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Abstract

Understanding the inherited nature of how biological processes dynamically change over

time and exhibit intra- and inter-individual variability, due to the different responses to envi-

ronmental stimuli and when interacting with other processes, has been a major focus of sys-

tems biology. The rise of single-cell fluorescent microscopy has enabled the study of those

phenomena. The analysis of single-cell data with mechanistic models offers an invaluable

tool to describe dynamic cellular processes and to rationalise cell-to-cell variability within the

population. However, extracting mechanistic information from single-cell data has proven

difficult. This requires statistical methods to infer unknown model parameters from dynamic,

multi-individual data accounting for heterogeneity caused by both intrinsic (e.g. variations in

chemical reactions) and extrinsic (e.g. variability in protein concentrations) noise. Although

several inference methods exist, the availability of efficient, general and accessible methods

that facilitate modelling of single-cell data, remains lacking. Here we present a scalable and

flexible framework for Bayesian inference in state-space mixed-effects single-cell models

with stochastic dynamic. Our approach infers model parameters when intrinsic noise is mod-

elled by either exact or approximate stochastic simulators, and when extrinsic noise is mod-

elled by either time-varying, or time-constant parameters that vary between cells. We

demonstrate the relevance of our approach by studying how cell-to-cell variation in carbon

source utilisation affects heterogeneity in the budding yeast Saccharomyces cerevisiae

SNF1 nutrient sensing pathway. We identify hexokinase activity as a source of extrinsic

noise and deduce that sugar availability dictates cell-to-cell variability.

Author summary

Understanding the causes of heterogeneity and the means by which it can be controlled is

crucial for manipulating cellular populations and treating diseases. To this end, single-cell
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time-lapse microscopy data is often combined with dynamic modelling. However, the

construction of mechanistic models requires the ability to infer unknown model quanti-

ties from data, while simultaneously accounting for intrinsic and extrinsic noise. Here we

propose a Bayesian inference framework which enabled us to elucidate sources of cell-to-

cell variability in yeast signalling and provides deeper insights into the causes and conse-

quences of heterogeneity. Our approach is versatile and can for example further be applied

in pharmacokinetic and pharmacodynamic studies, epidemic studies, as well when

modelling the behaviour of cancer cell populations.

This is a PLOS Computational Biology Methods paper.

Introduction

Traditionally, investigations in the life sciences have focused on a population “ensemble aver-

age” level. On one side, such population approach reduces noise from atypical cells. However,

any cellular population is in general heterogeneous, with a range of different physical, chemi-

cal, and biological properties. Thus, population methods smooth out and hence miss biologi-

cally relevant cell-to-cell variability [1]. For example, such approaches will overlook drug-

resistant bacteria or cancer cells in a general cell population. Furthermore, cell-to-cell variabil-

ity plays an important role in the decision making of a population, such as quick adaptation to

fluctuating environments [2]. The only way to identify all biologically relevant processes, and

thus describe cell heterogeneity, is to investigate the whole population cell-by-cell [3].

To study life processes occurring in individual cells within the population, fluorescent

time-lapse microscopy can be employed to track proteins in multiple cells over time [1]. Ide-

ally, this can give a view of cell heterogeneity, and potentially help elucidate cellular reaction

dynamics. However, to learn more from acquired data, dynamic modelling naturally comple-

ments time-lapse microscopy, and aids in deducing sources of cell-to-cell variability [4–6]. But

to fully exploit dynamic modelling, unknown model parameters must typically be inferred/

estimated from data [7]. This is non-trivial to perform from single-cell time-lapse data, mainly

because models describing individual cells must account for cell-to-cell variability caused by

both intrinsic (e.g., variations in chemical reactions) and extrinsic (e.g., variability in protein

concentrations) noise [8].

Several inference methods exist that, to various degrees, account for cellular heterogeneity

when inferring model parameters from time-lapse data. In common, they allow extrinsic noise

to be modelled by letting model parameters, e.g protein synthesis rates, vary between cells [4,

6, 9, 10]. Methods based on ordinary differential equations (ODEs) [6] further assume that

intrinsic noise is negligible. On the other side, the dynamic prior propagation (DPP) [4] and

the stochastic differential equation mixed-effects models (SDEMEM) [9, 10] encode intrinsic

noise via exact [11], or approximate [12] stochastic simulators, respectively.

Although useful, current inference methods have drawbacks. The fact that ODE-based

methods assume intrinsic noise to be negligible is often challenging to justify. The DPP

method imposes multiple model assumptions, such as time invariant rate constants. The SDE-

MEM methods employ approximate simulators to model intrinsic noise, that can be inaccu-

rate when few molecules control the dynamics [13]. Overall, available frameworks only

address specific questions. Moreover, there are scenarios where all existing methods are inade-

quate. For example, when studying a gene expression model with low numbers of molecules
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and a time-varying transcription rate, using available inference approaches will impose unreal-

istic model assumptions, potentially leading to incorrect model predictions [14].

To fully exploit the power, and facilitate usage, of stochastic single-cell dynamic models we

propose a flexible Bayesian inference framework for stochastic dynamic mixed-effects models.

By building upon a Bayesian inference framework originally thought for SDEMEMs [10], we

introduce a novel, computationally efficient inference method that (i) in our experiments has

shown to be 35+ times computationally faster than the solution in [10] and (ii) is capable of

inferring unknown model parameters when intrinsic noise is modelled by either exact [11, 15],

or approximate [12, 13] stochastic simulators. Moreover, by leveraging on the state-of-the-art

statistical methods [16, 17], our framework allows for large flexibility in how extrinsic noise is

modelled. Using synthetic examples, we show how this flexibility facilitates understanding of a

stochastic gene expression model regulated by an extrinsic time-varying signal and cellular

pathways where intrinsic noise causes cells to migrate between states. Further, by combining

time-lapse microscopy with microfluidics, we employ our inference framework to distinguish

between multiple network structures and identify sources of cell heterogeneity in the budding

yeast Saccharomyces cerevisiae SNF1 nutrient sensing pathway.

Results

Inference framework for stochastic dynamic single-cell models

We developed a flexible modelling framework, PEPSDI (Particles Engine for Population Sto-

chastic DynamIcs), which infers unknown model parameters from dynamic data for single-

cell dynamic models that account for both intrinsic and extrinsic noise (Fig 1). The latter can

be modelled hierarchically by letting parameters believed to vary between cells (such as protein

translation rates) follow a probability distribution. Furthermore, the model parameters can

incorporate extrinsic time variant signals, such as the circadian clock [18], and measured

extrinsic data, such as cell volume. Intrinsic noise can be modelled by multiple stochastic simu-

lators, specifically the exact Stochastic Simulation Algorithm (SSA, Gillespie) and Extrande

simulators [11, 15], and the approximate tau-leaping [13] and Langevin simulators [12].

Hence, PEPSDI is applicable for gene expressions models with low numbers of molecules [19],

and signalling models where large numbers of molecules can make exact simulations unfeasi-

ble [13]. This framework can further infer the strength of the measurement error, and is suit-

able when either all, or a subset of the model components are observed. More formally, our

methodology produces Bayesian inference for state-space models with latent dynamics incor-

porating mixed-effects, that is state-space mixed-effects model (SSMEM). It builds upon and

expands with increased computational efficiency (see further below), the schemes previously

proposed for SDEMEMs [10].

From the statistical inference point of view, PEPSDI is a Gibbs sampler targeting the full

posterior distribution of all unknowns. To allow large flexibility in the model construction,

some of the Gibbs-steps can be performed using Hamiltonian Monte Carlo (HMC) [17]. For

example, it can be assumed that the synthesis and breakdown rates of a protein follow a log-

normal distribution and if correlation between the rates is suspected, a priori, the HMC sam-

pler permits efficient inference of the correlation [20]. For the Gibbs-steps where the likeli-

hood function is intractable, PEPSDI uses a pseudo-marginal approach employing particle

filters [16]. This enables the user to select from a wide range of stochastic simulators [13]. Fur-

thermore, for computational efficiency we employ, when possible, correlated particle filters

[21], and tune the parameters proposal distribution using adaptive algorithms [22–24].

Our framework can be run in two ways. The first way employs the Gibbs sampler developed

in [10] (Algorithm 2 in S1 Text). As this approach requires a particle filter to estimate the full
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data likelihood (over all individuals) when inferring parameters that are constant between

cells, it can be computationally demanding for data sets with many individuals (> 50). Hence,

we developed a novel Gibbs sampler (Algorithm 3 in S1 Text), where we allow cell constant

parameters to vary weakly between cells. This removes the expansive inference of those param-

eters (full details in Materials and methods and Section A in S1 Text). Our new Gibbs sampler,

which is the default option in PEPSDI, can speed up the inference by a factor of 35 for a data

set with 100 cells, as measured in wall-clock time compared to the former Gibbs sampler (S3

Fig), and larger speedups are likely attainable when the number of observed cells increases.

Overall, with PEPSDI we extend the Wiqvist’s et al. framework, which was conceived for

SDEMEMs [10], to a wide array of stochastic dynamic mixed-effects models by leveraging

existing particle filters [9, 25] and the flexibility of HMC [17]. PEPSDI is written in Julia [26],

and is available on GitHub (https://github.com/cvijoviclab/PEPSDI) (more details in the Mate-

rials and methods section). To encourage usage of our framework, the provided code is flexible

with regards to the model structure, and all examples are available as notebooks (https://

github.com/cvijoviclab/PEPSDI/tree/main/Code/Examples). Guidelines on how to run the

inference schemes are presented in Section B in S1 Text, and a tutorial is in Section C in S1

Text. The mathematical description of PEPSDI is provided in Materials and methods and Sec-

tion A in S1 Text.

Application to simulated circadian clock gene expression model

We applied the developed inference framework on simulated data from a simple circadian

clock [18] gene expression model (Fig 2A). The circadian clock was modelled as a sine func-

tion regulating the transcription rate, causing the protein levels to oscillate (Fig 2B). Moreover,

to simulate strong intrinsic noise, the numbers of molecules was kept low.

Additional extrinsic noise was simulated by letting the cell-specific rate constants follow a

multivariate log-normal distribution, cðiÞ � LN ðμ;ΩÞ, where μ andΩ are the mean and

Fig 1. PEPSDI: A Bayesian inference framework for single-cell stochastic dynamic models. Single-cell time-lapse data obtained via fluorescent

microscopy often exhibits considerable cell-to-cell variability (left). Dynamic modelling (middle) can help elucidate both the reaction dynamics, and

sources of cell-to-cell variability behind such data. PEPSDI (right) is a flexible inference framework for dynamic stochastic single-cell models that

imposes few model assumptions. For example, extrinsic noise can be modelled by letting cell-individual quantities i) be modelled probabilistically as

c(i)� π(c(i)|η) (unknown extrinsic factors), ii) be combined with known extrinsic data (known extrinsic factors), and iii) be time-variant (time varying

extrinsic factors). Furthermore, PEPSDI includes multiple stochastic algorithms for modelling intrinsic noise, and assumes that the observed data y(i) is

acquired with a measurement error. Overall, based on the observed data PEPSDI can infer the cell individual parameters c(i), the cell constant

parameters κ, the population parameters η and the strength of the measurement error ξ.

https://doi.org/10.1371/journal.pcbi.1010082.g001
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covariance matrix of the associated Gaussian distribution. Its multiplicative nature [27] makes

the log-normal distribution a common choice for modelling parameters believed to vary

between cells [6]. We also correlated the rate parameters to emulate that protein synthesis and

degradation rates might co-vary [5, 28] (additional setup details are in Section D in S1 Text).

Since the standard SSA algorithm cannot handle the time-varying transcription rate, we

modelled intrinsic noise via the exact Extrande simulator [15]. Faster approximate algorithms

can also be used to model intrinsic noise, but here the low numbers of molecules in the model

made these impractical [29].

We ran PEPSDI for 50, 000 iterations and recovered the true model parameters and how

they vary within the cell population (Fig 2D and S1 Fig). There is a slight bias in the cell-to-cell

variability of the breakdown rates (τ2, τ4). When simulating and performing inference on 60

additional cells (thus 100 in total) this bias persists, however the posterior modes get slightly

closer to the ground-truth values, compared to when using only 40 cells, and the parameters

uncertainty decrease (S1 Fig). This suggests that to fully recover how kinetic rates vary between

Fig 2. Applying PEPSDI on synthetic data from circadian clock gene expression model. A) Schematic representation of the gene expression model.

The model consists of two states (mRNA, Protein), and four reactions with associated rate constants c = (c1, . . ., c4). The circadian clock, modelled as a

sine function with a period of 24 hours, regulates the transcriptions activity c1. Extrinsic noise was simulated by assuming that rate-constants jointly

follow a log-normal distribution: c � LN ðμ;ΩÞ. B) Protein count per cell for 40 cells simulated using the gene-network model. Data was simulated

using the exact Extrande algorithm with an additive Gaussian measurement noise. C) Posterior visual checks [30]. The plot was generated as follows: i)

from the inferred posterior distribution, simulate 40 cells, and ii) for trajectories corresponding to the 40 cells compute their 0.05, 0.5, 0.95 quantiles at

each time point. This was repeated 10, 000 times independently and we then computed the 95% credibility intervals for these quantiles. The blue lines

correspond to the observed quantiles (from the data in (B)). D) Inference results using the data in B). The plots shows the marginal posterior for μ =

(μ1, . . ., μ4) and τ = diag{Ω}1/2. E) Using the inferred model to predict the outcome of adding an extra gene in the model. An extra gene was modelled

by doubling the transcription rate c1. The grey lines represent 95% credibility intervals for the 0.05, 0.5 and 0.95 quantiles (obtained as in subplot (C))

when simulating the inferred model with c1 doubled. The blue lines and error bars represent the true 95% credibility intervals when observing 40 cells.

https://doi.org/10.1371/journal.pcbi.1010082.g002
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cells, if only the protein number is measured, in a simple gene expression model (as in Fig 2A)

is challenging.

The inferred model has predictive power. We considered an experiment where an addi-

tional gene is inserted into the model, and time-lapse data is collected for 40 new cells. The

model accurately predicts an increase in both, protein and cell-to-cell variability levels

(Fig 2E).

Application to simulated stochastic bistable model

Intrinsic noise can have a strong impact on cellular dynamics [31, 32]. Cellular processes have

been shown to exhibit stochastic oscillations in gene regulation [31] and stochastic bistability

as reported for the lac-operon regulation [32]. To study the performance of PEPSDI for such a

process, we implemented the Schlögl model (Fig 3A) [33], where cells stochastically migrate

between states of high and low gene expression (Fig 3B).

To simulate extrinsic noise, we let one of the synthesis rates, c3, follow a log-normal distri-

bution. To emulate that certain model parameters, such as protein dissociation rates, can have

a neglectable variability [4], we kept a synthesis (c1) and dissociation rate (c2) constant between

individuals. The synthesis rate c4 was assumed to be known (additional setup details are in Sec-

tion D in S1 Text).

To account for large numbers of molecules, we modelled intrinsic noise via the fast, approx-

imate Langevin simulator. We then used so-called guided proposals [9], directing simulations

towards observed values, which makes the inference more efficient for models with stochastic

events.

Fig 3. Applying PEPSDI on synthetic data from stochastic bi-stable model. A) Schematic representation of the stochastic bi-stable Schlögl model.

Since the species (A, B) are assumed to be available in excess, the model consists of one state (X) and four reactions with associated rate constants c =

(c1, . . ., c4). Extrinsic noise was simulated by assuming that c1 follows a log-normal distribution; c1 � LN ðm; t2Þ. The remaining parameters are

assumed to be cell-constant and c4 is assumed to be known. B) Molecule count of X per cell for 150 cells simulated using the Schlögl model. Data was

simulated using the SSA algorithm with an additive Gaussian measurement noise. Noticeably, a subset of cells stochastically migrates between two cell-

states. C) Inference results using the data in (B)). To efficiently infer the posterior distribution the model was simulated using the Langevin simulator.

The plots show the marginal posterior for the population parameters (μ, τ), and the cell-constant parameters (c2, c3).

https://doi.org/10.1371/journal.pcbi.1010082.g003
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We ran PEPSDI for 100, 000 iterations, and posterior distributions of the modelled quanti-

ties were recovered (Fig 3C and S2 Fig), allowing for better understanding of mechanistic

properties of the model. For example, by simulating the inferred model it becomes apparent

that low values of the synthesis rate c1 commit cells to a first cell-state, e.g of low gene-expres-

sion, while for large values of c1, cells commit to, and jump between, two different states of

gene expression (S2 Fig).

Performance evaluation of adaptive MCMC proposals

To propose unknown model quantities that rely on a pseudo-marginal step in our Gibbs sam-

pler (see Materials and methods), PEPSDI includes three adaptive Markov chain Monte Carlo

(MCMC) schemes: the adaptive metropolis (AM) [22], the AM with global scaling (Alg. 4 in

[23]), and the robust AM (RAM) samplers [24]. These schemes were developed for problems

where the likelihood function is available, not approximated via a Monte Carlo scheme as in

the pseudo-marginal methods. Thus, we benchmark these three adaptive MCMC proposal

schemes to see how they perform with stochastic approximations to the likelihood (full details

in Section D in S1 Text). For computational reasons, single time-series inference for two differ-

ent models is considered.

For the Schlögl model (Fig 3A), the stochastic bistability (Fig 3B) causes the likelihood

approximation used in the pseudo-marginal method to have a large variance despite the usage

of guided proposals. To investigate if this impacts the performance of adaptive MCMC

schemes, we launched multiple inference runs with 60,000 iterations each. Overall, the RAM

sampler had on average the highest multiple effective sample size (MultiESS) value [34], thus

providing a larger number of nearly independent samples (Fig 4A). This sampler also had the

smallest variability in the MultiESS, suggesting it is robust against, for example, bad starting

guesses (start guess 3 and 4 in Fig 4A).

For the Ornstein-Uhlenbeck stochastic differential equation model (Section D in S1 Text),

the likelihood approximation has a small variance and exact Bayesian inference is possible

because the likelihood can be exactly calculated using the Kalman filter [35]. Hence, in addi-

tion to the same setup as for the Schlögl model, we compared the several posteriors obtained

via particles-based PEPSDI methodology (by using different number of particles and different

starting parameters) against the “gold standard” posterior produced with the exact likelihood.

The comparison was produced by computing the first order Wasserstein distance between

each PEPSDI posterior and the exact one for the three kinetic parameters in the model. We

used the last 15,000 posterior samples to compute the distance via the R transport package

[36]. Overall, the RAM sampler has the best MultiESS (Fig 4B), and the Wasserstein distance

for the RAM sampler is the smallest and has the smallest variability (Fig 4C).

Application to glucose repression pathway

After considering synthetic examples, we set out to study the SNF1 pathway in S.cerevisiae.
The SNF1 complex, and its mammalian homolog AMPK plays a major role in both metabolic

regulation and maintenance of cellular homeostasis. In response to stress, such as ageing or

nutrients limitation, SNF1 mediates the signal transduction to transcription factors. Mig1 is a

transcriptional repressor which the SNF1 complex deactivates when energy-rich carbon

sources are limited. This is followed by Mig1 relocalisation to the cytoplasm and release of

repression of genes responsible for utilisation of alternative carbon sources [37, 38]. If the

amount of energy-rich nutrients is elevated, Mig1 translocates to the nucleus [39]. This process

is accompanied by Mig1 dephosphorylation where the Reg1 phosphatase plays the main role
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[1]. While this signalling cascade is well studied, it has also been indicated that the SNF1 path-

way dynamics exhibits a high range of cell-to-cell variability [40].

To deduce the dynamics of the SNF1 pathway at a cell level, time-resolved data is required.

We utilised fluorescent microscopy to follow Mig1 on a single-cell level and observe its locali-

sation over time (Fig 5A and 5B). This was coupled with microfluidics systems enabling high

Fig 4. Benchmarking adaptive MCMC-proposals for pseudo-marginal inference. A) Benchmark results for the Schlögl model. The quality of the

adaptive schemes was measured using the MultiESS-criterium [34], where higher values are better. For computational reasons the benchmark was

performed for a single-individual (single time-series data). Overall, we simulated three datasets. For each dataset we ran five pilot runs with initial

parameter values set at randomly chosen prior locations, and then tuned the number of particles (Section D in S1 Text). Starting from the last drawn

parameter value in each pilot run, 10 further inference runs each of 60, 000 iterations were independently launched. For each chain, we then discarded

the 20% first iterations, and used the remaining samples to compute the MultiESS (of all inferred parameters). The colours denote the several adaptive

proposal schemes, and the colour bar represents the number of particles selected by the tuning scheme after the pilot run. A high number of particles

implies longer run-times, and an inefficient pilot run. B-C) Results for the MultiESS and Wasserstein distance for the Ornstein-Uhlenbeck model. The

benchmark conditions were the same as in A). The Wasserstein distance was approximated by using the last 15,000 posterior samplers of each chain for

the kinetic parameters (c1, c2, c3), and compared against the last 15,000 samples from a gold-standard posterior inference run where the Kalman filter

was used to exactly compute the likelihood of the Ornstein-Uhlenbeck model.

https://doi.org/10.1371/journal.pcbi.1010082.g004
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Fig 5. The impact of fructose on Mig1 dynamics. Mig1 localisation in response to the media exchange from media containing 0% fructose (no fast-

fermentable carbon sources present) to media containing A) 0.05% fructose and B) 2% fructose. The white lines correspond to 5μm scale bars. Exchange of

media was achieved through an open microfluidic system. Green fluorescent protein (GFP) images depict Mig1 localisation before and after switching of the

media at the noted times. Brightfield images taken as control for the cell localisation. Red fluorescent protein (RFP) images depict Nrd1, a protein which is

stationary in the nucleus and used as nuclear marker. C) The nuclear intensity of Mig1 for each single cell in the experiment is given by the localisation index

of Mig1 over time (minutes). Localisation index is determined by (Mig1n-Mig1c)/Mig1c (for short called Mig1n / Mig1c in the paper) with Mig1n being the

intensity of Mig1 in the nucleus and Mig1c the intensity in the complete cell. All cell traces are grey, three random selected cells are given in blue. Combined

data sets consist of N = 37 individuals, with N0.05 = 22 for the 0.05% and N2.0 = 15 cell for the 0.05% and 2.0% fructose experiments, respectively.

https://doi.org/10.1371/journal.pcbi.1010082.g005
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control of the cell environment. Mig1 localisation was followed during 15 min after cells were

switched from carbon source-depleted conditions to two different fructose concentrations (w/

v): 0.05%, and 2% (Fig 5C).

Modelling of Mig1 nuclear dynamics

To elucidate both the source of cell heterogeneity and reaction mechanisms behind the Mig1

dynamics data (Fig 5C), we formulated and analysed two network structures (Fig 6A and 6B)

and two extrinsic noise sources (Fig 6C and 6D), resulting in four plausible models. In both

network structures, Mig1 shuttles between the cytosol and nucleus in a carbon source-depen-

dent [41] and -independent manner [42]. The carbon source-dependent response has been

observed to occur in two phases: a transient initial Mig1 nuclear entry followed by nucleocyto-

plasmic shuttling [43]. This can be explained by two independent pathways regulating glucose

derepression. One pathway activating the Snf1 kinase and the other one directing Snf1 towards

Mig1 [44]. We investigated whether the first pathway promotes Mig1 nuclear entry via a fast

signal (Fig 6A), or if Mig1 nuclear entry is delayed due to Reg1 activation (Fig 6B). The second

pathway was modelled via an unknown metabolic component since Mig1 dynamics are closely

intertwined with metabolic activity [40, 43] (Section E in S1 Text).

Multiple extrinsic noise sources likely affect Mig1 shuttling dynamics. Upstream, Mig1 is

regulated by the metabolic activity [43], which in turn is affected by noise sources, such as cell

cycle state, cell-lineage effects like cell wall composition, and cell varying protein levels. Since

our experimental setup could not distinguish between these sources we lump and model them

by letting the rate constants (c1, c2) vary between cells (Fig 6C), as the latter incorporate multi-

ple processes in the initial glycolysis. Since the rates (c1, c2) also encompass fructose abun-

dance, we assume and infer fructose-dependent log-mean values. The second extrinsic noise

source proposal (Fig 6D) takes into account that the cell-to-cell variability might be fructose-

dependent. To capture extrinsic noise arising from varying protein levels, we assumed that the

Mig1 initial values vary between cells (Mig1ct0, Mig1nt0).

We employed literature-supported priors (Section E in S1 Text) and ran PEPSDI multiple

times for each proposed model. Models were compared using posterior visuals check [30], that

has the capability to capture both the observed trend and cell-to-cell variability (Fig 6E and 6F

and S4 Fig). Overall, the model with a delayed fructose activation of Mig1 nuclear export and a

fructose-dependent cell-to-cell variability in Mig1 regulation best described the data (model

2B Fig 6F).

Cell-to-cell variability in Mig1 nuclear dynamics is tightly regulated by

fructose availability

After selecting the best model, we set out to investigate the characteristics of the inferred

model parameters. To be interpretable a parameter should be inferred unambiguously, i.e., be

identifiable. Assessing identifiability rigorously for a mixed-effects models with stochastic

dynamics is outside the scope of this paper, however we addressed identifiability by comparing

the posterior distributions from 8 different inference runs. For some parameters, like log-

mean(c1), the runs converged to different modes showing that parameters cannot be deter-

mined uniquely (S4 Fig). However, some parameter properties were consistent between runs,

like a strong correlation between (c1, c2) (Fig 6H and S4 Fig) suggesting that certain properties

are identifiable.

The inferred coefficient of variations for the rates that describes upstream metabolic regula-

tion of Mig1 localisation (c1, c2), shows that these rates substantially differ between cells (Fig

6H and S4 Fig). When the model is fitted without variability in these rates, that is cell-to-cell
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Fig 6. Modelling Mig1 dynamics in response to fructose addition. A) Proposed network structure 1 of Mig1 localisation dynamics. The model consists of

three states, nuclear Mig1 (Mig1n), cytosolic Mig1 (Mig1c) and a metabolic component. The model proposes that a fructose signal directs Mig1 nuclear

import, and that nuclear export is directed by a metabolic signal. B) Proposed network structure 2. In addition to structure 1 Mig1 nuclear entry is modelled

as delayed due to Reg1 activation. C) Modelling proposal A of extrinsic noise. Since (c1, c2) encompass multiple cellular processes, and initial Mig1-levels are

cell-varying, extrinsic noise was modelled by letting these follow a full log-normal distribution. Since (c1, c2) include the external fructose we model different

log-mean values for the 2% and 0.05% conditions. D) Extrinsic noise proposal B. Additionally to proposal A, we model fructose dependent variability (τ-

values) for (c1, c2). E-F) Posterior visual check for the 2% fructose data for model structure 1 and 2, using extrinsic noise-proposal A and B. The credibility

intervals (bands) were obtained as in Fig 2. Black lines are the observed quantiles. Model structure 2 with extrinsic noise proposal B (model 2B) best describes

the observed trend, and cell heterogeneity. g) Posterior visual check as in F) for model 2B with no correlation between (c1, c2, Mig1n, Mig1c) (diagonalΩ).

This yields an increase in cell-to-cell variability seen by the 0.05, and 0.95 quantile credibility intervals. H) Marginal posterior distribution for a subset of

parameters in model 2B. The log-normal coefficient of variations cvðciÞ ¼ expðt2
i Þ � 1 are fructose dependent, and (c1, c2) are strongly correlated.

https://doi.org/10.1371/journal.pcbi.1010082.g006
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variability is assumed to only arises from varying Mig1 levels and intrinsic noise, the model

does not capture the observed cell heterogeneity (S4 Fig). Taken together, this suggests that

upstream extrinsic noise contributes strongly to cell-to-cell variability in Mig1 localisation

dynamics. Furthermore, the magnitude of the variation in this extrinsic noise, particularly the

rate of activation of Reg1 via fructose (c1), is larger for low fructose conditions.

Our results show a correlation in the upstream extrinsic noise sources, specifically the (c1,

c2) rates (Fig 6H and S4 Fig), implying that cells with a strong fructose-dependent nuclear

import of Mig1, also have a stronger nuclear export. By simulating the model without correla-

tion, we confirm that this correlation regulates cell-to-cell variability (Fig 6G). Thus, our result

suggests that co-regulation of two fructose-dependent pathways controls cell heterogeneity in

Mig1 localisation dynamics.

The log-mean value of the rate parameter activating the metabolic component (log-mean

(c2)) shows that the magnitude of the long-term nuclear export of Mig1 is weaker in high fruc-

tose (Fig 6H and S4 Fig). This is consistent with previous reports that nuclear export of Mig1 is

primarily an effect of sugar depletion [41].

The hexokinase Hxk1 is a source of cell heterogeneity in Mig1 localisation

dynamics

In model simulations, the cell-varying rate constant c1 linearly correlates with the short-term

(0–15 min) Mig1 localisation upon fructose addition to sugar-starved cells (S5 Fig). Thus,

since c1 captures a signalling process acting on Reg1 from the initial hexose metabolism via the

hexokinase Hxk1, this result suggests a relationship between Hxk1 and observed cell-to-cell

variability.

To validate this prediction, we collected single-cell time-lapse microscopy data from a

hxk1Δ hxk2Δ strain carrying Hxk1-expressing plasmids where both Mig1 localisation and

Hxk1 expression are monitored upon fructose addition. In line with model predictions, the

observed Hxk1 expression linearly correlates with Mig1 localisation, and the magnitude of var-

iability in localisation explained by Hxk1 (linear regression R2-value) matches the predicted

magnitude (S5 Fig). We hence conclude Hxk1 as a source of cell heterogeneity in Mig1

dynamics.

Discussion

Understanding the inherited nature of how biological processes dynamically change over time,

and exhibit intra- and inter-individual variability, has been a major focus of systems biology.

The rise of single-cell fluorescent microscopy has enabled the study of those phenomena, but

further progress is limited by the availability of methods that facilitate modelling, the essential

follow up for rationalisation of such data. To address this, we developed PEPSDI, a versatile

Bayesian inference framework that (i) makes it possible to handle a wide range of mixed-effects

models with stochastic dynamics by appropriately exploiting existing algorithms, and (ii)

introduces a novel inference algorithm that makes computations considerably more scalable,

thus opening up for the possibility to model hundreds cells at once (full mathematical descrip-

tion in Section A in S1 Text). We used this algorithm to recover true model quantities for a cir-

cadian clock stochastic gene expression model, and deduce mechanistic details for a model

where cells stochastically move between two states of gene expression. We also studied SNF1

signalling in yeast and identified hexokinase activity as a source of extrinsic noise, and deduced

that sugar availability dictates cell-to-cell variability.

Modelling of Mig1 dynamics (Fig 6) suggests larger cell heterogeneity in upstream extrinsic

noise, specifically in the fructose-dependent activation of Reg1 (c1) and the component that
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regulates Mig1 shuttling (c2), upon fructose limitation (Fig 6H). We hypothesise the presence

of a sugar-dependent biological switch, triggered when fructose is present. This is consistent

with the fact that under low fructose, only a few cells due to extrinsic noise trigger the switch

leading to larger cell-to-cell variability. Moreover, results show that the magnitude of c2 is

larger under fructose limitation (Fig 6H). It has been reported that rapid activation of the

SNF1 complex upon glucose starvation is ensured by increased levels of ADP [45]. We there-

fore suggest that within the SNF1 pathway, ADP is a central part of the c2 rate constant, facili-

tating nuclear export of Mig1 via activation of the SNF1 complex. This is consistent with

elevated ADP levels upon limited glucose or fructose concentrations in the cellular environ-

ment. Moreover, hexokinases that we identified to be a part of the c1 rate, regulate Reg1, which

in turn also requires the abundant presence of a hexose sugar for full activity of the phospha-

tase [46]. Taken together, we hypothesise that c1 and c2 incorporate hexokinases and ADP,

respectively, and both are controlled via metabolism. This creates a tight co-regulation of the

SNF1 pathway, which controls cell heterogeneity (Fig 6G).

Besides studying Mig1 reaction dynamics, we used our framework to investigate noise

sources behind the observed cell heterogeneity. Our results suggest that upstream extrinsic

noise arising from metabolic activity is a major source of cell variability in Mig1 regulation (S5

Fig). Beyond this work, dynamic modelling combined with single-cell high quality time-lapse

data has been used to elucidate sources of noise in gene expression [4] and to understand the

role of extrinsic factors, like cell age, on gene expression [5]. As collecting time-lapse data

often is easier than directly measuring sources of cellular noise [8, 47, 48], PEPSDI is likely one

of the most promising tools to untangle it. Being more flexible than previously proposed

frameworks, we believe that our approach can be applied to many more systems beyond Mig1

signalling, where noise plays an important role.

The reason PEPSDI is flexible rests on its modifiable nature. This modularity facilitates

modelling of intrinsic noise by either the SSA [11], Extrande [15], tau-leaping [49] or Langevin

[12] stochastic simulators. Additionally, new modules, such as the hybrid-simulators [50] used

to study NFκB-pathway [51], can be incorporated. Likewise, new particle filters for the

pseudo-marginal modules can be added. Guided particle filters, like the one we used for the

Schlögl model, are particularly statistically efficient (as described in Section A in S1 Text) [9].

However, most guided filters are restricted to observational models having a linear structure

with additive Gaussian measurement noise, which is not always applicable for data in systems

biology and medicine [7]. The development of more flexible guided filters is thus important to

make frameworks like ours more efficient for a wide range of models.

Reproducibility and usability are key concepts for ensuring advances in our understanding

of biological processes. Besides being modifiable, we aimed to make our framework accessible,

by providing extensive tutorial notebooks on both, how to use it and how to leverage the

underlying pseudo-marginal framework to model single time series data. Additionally, to help

users of pseudo-marginal inference, we evaluated adaptive Markov chain Monte Carlo

(MCMC) proposals [22–24], which resulted in the RAM sampler [24] displaying the best per-

formance (Fig 4). However, our results were based on two models, and these also depend on

the specific parameters we used for each adaptive scheme (Section D in S1 Text). Further anal-

ysis is thus required before generalising our conclusions.

In summary, we have developed and employed a framework to deduce the reaction dynam-

ics, and sources of cell heterogeneity behind single-cell time-lapse data. Since PEPSDI is an

inference framework for dynamic state-space mixed-effects models, it can also be applied for

problems arising in ecology [9], neuroscience [10] and in pharmacokinetics and pharmacody-

namics (PKPD) [35]. Considering that PEPSDI does not impose strict model assumptions, it is

easy to envision additional applications, such as modelling the behaviour of cancer cell
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populations [52]. We believe that this approach will play an increasingly important role in

addressing challenging biological questions that cannot be answered by experimental

approaches only, thus providing novel insights for better understanding life processes.

Materials and methods

Stochastic simulations

Under the assumption that the system is well mixed, the dynamics of a stochastic reaction-net-

work of d species, X = (X1(t), . . ., Xd(t)), is described by the chemical master equation [13, 49].

The propensity function h(x, c, t) is a measure of the probability that one, out of R, reactions

will occur depending on X and the rate-constants c. Considering that the master-equation can

rarely be solved due to its probabilistic nature [13, 49], our inference framework relies on sim-

ulating from it.

The SSA direct method [11] produces exact stochastic simulations. Similarly, the Extrande

simulator [15] produces exact solutions when the rate-constants c are time variant. However,

both approaches simulate each reaction event and thus can be slow for large propensities [53].

Assuming that the propensities do not change noticeably during the time interval [t, t + τ]

(leap condition 1), the reactions will be close to independence of each other. Hence, the tau-

leap approach with fixed step-length can be used to update the state vector from time t to t + τ
[12, 54]. Further assuming that the propensities are sufficiently large in [t, t + τ] (leap condi-

tions 2), the state-vector can be updated via the chemical Langevin stochastic differential equa-

tion [12, 49]. Typically, the number of molecules must be large for leap condition 1 and 2 to

hold.

Our framework allows models to use the SSA method and the Extrande method when nei-

ther leap conditions holds. When one or both conditions holds, our framework allows usage of

either tau-leaping or the Langevin approach.

PEPSDI: Bayesian inference for single-cell dynamic models

PEPSDI performs Bayesian inference for state-space models with latent dynamics incorporat-

ing mixed-effects, shortly “state-space mixed-effects models” (SSMEMs). A state-space model

is a discrete-time, stochastic model that contains two sets of equations: (i) one describing how

a latent Markov process transitions in time (the state equation) and (ii) another one describing

how an observer measures the latent process at each discrete time-point (the observation equa-

tion), assuming conditional independence between observations given latent states. Thus, a

state-space model can describe a stochastic chemical reaction network. Here we outline

PEPSDI, and a more complete description also showing pseudo-algorithms and our novel and

efficient Gibbs sampler, is provided in Section A in S1 Text.

To perform inference, PEPSDI requires single-cell time-lapse measurements yðiÞl for the i-th

individual collected at (l = 1, . . ., ni) discrete time-points tðiÞ ¼ ðtðiÞ1 ; . . . ; tðiÞni Þ for i = 1, . . ., M
individuals. Note, from now we denote with “individual” the measurements from a single cell.

However, since PEPSDI can be used in other applied areas (e.g. ecology, PKPD, etc), an indi-

vidual is more generally a unit from the population of interest. The individual data is assumed

to be noise-corrupted as yðiÞl ¼ gðxðiÞl ; ϵ
ðiÞ
l Þ, where we use the shorthand notation zðiÞl to denote a

variable z observed at time tðiÞl . Here, ϵðiÞl can be considered as unobservable noise (e.g. mea-

surement error) which follows an error distribution ϵðiÞl � pϵðξÞ, and g(�) is a (possibly non-

linear) function of its arguments. To infer parameters in the nutrient-sensing Mig1 pathway,

the observed Mig1 data represents a ratio of nuclear to cytosolic intensity, and thus
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gðxðiÞl ; �
ðiÞ
l Þ ¼ Mig1NðtÞ=Mig1CðtÞ þ �ðiÞl , with independent �

ðiÞ
l � N ð0; s2Þ. We assumed this

error model since it has shown to work well in other modelling studies working with single-

cell fluorescent data for the SNF1 pathway [28, 40, 55].

For a SSMEM, PEPSDI infers (i) the vector of individual rate-constants c = (c(1), . . ., c(M))

where we assume cðiÞ � pðcjηÞ (i = 1, . . ., M), (ii) cell-constant rate-parameters κ that are

assumed to be shared by all cells, (iii) the parameters ξ for the measurement error, and (iv) the

population parameters η. The population parameters describe the distribution of the individ-

ual parameters, cðiÞ � pðcjηÞ. For example if c(i) follows a log-normal distribution, the popula-

tion parameter corresponds to η = (μ,Ω) and individual rate constants to cðiÞ � LN ðμ;ΩÞ.
By stacking the measurements from all individuals into y = (y(1), . . ., y(M)), the posterior distri-

bution we target is:

pðc; κ;η; ξjyÞ / pðcð1Þ; . . . ; cðMÞ; κ;η; ξÞ
YM

i¼1

pðyðiÞjcðiÞ; κ; ξÞ; ð1Þ

where π(c(1), . . ., c(M), κ, η, ξ) is the joint prior and p(y(i)|c(i), κ, ξ) is the likelihood term for

individual i. Note, in Eq 1 we have assumed that measurements from different individuals are

conditionally independent, given the individual-specific c(i) and the population parameters.

The posterior (Eq 1) is high-dimensional, and ideally we could sample from it via a Gibbs-

sampler [56] by looping through the following three steps:

1: pðcjκ;η; ξ; yÞ /
YM

i¼1

pðcðiÞjηÞpðyðiÞjcðiÞ; κ; ξÞ

2: pðκ; ξjc; η; yÞ / pðκ; ξÞ
YM

i¼1

pðyðiÞjcðiÞ; κ; ξÞ

3: pðηjc; κ; ξ; yÞ / pðηÞ
YM

i¼1

pðcðiÞjηÞ:

ð2Þ

Notice that it is possible to sample from the first step by independently sampling for each of

the c(i) separately from the other ones. That is, step 1 can be written as

1: pðcðiÞjκ;η; ξ; yÞ / pðcðiÞjηÞpðyðiÞjcðiÞ; κ; ξÞ; i ¼ 1; :::;M ð3Þ

and hence the sampling step for each c(i) only needs to access the corresponding individual-

specific π(y(i)|c(i), κ, ξ).

However, in practice, steps 1–2 cannot trivially be sampled from, due to the intractability of

the likelihood for the i-th individual π(y(i)|κ, ξ, c(i)) which is defined by a multidimensional

integral (a precise expression is given in Section A in S1 Text), and here sampling is performed

using a pseudo-marginal approach following [10]. The posterior targeted in step 3 is tractable,

and thus η is sampled using Hamiltonian Monte Carlo [17, 57, 58].

PEPSDI can be run with two flavours. Both sample the conditionals in Eq 2 via, when

required, pseudo-marginal approaches. However, the default option is to slightly perturb the

SSMEM. This prevents the need of step 2 in the Gibbs-sampler, resulting in substantially

shorter run-time. To properly motivate this perturbation, we first cover pseudo-marginal par-

ticles-based inference.
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Pseudo-Marginal particles-based inference

The pseudo-marginal Metropolis-Hastings scheme samples from the desired posterior by con-

sidering the marginal of an augmented posterior [16, 59]. More details are given in Section A

in S1 Text. Briefly, the pseudo-marginal approach considers

pðcðiÞ; κ;η; ξ; uðiÞjyðiÞÞ / pðκ; η; ξÞpðcðiÞjηÞp̂uðiÞ ðyðiÞjcðiÞ; κ; ξÞpðuðiÞÞ ð4Þ

where often (though not necessarily) parameters can be a-priori independent π(κ, η, ξ) = π(κ)

π(η)π(ξ), and the u(i)� π(u(i)) are auxiliary variables used to obtain an unbiased estimate

p̂uðiÞ ðyðiÞjcðiÞ; κ; ξÞ of π(y(i)|c(i), κ, ξ), that is

EuðiÞ ½p̂uðiÞ ðyðiÞjcðiÞ; κ; ξÞ� ¼ pðyðiÞjcðiÞ; κ; ξÞ; ð5Þ

where EuðiÞ ð�Þmeans that the expectation is taken with respect to the distribution of the u(i).

Thanks to the (assumed) unbiasedness of the estimated likelihood, the marginal of the aug-

mented posterior is the exact posterior of interest
Z

pðcðiÞ; κ; η; ξ; uðiÞjyðiÞÞduðiÞ ¼ pðcðiÞ; κ;η; ξjyðiÞÞ; ð6Þ

even though an estimated likelihood term has been employed inside Eq 4. An efficient way to

obtain an (non-negative) unbiased likelihood estimate for state-space models is to use a

sequential Monte Carlo procedure known as the particle filter [60]. The particle filter approxi-

mates unbiasedly the i-th likelihood, that is the expectation in Eq 5 [61, 62] by using N Monte

Carlo draws that in this context are named “particles”. The variance of this estimated likeli-

hood decreases when increasing N, and typically the success of pseudo-marginal approaches

relies on having a small variance for the estimated likelihood [63–65]. That is using too few

particles yields inefficient inference, but on the other hand run-time increases with N. How-

ever, the result that makes pseudo-marginal powerful is that, from a theoretical point of view,

it provides exact Bayesian inference [16, 59], regardless the number of particles employed,

thanks to Eq 6. However, in practice, the value of N impacts the efficiency of the Gibbs sampler

in exploring the posterior surface, since a too small N may cause the resulting Markov chain to

get “stuck” into some value for many iterations (i.e. the chain becomes “sticky”). However we

do not want N to be too large or the algorithm may become unnecessarily expensive.

To employ as few particles as possible while encouraging the exploration of the posterior

surface, the following three strategies are considered. Firstly, we induce correlation in the par-

ticles between subsequent iterations, and this still preserves exact Bayesian inference [21, 66].

However, this is only feasible for Poisson or Langevin integrators. Secondly, our framework

implements a particles tuning scheme. Thirdly, guided particle proposals [9, 67] are used when

possible (for details see Section A in S1 Text).

From the considerations above, PEPSDI performs exact Bayesian inference for the model

parameters. However, to further reduce the computational requirements to run the inference

scheme, we developed a Gibbs-sampler that targets a slightly perturbed parameterisation of a

SSMEM-model and produces considerable acceleration in the runtime, and shows promising

to increase scalability of the inference towards accommodating an increasing number of

individuals.

Inference for perturbed SSMEM (default option in PEPSDI)

The “perturbed SSMEM” treats cell-constant parameters (κ, ξ) as parameters that instead vary,

with a small fixed variance, between cells. For example, for ξ this means that for the perturbed

SSMEM we assume to have ξðiÞ � N ðξpop; d
2
� IÞ, with δ> 0 a fixed constant selected by the
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researcher (and using a similar reasoning for κ(i)). In some sense (κ, ξ) have been “perturbed”

to artificially vary between cells. This parameterisation, inspired by how cell-constant parame-

ters can be treated in Monolix [68], allows (ξpop, κpop) to be inferred alongside with the popula-

tion parameters η in step 3 of the Gibbs sampler (Eq (2)), and (ξ(i), κ(i)) to be inferred

alongside c(i) in step 1. Step 2 is thus avoided.

Avoiding step 2 is desirable from the computational point of view. This is because step 2 of

Gibbs-sampler (Eq 2) requires a stochastic approximation of the sum of the individual log-

likelihoods (for numerical stability it is preferable to work on log-transformed quantities),

enabled by a particle filter. The variance of this sum is typically large, since each element of the

sum is a stochastically approximated log-likelihood. To achieve a small-variance for this log-

likelihood, and thus efficient inference, many particles are required which can cause substan-

tial run-time (S3 Fig).

As seen for the Ornstein-Uhlenbeck model, the Gibbs sampler corresponding to the per-

turbed SSMEM occasionally produces slightly wider credibility intervals for (κpop, ξpop) (S6

Fig). However, we consider this a worthwhile compromise since we do not observe any bias,

while reaching a speed sometimes larger than a factor 30 (S3 Fig). Moreover, if necessary

PEPSDI can be run with the perturbed SSMEM to rapidly obtain preliminary results from

pilot-runs, and the latter can be used to inform the setup (e.g. starting parameter values) to

launch the inference for the unperturbed SSMEM.

Testing PEPSDI

PEPSDI is written in Julia 1.5 [26] and is available on GitHub https://github.com/cvijoviclab/

PEPSDI. We tested our implementation against the Ornstein-Uhlenbeck (OU) model, for

which the data likelihood can be computed exactly using the Kalman filter (full details in Sec-

tion D in S1 Text). Specifically, we compared both Gibbs-samplers (according to the two

options in PEPSDI) against the exact inference provided by using the Kalman filter to compute

the likelihood function and embedding the latter in a Gibbs sampler as in [10] (S6 Fig). We

have also tested the PEPSDI stochastic solvers by comparing them with the corresponding

solvers in the Julia DifferentialEquations.jl package [69].

Single-cell microscopy data

The first set of experiments was performed with a BioPen system (Fluicell AB) as previously

described [64]. In these experiments, wild-type W303–1A (MATa leu2–3/112 ura3–1 trp1–1

his3–11/15 ade2–1 can1–100 GAL SUC2) were exposed to an upshift in fructose concentration

to 2.0% and 0.5% from media containing 3% ethanol and no other carbon source. The experi-

ment was performed as following: a glass bottom Petri dish (GWST-5030, WillCo Wells) was

treated with Poly-L-Lysine solution (P4832, Sigma-Aldrich) for 15 min at room temperature.

The Poly-L-Lysine solution was removed, and the Petri dish was washed with MQ water two

times and left to dry overnight. Yeast cells (W303(202) NRD1-mCherry- Hph MIG1-GFP-

KanMX) were grown overnight to mid-log phase at 30˚C in YNB synthetic complete medium

(6.7 g/l yeast nitrogen base with ammonium sulphate (formedium), 790 mg/l complete supple-

ment mix (formedium) and supplied with 3% ethanol). These mid-log phase cells were added

to the Petri dish and left to sedimen; cell which did not adhere to the surface were removed by

washing with growth media. Exposure of cells to YNB media with different concentrations of

fructose was performed by using a BioPen system with BioPen prime pipette tip. Imaging was

performed on Leica DMi8 inverted fluorescence microscope (Leica microsystems). The micro-

scope was equipped with a HCX PL APO 40 × /1.30 oil objective (Leica microsystems),

Lumencor SOLA SE (Lumencor) led light and Leica DFC9000 GT sCMOS camera (Leica
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microsystems). Three data points were taken before the cells were exposed to fructose, and

after exposure, a data point was taken every 30 sec for 15 min. At every time point, five images

with an axial distance of 0.5 μm were acquired in transmission and fluorescent light to ensure

an in-focus image for all cells. Transmission images were acquired with 10 ms exposure and

190 LED intensity. Mig1-GFP was observed using a filtercube with an excitation: 450/490,

dichroic: 495 and emission: 500–550 filtercube at 300 ms exposure. Nrd1-mCherry was

observed with an excitation: 540/580, dichroic: 585 and emission: 592–668 filtercube at 160 ms

exposure at 30% LED intensity. Corresponding pixel intensities of brightfield images acquired

above the focal plane were divided by pixel intensities of images acquired below the focal plane

using custom Matlab script. This step removes the uneven illumination and enhances diffrac-

tion pattern of the cells. Obtained cells where segmented and fluorescent signal was quantified

from the GFP images with CellX software [70]. mCherry images were used as a control to

mark nuclear localisation. The Mig1 localisation was calculated as (Mig1n-Mig1c)/Mig1c from

the CellX output. Tracking the cells over time was performed through a custom Matlab script

as described in [71].

The second set of experiments was performed on W303(202) hxk1Δhxk2Δ (YSH202,

hxk1Δ::HIS3 hxk2Δ::LEU2) expressing pFRP2138 (P414GPD, TDH3p-HXK1-CYC1t TDH3p-

mAmetrine BamHIlinker ADH1tail-CYC1t); strain origin and plasmid construction are

described in [43]. Cells were incubated in a microfluidic chip for long-term imaging [72].

Within the microfluidics chip the cells were exposed to an upshift in fructose from 0 to 2.0%.

Microfluidic setup and usage have been extensively described in [43]. Images segmentation,

quantification and processing was done as described above. Mig1-GFP localisation signal was

used to calculate the nuclear Mig1 index in the first 25 min. The mAmatrine signal was used to

calculate the relative Hxk1 expression.

Supporting Information

S1 Fig. Additional results for the stochastic gene-network regulated by the circadian-clock.

A) Marginal posterior from the inference run in Fig 2 for the correlation matrix F (non-diago-

nal values of the covariance matrixΩ). The correlation matrix characterises the correlation

between the individual parameters (c1, c2, c3, c4). The black line represents the true-value. B)

Pair plots for the three scale parameters that were problematic to infer, (τ1, τ2, τ3), against

themselves and the log-mean values μi. C) Marginal posterior for the scale parameters (τ1, τ2,

τ3, τ4) when simulating and doing inference for 40 (as in Fig 2) and 100 cells. Noticeably, albeit

the parameter uncertainty decreases a bias still persist in (τ2, τ2, τ3) for the considered number

of cells. However we notice that when using 100 cells, except for τ1 (where the difference is

small), each posterior mode gets a little closer to the ground truth.

(TIFF)

S2 Fig. Using inferred parameters to deduce mechanistic properties for the Schlögl-model.

A) Using the inferred posterior for the Schlögl-model (Fig 3), 100, 000 cells were simulated.

The cells were then split into the group having a synthesis rate c1 below 1274, and above 1274.

For these groups the 0.2, 0.5 and 0.8 quantiles were computed. As seen from these quantiles,

cells with a lower synthesis rate (c1) mainly commit to the lower cell-state (e.g low gene-expres-

sion). Meanwhile, cells with a larger synthesis rate commit to, and jump between, two different

states of gene-expression. B) Marginal posterior pair plots for the inferred parameters.

(TIFF)

S3 Fig. Comparing run time of the PEPSDI inference options for the Schlögl-model. A)

Comparison of run-time for the non-perturbed option (blue) where (κ, ξ) are constant
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between cells, and the default perturbed option (orange), where (κ, ξ) are slightly perturbed to

vary between cells. Using the same-parameters as in Fig 3, data-sets for 20, 40, 60, 80, 100 and

200 individuals were simulated. Starting from true parameter values, the number of particles

was tuned according to the tuning criteria (Section B in S1 Text) and PEPSDI was run for 10,

000 iterations. Same as for the inference in the Fig 3, we simulated intrinsic noise using the

Langevin approximation, while guiding our particles using the modified diffusion bridge filter

and correlating the particles with ρ = 0.999. For all data-sets, the particle tuning procedure sug-

gested the use of 10 particles per individual for the perturbed-model option (orange-line),

while for the non-perturbed option (blue line) the procedure suggested to use (with increasing

number of individuals) 20, 20, 40, 130 and 230 particles for each individual (as described in S3

all individuals have the same number of particles for the non-perturbed sampler). The left plot

shows the median run-time with max-and min values (bars) computed from three indepen-

dent runs. Run-time was measured as the wall-clock time on a Dell Latitude with eight cores

[Intel(R) Core(TM) i5–8365U CPU @ 1.60 GHz] running on Ubuntu 20.04. To minimise

noise from other computer programs the benchmark was run on a freshly rebooted laptop

with no other applications open. All the runs were performed sequentially using a single core.

Due to the computational burden from performing all the runs sequentially, run-time was not

measured for the case of 200 individuals for the non-perturbed option. B) Ratio between the

blue and orange line, highlighting that the default perturbed option can be faster by more than

a factor 30.

(TIFF)

S4 Fig. Modelling of Mig1-dynamics in response to fructose addition. A-C) Posterior visual

check for the 0.05% fructose data for model structure 1 and 2 using extrinsic noise-proposals

A, B and (Fig 6). The credibility intervals were obtained as in Fig 2. Model 2B compared to

model 2A has wider (but not biased) credibility intervals for the 0.05% fructose data, however,

only model 2B accurately describes the 2% data (Fig 6F). C) Posterior visual check for model

structure 2 and noise proposal A, where c1 and c2 do not vary between cells (no upstream

extrinsic noise). Without upstream extrinsic noise the model fails to describe the observed

cell-to-cell variability. Credibility intervals obtained as in A-B. D) Marginal posterior for the

model-parameters not shown in Fig 6. E) Marginal pair posteriors for Model 2B for the the

log-means and scale parameters (τ) for which the individual parameters were inferred to be

correlated (corr(c1, c2) and corr(Mig1ct0, Mig1nt0) with colours representing fructose concen-

tration. F) The same marginal posteriors as in Fig 6H from multiple inference runs (colors)

with different starting values. The existence of several modes for mFru
2

(middle right) shows that

the model is not fully identifiable (all parameters cannot be inferred unambiguously). How-

ever, some parameter relationships are consistent between runs. Namely, the coefficient of var-

iation is larger in low fructose for (c1, c2) (two left plots), the log-mean μ2 is larger in low

fructose (middle right), and the rates (c1, c2) are strongly correlated (right plot).

(TIFF)

S5 Fig. Hxk1 is a source of cell-to-cell variability in Mig1 localisation. A) Mean Mig1 ratio

over 15 minutes after 2% fructose addition versus the cell-varying model parameters c1 for

model 2B obtained by simulating 1, 320, 000 cells. Noticeably, the cell-varying c1 of which

hexokinase 1 (Hxk1) is a part (c1/ [Hxk1]) explains a part of the cell-heterogeneity in Mig1

localisation. B) Mean Mig1 ratio over 15 minutes after 2% fructose addition versus relative

mean Hxk1 expression for 132 cells obtained from single-cell time-lapse microscopy. The lin-

ear relationship is significant (p-value 7.5 × 10−6). The mean relative Hxk1 expression, which

is likely proportional against Hxk1-expression, was computed by taking the mean of the Hxk1

expression over 240 min after fructose addition. C) Model predicted (bars) and observed (line)
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explained cellular heterogeneity (R2) in Mig1-localisation by relative Hxk1-expression and c1

respectively. The line is the R2-value (variability explained by regression line divided by total

variability) for the linear regression in c), and the bars were computed by simulating mean

Mig1 ratio (0–15 minutes after fructose addition) for 132 cells 10, 000 times, and computing

the R2 for the Mig1n/Mig1c versus c1 linear regression for each instance.

(TIFF)

S6 Fig. Inference results for the Ornstein–Uhlenbeck model. Inference was performed using

PEPSDI with (κ, ξ) cell-constant and PEPSDI with (κ, ξ) weakly perturbed between cells

(default option). These were compared against the gold-standard case, from Wiqvist et al. [10],

where a Kalman-filter is embedded into the Gibbs-sampler (Alg 2 in S1 Text) for an exact eval-

uation of the likelihood. It can be seen that the consequence of perturbing the model is a

slightly larger credibility interval for σ, however inference for the remaining parameters is

remarkably similar to the non-perturbed case.

(TIFF)

S1 Text. Detailed description of the inference framework, simulation examples and Mig1

model. A) Detailed information about the developed framework. B) Guidelines for how to

run our inference framework for a user provided state-space model. C) A brief tutorial on

model construction. D Detailed information on circadian clock regulated gene network,

Ornestein-Uhlenbeck model and Schlögl model. E) Detailed information about the developed

Mig1 model describing the dynamics of the ratio between nuclear Mig1 and cytosolic Mig1

(Mig1n/Mig1c) upon fructose addition to carbon starved cells.

(PDF)
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