/A N/A 86.16, 88.96, 87.54 83.24, 93.51, 88.07

MinION H3N2 data MiSeq H3N2 data

Alignment rate (%) 99.36 98.08 98.18 98.58
Runtime (seconds) 28.04 180.49 4.78 27.59
Precision, recall, accuracy (%)

Compared with SAM MinION calls 40.24, 93.44, 56.25 N/A N/A N/A
Compared with SAM MiSeq calls

++
74.82, 87.12, 80.50 99.45, 49.86, 66.42 99.73, 99.73, 99.73 N/A

∗Unreported heterozygosity is present in the mutations called.
+
This method of variant calling is considered to be the ground-truth. BWA+SAMtools has an N/A (not applicable) in these cells because the BWA + SAMtools output

is considered the ground-truth.
+ +

This method of variant calling is considered to be the ground-truth.

Table 2: Alignment details for simulated datasets aligned using iGenomics to a pan-genome composed of multiple Influenza genomes

Parameter
MinION simulated data Illumina simulated data

pH1N1 H3N2 pH1N1 H3N2

Alignment rate (%) 100 100 100 99.84
Runtime (seconds) 4.25 4.17 1.60 1.63
Segment identification rate
(%)+

99.11 95.04 99.84 93.02

The pH1N1 reads were simulated from the (H1N1)pdm09 (A/California/04/2009) genome and the H3N2 reads were simulated from the H3N2 (A/NewYork/03/2015)
genome.
+
Segment identification rate is the number of alignments that aligned to the correct reference within the pan-genome divided by the total number of alignments.

Figure 4: iGenomics runtime vs BWA/SAMtools pipeline runtime for simulated
datasets of constant mutation rates and sequence error rates of H1N1 for varying
read lengths.

seconds. This is accomplished without any internet connectivity
through an optimized implementation in Objective-C.

iGenomics is designed for quickly computing detailed ge-
netic information about specific mutations within different vi-

ral or bacterial genomes. An important use case of iGenomics
could be a researcher with limited computational resources se-
quencing complementary DNA (cDNA) of a coronavirus sam-
ple, loading and aligning the cDNA reads with iGenomics, and
getting a first analysis of the coronavirus mutations within a
few seconds. To support this capability, we have developed a
tutorial with the MinION reads (SRX7615629) and consensus
genome (MN938384.1) from patient HKU-SZ-002a, as well as the
consensus genome from a bat SARS-like coronavirus isolate
(MG772934.1) previously used for comparisons [28, 29]. Following
the tutorial, these data can easily be downloaded on one’s iOS
device and imported directly into iGenomics to be analyzed. An-
other promising capability of iGenomics is its ability to load ref-
erence genomes and reads from outside sources, perform align-
ment and variant calling, and export the results all without any
internet access. For example, by using Airdrop to both import
and export data from iGenomics, a researcher can analyze DNA
in remote locations without any internet connectivity. Because
the MinION uses a USB connection that is not available on an
iPhone or iPad, users will first need to collect the raw sequenc-
ing data on their laptop or server, as well as use these platforms
to base call the signal data into nucleotide sequences. However,
once sequencers are available that can read DNA directly into
iOS devices, iGenomics will work out of the box to allow for im-
porting of this sequenced data, eliminating the requirement for
a laptop in the end-to-end analysis pipeline.
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Figure 5: Diagram of how the Burrows-Wheeler transform is created. (Left) All
cyclic permutations of the text “GATTACA.” (Right) The Burrows-Wheeler matrix
of the text consisting of the sorted cyclic permutations of the text.

Future developments for iGenomics are far-reaching as DNA
sequencing instruments continue to evolve to the point where
they could be directly attached or integrated with mobile de-
vices. In fact, ONT has announced that they hope to have a
new sequencer, named the “SmidgION,” that connects directly
to iOS devices available for researchers in the near future [30]. At
that point, using mobile sequencing technology with iGenomics,
DNA can truly be sequenced, aligned, and analyzed anywhere
and absolute mobility of the genomics field will be achieved. As
the processing power and memory contained within mobile de-
vices improves, so will the overall performance of iGenomics in
handling even larger and more complex samples.

Methods

The implementation of iGenomics follows the state-of-the-art
algorithms and data structures used in standard bioinformatics
applications. However, the visualization of the read alignments
and mutations is unique to iGenomics and was created with the
intention of allowing the user to have powerful analysis capabil-
ities while still maintaining a simple mobile-friendly interface.

Indexing the genome with BWT

The BWT is constructed by lexicographically sorting the cyclic
permutations of the input genome appended by an end-of-string
character. By convention, we use a dollar sign as the end-of-
string character, which has a lexicographical value less than any
letter in the English alphabet and ensures that the end of the
original sequence can be found. For example, the cyclic permu-
tations of the string “CAT” with the end-of-string character “$”
are “CAT$,” “AT$C,” “T$CA,” and “$CAT,” which can be sorted as
“$CAT,” “AT$C,” CAT$,” and “T$CA.” This sorted list creates what
is known as the Burrows-Wheeler matrix (BWM). Then, to com-
pute the BWT from the sorted permutations, the last character
of each row in the matrix is extracted in order and appended to
a string (Fig. 5).

To first lexicographically sort the cyclic permutations, a quick
and efficient sorting algorithm must be used so that this func-
tion is fully optimized. iGenomics uses a version of QuickSort,
a divide-and-conquer sorting algorithm, because on average
it takes O(n log n) time for n objects to be sorted. Although
there are now some more efficient BWT construction algorithms
[31], given that iGenomics is targeted towards relatively small
genomes (<100,000 bp), the amount of time for BWT sorting is
negligible compared to the time to align the reads. Finally, to ob-
tain the BWT from the sorted array, the final character of each
row in the matrix is copied into a string with the first charac-

Figure 6: A diagram showing the exact match algorithm by repeated application
of the last-first property using the characters of the query string.

ter copied having the first position, the second character copied
having the second position, and so forth.

Read alignment

iGenomics uses a seed-and-extend process for read alignment in
which first relatively short exact matches, known as seeds, are
found using the BWT, after which they are then extended into
end-to-end alignments using dynamic programming. The seed
size is based on the maximum edit distance (a user-specified pa-
rameter) allowed for a read that successfully aligns to be consid-
ered a match. The maximum edit distance is inputted as a dec-
imal value edit rate, and multiplying that value by the length
of the given read will give the maximum possible edit distance
we allow when aligning that read. During the aligning process,
each read is split into the edit distance plus 1 segment of equal
length. This relies on the widely used technique that if the string
matches with ≤X edits, then ≥1/(X + 1) of the segments must still
match without error [32]. For example, if the user allows only 1
edit, the algorithm divides the read into left and right halves [1/(1
+ 1)] knowing that the correct alignment will include an exact
match of 1 of those segments.

Exact matching means finding all of the places in the refer-
ence genome where a given query matches exactly, character for
character across its entire length (Langmead 2012) [33]. To do this
effectively, the trait of the BWT known as the “last-first prop-
erty” is used as the basis for an exact matching algorithm. The
last-first property states that the occurrence of any character in
the last column of the BWM, which is the BWT, corresponds to
the same occurrence of that character in the first column of the
BWM. Using the first column of the BWM and the BWT to create
an FM-index, the algorithm navigates the rows of the index that
contain exact matches and then converts these positions from
the BWT to positions in the reference genome (Fig. 6).

After the seeds are found, iGenomics computes the end-to-
end edit distance allowing for substitutions as well as insertions
and deletions [34] (Fig. 7). To make this as efficient as possible,
iGenomics uses a banded computation. This method works by
only computing a subset of the dynamic programming matrix,
a band of the edit distance table, with the band having a stan-
dard width of (the maximum edit distance ∗ 2 + 1). To determine
where to begin the band computation, iGenomics attempts to
exact-match a 20 bp substring of the read. A substring length of
20 bp was chosen because we found that it represented the op-
timal trade-off in terms of performance and reliability of iden-
tifying alignments. If the exact match is successful, the banded
distance will be computed relative to the matched position of
the substring. If the exact match is unsuccessful, an exact match
with the 20 bp substring of the read starting at the second char-
acter will be attempted. This process continues with the sub-
strings continuously moving 1 character over until either the
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Figure 7: A diagram showing how edit distance is computed for 2 strings. Each
cell of the matrix represents the minimum of 3 possible values: (1) the left cell

plus 1 (representing the cost of adding a gap on the left string); (2) the upper cell
plus 1 (representing the cost of adding a gap on the top string; and (3) the upper
left cell plus 0, if the top string equals the left string, or 1, if the characters do
not match to account for the cost of another substitution.

Figure 8: Table showing how the coverage profile is represented within iGe-
nomics, summarizing how the reads align to the reference genome (an example

of reads aligned to a reference genome is shown in Fig. 1). As can be seen in
the sixth column, there is a mutation where the base C was found when the
reference was base G.

read successfully aligns or none of the exact-matched 20 bp sub-
strings yields a successful alignment.

Coverage profile and variant identification

The coverage profile concisely summarizes how the reads are
aligned to the genome (Fig. 8). The internal data structure for
the profile is a coverage profile matrix, which spans the genome
and at each position contains a row for the number of matched
base pairs, A, C, G, T, and (non–base pair) deletion characters.
The matched positions of each read are tallied and the charac-
ters of the read are added, so that the positions of the matrix that
the read overlaps are marked within the matrix. Once the cover-
age profile matrix is completely generated, variants can be iden-
tified, a graphical representation of the profile can be formed,
and the number of alignments can easily be seen.

Variants are identified by scanning the array of matched
characters, and at each position if the matched character dif-
fers from the reference character, a mutation, or variant, would
be reported [15]. The major challenge of this analysis is distin-
guishing sequencing errors from real mutations, and differen-
tiating between homozygous and heterozygous mutations. In
a diploid genome, homozygous mutations are mutations that
occur on both copies of a chromosome whereas heterozygous
mutations occur on 1 copy of a chromosome but not both. iGe-
nomics recognizes heterozygous mutations as positions in the
genome where there is a nearly equal coverage of >1 base ex-
isting in the set of aligned reads according to a user-specified
relative minimum heterozygosity threshold. Thus, if ≥2 bases
at a position have relative coverages greater than that thresh-
old, the mutation present at that position is considered to be
heterozygous. In haploid species, such as the viral and bacterial
pathogens described above, this threshold is used to find vari-

ants that occur within a minimum allele frequency within the
population.

Immediately after alignment has completed, each position
within the reference genome is assigned a value indicating
whether the reads at that position matched either exactly, het-
erozygously, homozygously, heterozygously where there is a
known mutation, or homozygously where there is a known mu-
tation. This allows iGenomics to highlight all mutations with
their associated heterozygosity and importance. Known muta-
tions are loaded through a user-inputted text file. This file con-
tains each known (important) mutation’s reference base, mu-
tated base, position, segment (or chromosome) that the muta-
tion is expected to occur in, and a free-text description of what
this mutation indicates. The known mutations functionality en-
ables iGenomics to be specifically targeted for the analysis and
treatment of different genomes, such as known mutations asso-
ciated with influenza antiviral resistance.

Visualizations and interactive analysis

The main challenge with the GUI was to create one that was
both useful and unique when compared to other desktop DNA
analysis software. The key to achieving these goals was to take
advantage of the distinctive features of the iOS environment. Ul-
timately, a custom graphics engine was built to handle the con-
stant redrawing of the analysis interface, and, visually, this en-
gine sits on top of Apple’s CoreGraphics library. In addition to
the analysis interface, a utility interface was developed, which
contains features for rapidly analyzing and quickly navigating
the alignments.

The solution to developing this interactive analysis screen
was to use many touch-related functions that are natural to
anyone who has ever used a touch screen mobile device (Sup-
plementary Figs S2–S8). Scrolling requires a simple finger drag,
while viewing a large-scale version of the coverage profile
merely requires performing a pinch gesture on the screen. The
information pertaining to mutations can be viewed at any po-
sition by tapping on one of the reference genomes or found
genome boxes at that position. Even this action takes advantage
of the mobile iOS environment because a popover view is used
to display the information at the tapped position. At the bottom
of the screen, there is a variable scrubbing speed slider so that
the user can move across the genome quickly or at a slower rate
by dragging up while moving the slider.

Simple functions such as searching for a specific query or po-
sition are also included in the analysis view. To minimize clutter
on the screen, when a user searches for a certain string, he/she
is instantly taken to the next occurrence of that string, as op-
posed to displaying a large list of positions to the user. One of the
most notable of these functions is the ability to change the min-
imum relative heterozygosity value (known as mutation cover-
age within iGenomics) on the fly through a slider. Once the user
has concluded analyzing on the mobile device, he/she has the
option to export mutations and analysis data via a variety of
means: e-mail, Dropbox, Airdrop, or sharing via installed apps
(such as Google Drive). The mutations are outputted in a VCF
file format so that they are compatible with traditional desktop
analysis software.

Flu isolate sequencing

Sample collection and amplification
Clinical specimens of nasopharyngeal swabs were collected
from patients in New York City during the 2014–2015 flu season
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as previously described [24]. The specimen used in this study
was designated as A/New York/A39/2015 (H3N2) and is avail-
able in the SRA as sample ID SAMN08454624. Briefly, the RNA
was eluted in 30 μL of RNase-free water and 3 μL was used
as a template for the amplification of the entire influenza A or
B genome using a previously described multi-segment RT-PCR
method [35]. The presence of the cDNA copies of the genomic
segments was examined by running 3 μL of the multi-segment
RT-PCR amplicons on a 0.8% agarose electrophoresis gel. The
influenza genomic amplicons were purified using a 1x Agen-
court AMPure XP purification step (Beckman Coulter, Indianapo-
lis, IN), and assessed by Qubit analysis (ThermoFisher, Waltham,
MA) to quantify the mass of the double-stranded cDNA
present.

Nanopore MinION sequencing
The library preparation and sequencing procedures were
performed following manufacturer’s instructions for the
Nanopore Sequencing using the SQK-MAP006 kit (Oxford
Nanopore Technologies, Oxford, UK). Purified DNA was used
for end repair and dA-tailing, followed by 1× AMPure XP
beads purification. The resultant DNA was quantitated by
Qubit analysis and the molarity was further determined by
using the Agilent 2200 TapeStation system with a Genomic
DNA ScreenTape (Agilent, Santa Clara, CA). Next, 0.2 pmol of
the DNA was used in adaptor ligation, and the reaction was
purified using MyOne C1-beads. The final DNA was eluted in
25 μL Elution Buffer and is called Pre-sequencing Mix. For the
SQK-MAP006 sequencing kit, 12 μL Pre-sequencing Mix was
combined with 75 μL 2× Running Buffer, 59 μL nuclease-free
water, and 4 μL Fuel Mix and then loaded into the FLO-MAP003
flow cell. A re-loading was also performed. The sequencing
was run on the MIN-MAP001 MinION sequencing device,
which was controlled by the MinKNOW software using the
MAP 48Hr Sequencing Run.py script provided by ONT or using
the MAP 140to5xVoltage Tuned plus Yield Sequencing Run.py
script provided by John Tyson of the University of
British Columbia. Raw data were uploaded to the cloud-
based Metrichor platform and base-calling was per-
formed using the application of 2D Basecalling for SQK-
MAP005 Rev 1.62 or 2D Basecalling for SQK-MAP006 Rev
1.62.

Illumina MiSeq sequencing
The sample was prepared for sequencing on the Illumina
MiSeq platform (Illumina, San Diego, CA) according to the
manufacturer’s protocol (15,039,740 v01) as previously de-
scribed [24]. Sequencing data were then generated by a
2 × 300 bp run using an Illumina MiSeq 600 Cycle v3
reagent kit.

Availability of Supporting Source Code and
Requirements

Project name: iGenomics
Project home page: https://github.com/stuckinaboot/iGenomics
Operating system(s): iOS
Programming language: Objective-C
License: MIT License
Other requirements: Precompiled binary is for free on Apple’s
App Store (https://apple.co/2HCplzr)
RRID:SCR 019142

Data Availability

All sequencing data (genuine and simulated) along with a tuto-
rial on iGenomics are available at http://schatz-lab.org/iGenomi
cs/. We have also archived all of these data along with the code
for reproducing the results from this article in the GigaScience
Database, GigaDB [36].

Additional Files

Supplementary Figure S1. Mutation identification accuracy for
simulated H1N1 flu datasets. Plots show the accuracy of vary-
ing mutation rates and read length for iGenomics (left) and
the BWA-MEM/SAMtools (right) pipeline. The results were com-
puted in the same manner as described in the third section of
the Results (Simulated read accuracy analysis): the simulated
reads consisted of H1N1 read sets simulated with a mean cover-
age value of 100 and for all combinations of the following sets of
parameters: sequence error rates of 0.01, 0.1, and 0.2, mutation
rates of 0.001, 0.01, and 0.1, and read lengths of 100, 250, and
1,000 bp.
Supplementary Figure S2. iGenomics reference selection. (Left)
launch screen, (middle) file selection page, (right) individual file
selector. By pressing the “Start” button on the launch screen,
the user is brought to the file selection page. Pressing “Select
File” on the file selection page will allow the user to use the
individual file selector to choose a default file (pre-packaged
with iGenomics) or imported file (saved to iGenomics from an
external app) or to use Dropbox’s UI to choose a file from
the user’s Dropbox account. Additionally, the user can select
“Analyze,” which will immediately begin to align the input
reads to the reference using the most recently used parame-
ters, or “Configure,” which will present the parameter selection
page.

Supplementary Figure S3. iGenomics alignment parameter
selection. (Left) parameter selection page with trimming dis-
abled, (middle) parameter selection page with trimming en-
abled, (right) computing page. From the file selection page
in Supplementary Fig. S2, if the user chooses “Analyze,” the
right computing page will be shown and if the user chooses
“Configure,” the parameter selection page will be shown with
the last parameters used. Pressing “Start Aligning” from the
parameter selection page will begin aligning the reads us-
ing the configured parameters. On the computing page, the
percentage indicates the total percent of reads aligned and
the time remaining indicates the estimated time remain-
ing before the alignment and variant identification process
completes.
Supplementary Figure S4. iGenomics summary views. (Top)
view selection page, (middle) alignment details page, (bottom)
segment selection page. The view selection page allows the user
to view the alignments display and coverage profile (shown in
Fig. 1) as well as the coverage histogram and found mutations list
(shown in Supplementary Fig. S5). The alignment details page
displays information about the alignments, including the reads
and reference file names, percentage of reads that matched, and
the number of mutations, and allows the user to search the ref-
erence genome and adjust the minimum relative heterozygos-
ity value (known as mutation coverage within iGenomics). The
segment selection page lets the user intuitively choose a partic-
ular segment in the reference genome for which to view align-
ment information. These 3 pages, in addition to a fourth page
(the important mutations display shown in Fig. 1), can be navi-
gated with just a swipe.

https://github.com/stuckinaboot/iGenomics
https://apple.co/2HCplzr
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:SCR_019142
http://schatz-lab.org/iGenomics/
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Supplementary Figure S5. iGenomics coverage histogram and
mutation list. (Top) coverage histogram, (bottom) found muta-
tions list. The coverage histogram displays a plot of the frequen-
cies of each coverage value with a Poisson curve for context.
In these screenshots, we used simulated H1N1 reads of length
100 bp with a mean coverage value of 100. The found mutations
list displays the number of mutations identified in each segment
and information about each of those mutations. By tapping the
circle “i” icon, the user can navigate directly to the mutation in
the coverage profile or alignments view (whichever was most re-
cently used). Adjusting the mutation coverage slider in Supple-
mentary Fig. S4 will affect the mutations that are displayed in
this list.
Supplementary Figure S6. iGenomics read information. (Top)
position information popover, (bottom) read alignment popover.
The position information popover for a given position displays
coverage details, heterozygosity, and, if present, insertion muta-
tions. This popover can be invoked by double-tapping anywhere
in the column for a position from within the alignments display
or coverage profile. The read alignment popover shows specifi-
cally how a particular read aligned to the reference genome, and
can be brought up from the alignments display by long-pressing
an aligned read.

Supplementary Figure S7. iGenomics iPad alignment display.
(Top left) alignments display, (top right) coverage profile, (bot-
tom left) partially zoomed-out coverage profile, (bottom right)
fully zoomed-out coverage profile. The iPad application for iGe-
nomics strongly resembles that of the iPhone application for all
views except the analysis ones. In the analysis view, alignment
details are always visible at the top of pane and the alignments
display/coverage profile is displayed below the details. As with
the iPhone version of iGenomics, the user can switch between
the alignments display and coverage profile and can zoom out
of either to see the relative coverage at varying levels of granu-
larity.
Supplementary Figure S8. iGenomics iPad analysis display. (Top)
analysis utilities, (bottom) found mutations list. Tapping the 3-
line icon (hamburger button) in the top left of the analysis view
will bring up the analysis utilities, which contains the same ca-
pabilities as the iPhone version of iGenomics but presents views
in iPad-native popovers rather than new full-screen pages. Tap-
ping on any of these utilities, such as the “Mutation List,” will
present the results in a popover.
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