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Abstract
Background: In Micrococcus luteus growth and resuscitation from starvation-induced dormancy is
controlled by the production of a secreted growth factor. This autocrine resuscitation-promoting
factor (Rpf) is the founder member of a family of proteins found throughout and confined to the
actinobacteria (high G + C Gram-positive bacteria). The aim of this work was to search for and
characterise a cognate gene family in the firmicutes (low G + C Gram-positive bacteria) and obtain
information about how they may control bacterial growth and resuscitation.

Results: In silico analysis of the accessory domains of the Rpf proteins permitted their classification
into several subfamilies. The RpfB subfamily is related to a group of firmicute proteins of unknown
function, represented by YabE of Bacillus subtilis. The actinobacterial RpfB and firmicute YabE
proteins have very similar domain structures and genomic contexts, except that in YabE, the
actinobacterial Rpf domain is replaced by another domain, which we have called Sps. Although
totally unrelated in both sequence and secondary structure, the Rpf and Sps domains fulfil the same
function. We propose that these proteins have undergone "non-orthologous domain
displacement", a phenomenon akin to "non-orthologous gene displacement" that has been
described previously. Proteins containing the Sps domain are widely distributed throughout the
firmicutes and they too fall into a number of distinct subfamilies. Comparative analysis of the
accessory domains in the Rpf and Sps proteins, together with their weak similarity to lytic
transglycosylases, provide clear evidence that they are muralytic enzymes.

Conclusions: The results indicate that the firmicute Sps proteins and the actinobacterial Rpf
proteins are cognate and that they control bacterial culturability via enzymatic modification of the
bacterial cell envelope.

Background
The growth and culturability of the actinobacteria is con-
trolled by a family of secreted or membrane-associated
proteins [1]. The Rpf protein of Micrococcus luteus was the
founder member of this family, which now comprises

more than forty representatives [2-4]. Rpf is required for
the resuscitation of dormant cells of M. luteus and for the
growth of sparsely inoculated cultures of this organism in
nutrient-poor media. M. luteus seems to contain only one
rpf gene, whose product appears to be essential for
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bacterial growth [5]. In contrast, most organisms contain
several rpf-like genes, whose products are functionally
redundant [3,6-8]. All the proteins so far tested show
cross-species activity in bioassays using laboratory cul-
tures of several different organisms, including M. luteus,
Rhodococcus rhodochrous, Mycobacterium tuberculosis, Myco-
bacterium bovis (BCG) and Mycobacterium smegmatis
[4,7,9,10]. Since they are active at minute concentrations,
it was suggested that they might be involved in inter-cel-
lular signalling [1,3,4].

Rpf-like proteins are not found in firmicutes (low G+C
Gram-positive bacteria), although some distantly related
proteins are found in Staphylococcus and Oenococcus (see
below). In this article we report the results of comparative
genomic and domain analyses indicating that the firmi-
cutes contain a cognate protein family related to the actin-
obacterial Rpf proteins by a process of "non-orthologous
domain displacement". The available evidence strongly
suggests that both the firmicute and actinobacterial pro-
teins have a catalytic function, which may be responsible
for their observed activity in improving the culturability of
the organisms that produce them.

Results
The Rpf domain
Bacterial genome sequencing projects have uncovered
many genes whose products share with M. luteus Rpf a ca.
70-residue segment that we have called the Rpf domain.
This segment of M. luteus Rpf is both necessary and suffi-
cient for biological activity, indicating that it corresponds
to a functional protein domain [5]. The Rpf-like proteins
appear to be restricted to several genera within the actino-
bacteria, including Corynebacterium, Micrococcus, Mycobac-
terium, Saccharopolyspora and Streptomyces, but they appear
to be absent from some others, such as Bifidobacterium,
Thermobifida and Tropheryma (Table 1). An alignment of
44 Rpf-like domains revealed that a central region of
between 6 and 9 residues accounts for almost all of the
observed variation in length of this domain (see addi-
tional data file 1). SignalP [11] and TMHMM [12] predic-
tions suggest that all of the Rpf-like gene products so far
uncovered are either secreted, or membrane-associated,
with the exception of one instance of an Rpf-like domain
within a mycobacteriophage tape measure protein [13].
The Rpf domain also contains two highly conserved
cysteine residues. Modelling has suggested that they lie in
close proximity and may form a disulphide bridge (A.
Murzin, personal communication) [14].

Table 1: Organisms containing rpf-like genes

Part A: genes encoding proteins containing a Rpf domain

Organism Genome size (Mb) No. of genes Genome Accession Number

Corynebacterium diphtheriae 2.5 3 NC_002935
Corynebavterium glutamicum 3.3 2 NC_003450
Corynebacterium efficiens 3.1 2 NC_004369
Micrococcus luteus 2.3 1 Mukamolova et al, 1998
Mycobacterium avium 4.7 4 NC_002944
Mycobacterium bovis 4.3 5 NC_002945
Mycobacterium leprae 3.3 3 NC_002677
Mycobacterium marinum 6.5 4 NC_004506 (unfinished)
Mycobacterium smegmatis 7.0 4 NC_002974 (unfinished)
Mycobacterium tuberculosis H37Rv 4.4 5 NC_000962
Streptomyces coelicolor 8. 7 5 NC_003888
Streptomyces avermitilis 9.0 6 NC_003155

Part B: genes encoding proteins containing a domain distantly related to the Rpf domain

Bifidobacterium longum NCC2705 2.3 3 NC_004307
Tropheryma whipplei strain Twist 0.9 2 NC_004572
Streptomyces coelicolor 8. 7 2 NC_003888
Streptomyces avermitilis 9.0 3 NC_003155
Staphylococcus carnosus - 2 -
Staphylococcus aureus N315 2.8 1 NC_002745
Staphylococcus epidermidis 2.6 1 NC_004461
Oenococcus oeni 0.3 1 NZ_AABJ02000001

M. luteus and S. carnosus genomes are not yet sequenced
M. luteus genome size taken from Murayama et al. [78]
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HMMs were used to create profiles of the Rpf domain
alignment and these were employed to perform local and
global searches of the SWISS-PROT and TrEMBL databases
(downloaded from the European Bioinformatics Institute
website [15]). In addition to the previously known Rpf
domains in the various actinobacterial Rpf-like proteins,
which were detected with highly significant E-values
(5.7·10-56 – 4.8·10-39), these searches also identified two
Staphylococcus carnosus protein precursors, SceD and SceA
(054493 and 054494), with much higher, but neverthe-
less statistically significant E-values (7.1·10-4 and 3.9·10-

2). These proteins contain a domain more distantly related
to the Rpf domain. Additional hits above the level of sta-
tistical significance (E-values more than 0.1) included
many c-type lysozyme precursors, which shared similarity
with a 24-residue segment towards the C-terminus of the
Rpf domain, as has been reported previously [2,14,16]. A
PSI-BLAST search was also performed (Blosum62 matrix
and a 0.005 E-value threshold) using the Rpf domain of
M. luteus Rpf for the first iteration http://
www.ncbi.nlm.nih.gov/BLAST/. No new hits were found
after 3 iterations. In addition to the known Rpf-like gene
products and the more distantly related SceA & SceD pro-
teins of S. carnosus, this search revealed SceD orthologues
in two strains of Staphylococcus aureus (NP_646837.1 &
NP_372619.1; E-values 2·10-3 & 3·10-3) and Staphylococ-
cus epidermidis (NP_765249.1; E-value 9·10-4) in addition
to a previously undetected gene product from Oenococcus
oeni (ZP_00069230.1; E-value 3·10-13). These proteins
containing a domain distantly related to the Rpf domain
are found in the firmicutes, whereas proteins containing
the Rpf domain appear to be restricted to the
actinobacteria.

Rpf protein subfamilies
Analysis of the various Rpf-like proteins for low complex-
ity regions using SEG, which can separate discrete protein
domains [17], and for common motifs using MEME,
which can indicate orthologous domains [18,19], indi-
cated that they form ten discrete subfamilies, reflecting
their multi-domain architecture. M. tuberculosis contains
representatives of five of these families, denoted RpfA-E in
Fig. 1[7]. A sixth family, containing proteins with the pep-
tidoglycan-binding motif, LysM [20], is restricted to the
non-mycolate actinomycetes. A seventh family contains
only corynebacterial proteins, while an eighth family con-
tains two short proteins from Corynebacterium glutamicum
and Streptomyces coelicolor, comprising only an Rpf
domain.

Proteins more distantly related to Rpf have been grouped
together in two additional families. One of these includes
the O. oeni protein mentioned above; it has an inverse
domain organisation compared with that of M. luteus Rpf
and Rpf-like proteins from Streptomyces. The other family

of proteins distantly related to Rpf contains two proteins
identified following a PSI_BLAST search (3 iterations),
using the large N-terminal region of M. tuberculosis RpfB
(Rv1009) for the first iteration. This protein segment con-
tains three repeats of PFAM-B DUF348 (domain of
unknown function) and a G5 domain (also of unknown
function, which is found in various proteins involved in
cell wall metabolism). The search detected all the previ-
ously known RpfB homologues, as well as the two addi-
tional gene products from Bifidobacterium longum (BL0658
and BL1227; E-values 2·10-59 and 9·10-32). Several firmi-
cute proteins were also detected (see below). The C-termi-
nal region of the two previously undetected B. longum
proteins was similar to part (the N-terminal portion) of
the Rpf domain (Fig. 1). It was used to search the genpept
database downloaded from the National Centre for Bio-
technology Information website [21] and this revealed
multiple hits in B. longum, Streptomyces avermitilis, S. coeli-
color and Tropheryma whipplei. The search also detected the
S. carnosus SceA protein, although this hit was not statisti-
cally significant. The actinobacterial gene products
detected in these searches are grouped together as a sub-
family of proteins distantly related to Rpf in Fig. 1. They
were not detected in the original searches using HMMs of
the profile of the Rpf domain alignment because similar-
ity with the Rpf domain is restricted to its N-terminal por-
tion (see additional data file 1).

Proteins similar to RpfB are found in firmicutes
The link between actinobacterial RpfB and a family of fir-
micute proteins was noted several years ago, when FASTA
was used to search the then available database with
Rv1009 (M. tuberculosis RpfB) as a query sequence (R.
McAdam, personal communication). This detected a B.
subtilis protein (YabE) of unknown function (23% iden-
tity and 38% similarity over 283 residues encompassing
the DUF348 repeats and the G5 domain). A HMM model
of this protein segment was used to search the TrEMBL
and SWISS-PROT databases. In addition to the actinobac-
terial RpfB proteins, significant hits (E-value range 10-5 –
10-28) were found to a range of DUF348-containing pro-
teins from various bacilli and clostridia (YabE-like pro-
teins). In these firmicute proteins, the C-terminal Rpf
domain is replaced by region of similar size (ca. 60 aa) but
totally unrelated sequence. Significantly, rpfB and yabE
(and the gene encoding the distantly related B. longum
protein) are found in a similar genomic context in the
actinobacteria and the firmicutes (Fig. 2).

YabE is a member of an extended firmicute protein family
A tBLASTN search against the translated GenBank data-
base using the C-terminal segment of YabE as query,
revealed similar sequences in more than 40 proteins, sug-
gesting that this is a distinct domain, which we have
denoted Sps (Stationary phase survival – see below). This
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Domain structure of the Rpf proteins grouped into their subfamiliesFigure 1
Domain structure of the Rpf proteins grouped into their subfamilies. Proteins are from the genomes listed in Table 1. 
Proteins from organisms whose genome is not yet annotated (M. marinum and M. smegmatis) have been given the name of the 
subfamily to which they belong.
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Genomic context of some rpfB and yabE genesFigure 2
Genomic context of some rpfB and yabE genes. The sco3152, cgl0883, cpe2521 and lin0223 genes represented by an 
empty arrow are hypothetical proteins unrelated to each other. See the text for the designations of the remaining genes.

Table 2: Organisms containing sps-like genes

Part A: genes encoding proteins containing a Sps domain

Organism Genome size (Mb) No. of genes Genome Accession Number

Bacillus anthracis strain A2012 5.1 5 NC_003995
Bacillus anthracis strain Ames 5.2 6 NC_003997
Bacillus cereus ATCC 10987 5.2 6 NC_003939
Bacillus cereus ATCC 14579 5.4 5 NC_004722
Bacillus halodurans 4.2 3 NC-002570
Bacillus subtilis 4.2 4 NC_000964
Oceanobacillus iheyensis 3.6 4 NC_004193
Listeria innocua 3.0 2 NC_003212
Listeria monocytogenes EGD-e 2.9 2 NC_003210
Enterococcus faecalis V583 3.2 1 NC_004668
Lactococcus lactis subsp lactis 2.4 1 NC_002662
Clostridium acetobutylicum 3.9 2 NC_003030
Clostridium botulinum A 3.9 2 NC_003223 (unfinished)
Clostridium perfringens str 13 3.0 3 NC_003366
Clostridium tetani E88 2.8 2 NC_004557
Clostridium thermocellum 3.7 4 AABG03000000
Desulfitobacterium hafniense 4.9 1 AAAW00000000
Thermoanaerobacter tengcongensis 2.7 1 NC_003869
Phage SPβc2 0.1 1 NC_001884

Part B: genes encoding proteins containing a domain distantly related to the Sps domain

Oceanobacillus iheyensis 3.6 1 NC_004193
Deinococcus radiodurans 3.1 1 NC_001263, NC_001264
Thermotoga maritima 1.9 1 NC_000853

S. coelicolor

C. glutamicum

M. tuberculosis

B.subtilis

B. halodurans

C. perfringens

L. innocua

sco3152 tatD rpfB ksgA

cgl0883 tatD rpfB ksgA

tatDmetS rpfB ksgA

tatDmetS yabE ksgArnmV

tatDmetS yabE ksgArnmV

cpe2521 tatD yabE ksgArnmV

lin0223 tatD yabE ksgArnmV
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region is also recognized as an uncharacterised conserved
domain in the cluster of orthologous groups of proteins
COG3584 and has recently been annotated in Pfam (see
below). As for the Rpf domain, an HMM profile was cre-
ated using the newly identified Sps domains and
employed to search the TrEMBL database. In addition to
the previously identified proteins in bacilli and clostridia,
which were detected with highly significant E-values
(4.4·10-65 – 4.3·10-35), these searches also identified
some more distantly related proteins with higher,
although still significant E-values (4.6·10-7 – 2.1·10-2).
These hits include additional proteins OB0947 from
Oceanobacillus ieheyensis, CAC2045 from Clostridium aceto-
butylicum, DR0488 from Deinococcus radiodurans and
TM0568 from Thermotoga maritima. The last two hits are
the only examples of Sps-like proteins outside the firmi-
cute phylum. Significantly (see below), the CAC2045
gene of C. acetobutylicum is annotated as an MltA (mem-
brane-bound lytic transglycosylase A) homologue.
Indeed, additional hits above the level of statistical signif-
icance in both standard similarity (BLAST) and HMM
searches included several lytic transglycosylases from var-
ious proteobacteria (see below). Sps proteins are not
found in organisms that contain Rpf proteins (Table 2).

Sps protein subfamilies
SignalP [11] and TMHMM [12] predictions suggest that
all of the Sps-like gene products so far uncovered are likely
to be either secreted, or membrane-associated, with the
exception of Clostridium thermocellum CHTE712 (Fig. 3).
The Sps proteins were also analysed using PFAM [22] and
SMART [23,24] for the presence of additional domains.
Based on their domain architecture, and the chromo-
somal context of the encoding genes, they fell into eight
subfamilies (Fig. 3). B. subtilis contains four genes encod-
ing representatives of four distinct subfamilies. The SpsB
subfamily is characterised by the presence of two or three
DUF348 domains and a G5 domain, both of which are
common to the RpfB subfamily (cf. Fig. 1). The only
exceptions are DESU7026 from Desulfitobacterium hafni-
ense, which does not have DUF348 domains (but contains
a G5 domain and shares the same genomic context as the
other members of the SpsB subfamily), together with
CPE1504 and CTC01185, from Clostridium perfringens and
Clostridium tetani, respectively. These last two organisms
appear to contain two yabE-like genes, one in the usual
chromosomal context, and another elsewhere (in differ-
ent positions in the two organisms). The SpsA subfamily
is notable as a null mutant of its founder member from B.
subtilis shows a substantial reduction in post-exponential
phase survival (Ravagnani et al, ms. in preparation). These
proteins are characterised by the presence of two copies of
the peptidoglycan-binding motif LysM [20] (PG1 in the
case of Bacillus halodurans BH3322), suggesting an associ-
ation with the cell envelope. Members of the SpsA sub-

family do not have a conserved chromosomal context.
The other two subfamilies found in B. subtilis are the SpsC
subfamily, whose members cluster on the basis of their
sequence similarity outside the Sps domain and their
identical genomic context, and YorM, which is located
within the SPβ prophage and is therefore absent from
strains that lack this genetic element.

Two more subfamilies not represented in B. subtilis are of
particular interest as they provided evidence for a link
between the Sps proteins and muralytic enzymes. Bacillus
anthracis and Bacillus cereus are the only organisms con-
taining multiple sps genes that do not contain members of
the spsB subfamily. Instead, they have gene products con-
taining two copies of the SH3b domain (SpsE). In bacteria
this domain is found in a number of muralytic enzymes,
including endopeptidases and amidases. Several Sps pro-
teins from a variety of firmicutes were clustered in another
subfamily (SpsD) because they all contain a copy of the
putative COG3883 domain. This uncharacterised con-
served domain is also shared by a number of muralytic
enzymes.

O. ieheyensis OB0947, D. radiodurans DR0488 and T. mar-
itima TM0568 are grouped together because they contain
a domain that is only distantly related to the Sps domain
(see above). DR0488 is the only known example of an
Sps-like protein in an organism with high mole % GC
DNA – note however, that D. radiodurans is not closely
related to the Rpf-containing actinobacteria. The domain
structure of TM0568, which has LysM and M23 peptidase
domains, in addition to the Sps module, is reminiscent of
the Rpf5 proteins from S. coelicolor and S. avermitilis that
contain LysM and M23 peptidase domains in addition to
the Rpf module (Fig. 1), and provides another link
between these proteins and cell-wall metabolism.

The MltA-like proteins
Three proteins from Clostridium thermocellum and one
from Clostridium acetobutylicum represent the eighth sub-
family of Sps proteins (Fig. 3). In these proteins, the Sps
domain overlaps with a region of strong similarity to the
Gram-negative membrane-bound lytic transglycosylase,
MltA (Pfam E-value = 10-6 – 10-7). Indeed, Pfam predicted
potential matches with MltA for all the Sps proteins,
although with lower E-values (10-2 – 10-3). HMM profiles
were built from the known lytic transglycosylases using
the classification proposed by Blackburn and Clarke [25].
Local and global searches of the B. subtilis genome using
these profiles detected two known and six new putative
lytic transglycosylases. Five of these (YjbJ, YomI, YqbO,
YddH and YkdO) were similar to the family 1 of goose-
type lysozymes. The remaining three, which are similar to
the MltA-type family 2, are the Sps proteins, YocH, YuiC
and YabE (E-values in local searches 4.1·10-5, 5.6·10-6 &
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Domain structure of the Sps proteins grouped into their subfamiliesFigure 3
Domain structure of the Sps proteins grouped into their subfamilies. Proteins are from the organisms listed in Table 
2 with the exception of B. anthracis strain A2012 and B. cereus ATCC 14579, which contain the same proteins as B. anthracis 
strain Ames and B. cereus ATCC 10987 (apart from BA0685 and BCE3743, respectively). Proteins from C. botulinum, whose 
genome is not yet annotated, have been given the name of the subfamily to which they belong. YabE-like clostridial proteins 
that do not occupy the conserved chromosomal context represented in Figure 2 are indicated with an asterisk.
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2.3·10-2, respectively). The fourth B. subtilis Sps protein,
YorM, which lies within the SPβ prophage, was not
detected. Blackburn and Clarke [25] distinguish six motifs
within the MltA-type family 2 consensus sequence. The
Sps domain encompasses motif 6 and part of motif 5. This
region contains three conserved aspartate residues that
may be involved in catalysis [25]. Significantly, these res-
idues are absolutely conserved amongst all the 46 known
Sps domains (Fig. 4A) as recently recognised in Pfam (3D
domain).

These observations acquire even greater significance in the
light of the weak similarity that has been noted between
the Rpf domain and the goose-type lysozymes [2,14,16].
Blackburn and Clarke [25] identified four motifs in the
consensus sequence of this type of lytic transglycosylase,
and divided the family into five subclasses according to
two more variable motifs 3 and 4. The C-terminus of the
Rpf domain encompasses motifs 1 and 2 of the EmtA-type
family 1e, which includes the absolutely conserved cata-
lytic glutamyl residue (Fig. 4B).

T-Coffee alignment of MltA & Sps (A) and EmtA & Rpf (B) proteinsFigure 4
T-Coffee alignment of MltA & Sps (A) and EmtA & Rpf (B) proteins. Residues shaded in black are present in 100% of 
the sequences, dark grey in 80% and light grey in 60%. Bars above the sequences indicate conserved motifs V (partial) & VI 
from MltA proteins (in Part A) and I, II and III from EmtA proteins (in Part B), as described by Blackburn and Clarke [25]. Puta-
tive catalytic residues are marked with an asterisk. Abbreviations are as follows: B. halodurans (BH), B. subtilis (Bsu), Brucella suis 
(BS), Candidatus Blochmannia floridanus (CBF), C. acetobutylicum (CA), C. perfringens (CP), C. tetani (CT), C. diphtheriae (CD), C. 
efficiens (CE), C. glutamicum (CG), D. hafniense (DH), E. faecalis (EF), E. coli (EC), E. coli O157:H7 (ECH7), E. coli O6 (ECO6), 
Haemophilus ducreyi (HD), L. innocua (LI), L. monocytogenes (LM), M. luteus (MLu), M. avium (MA), M. leprae (ML), M. tuberculosis 
(MT), O. iheyensis (OI), Photorhabdus luminescens (PL), Pseudomonas aeruginosa (PA), Rhizobium loti (RL), Salmonella typhi (Sti), Sal-
monella typhimurium (ST), Shigella flexneri (SF), S. avermitilis (SA), S. coelicolor (SC) and Yersinia pestis (YP).

A

EC_P76009 : AIESGGNPNAVSKSNAIGLMQLKASTSGRDVYRRMGWSGEPTTSELKNPERNISGAAYLNILETGPLAGIEDPKVLQYALVVSYANGAGALLRTF
ECH7_Q8XDJ : AIESGGNPNAVSKSNAIGLMQLKASTSGRDVYRRMGWSGEPTTSELKNPERNISGAAYLNILETGPLAGIEDPKVLQYALVVSYANGAGALLRTF
SF_Q83RQ0 : AIESGGNPNAVSKSNAIGLMQLKASTSGRDVYRRMGWSGEPTTSELKNPERNISGAAYLNILETGPLAGIEDPKVLQYALVVSYANGAGALLRTF
SF_Q83RP9 : AIESGGNPNAVSKSNAIGLMQLKASTSGRDVYRRMGWSGEPTTSELKNPERNISGAAYLNILETGPLAGIEDPKVLQYALVVSYANGAGALLRTF
SF_Q7UCT3 : AIESGGNPNAVSKSNAIGLMQLKASTSGRDVYRRMGWSGEPTTSELKNPERNISGAAYLNILETGPLAGIEDPKVLQYALVVSYANGAGALLRTF
ECO6_P5924 : AIESGGNPNAVSKSNAIGLMQIKASTSGRDVYRRMGWSGEPTTSELKNPERNISGAAYLNILETGPLAGIEDPKVLQYALVVSYANGAGALLRTF
STi_Q8XGT6 : AIESGGNPNAVSKSNAIGLMQLKASTSGRDVYRRMGWRGEPTTSELKNPERNISGAAYLSILENGPLAGIKDPQVMQYALVVSYANGAGALLRTF
PL_CAE1504 : QVESGFRPNAVSKSNAIGLMQIKASTAGRDVYRQKGRSGQPTTRELKDPKTNIDGTAYISILKEQHLAGIDNPETLYYATIVAYVNGAGALLRTF
YP_Q8ZDW0 : QVESGYNPDVVSRSNAVGLMQIKASTAGRDAYRMKGRNGQPSSRELKDPVKNIDGAAYINILQNQQLAGINDPQTLRYATIVSYANGAGAMLRTF
CBF_Q7VR32 : QVESNYDSTVISKSNAIGLMQIKADTAGKDAYRLKGWEGQPSTNDLKNAVINIEGTVYLSILQN-QLKDIINVKTRRYAVIVAYVNGLGALLKVF
MT_RV1884c : QCESGGNWAANTGNGKYGGLQFKPAT----------------------------WAAFGGVGN---PAAASREQQIAVANRVLAEQGLDAWPTCG
MA_MAP0974 : GCEAGGNWAINTGNGYYGGVQFDQGT----------------------------WERNGGLRFAPRADLATREEQITVAEVTRERQGWGAWPVCS
ML_ML0240 : GCEAGGNWAINTGNGYYGGVQFDQGT----------------------------WVANGGLRYAPRADLATREEQIAVAEVTRARQGWDAWPVCS
CD_DIP0775 : GCEAGGNWAINTGNGFFGGLQFTAST----------------------------WNAYGGGQYAPTANGATREQQIAVAEKVLAGQGWGAWPACS
CG_NCGL078 : QCESGGNWAINTGNGYHGGLQFSAST----------------------------WAAYGGQEFATYAYQATREQQIAVAERTLAGQGWGAWPACS
CE_CE0971 : QCESNGNWSINTGNGFSGGLQFHPQT----------------------------WQAYGGGQYAPTAAGASREQQIAIAQKVQAAQGWGAWPACT
SC_SCO3150 : QCESGGNWSINTGNGYYGGLQFSAST----------------------------WAAYGGTQYASTADQASKSQQIQIAEKVLAGQGKGAWPVCG
MT_RV1009 : GCEAGGNWAINTGNGYYGGVQFDQGT----------------------------WEANGGLRYAPRADLATREEQIAVAEVTRLRQGWGAWPVCA
MLu_Rpf : ECESNGTWDINTGNGFYGGVQFTLSS----------------------------WQAVGGEGYP---HQASKAEQIKRAEILQDLQGWGAWPLCS
SA_SAV3535 : ECESGGSWSADTGNGYYGGLQLSQGN----------------------------WEKYGGLDYAPSADQASRSQQIAVAEKVLAAKGSSPWSTC-

I II III

*

B

EmtA

Rpf

EC_P46885 : ASVASDRSIIPPGTTLLAEVPLLDNNGKFNGQ-YE-LRLMVALDVGGAIKGQ-HFDIYQGIGPEAGHRAGWYNHYGRVWVL--
SF_Q83JW2 : ASVASDRSIIPPGTTLLAEVPLLDNNGKFNGQ-YE-LRLMVALDVGGAIKGQ-HFDIYQGIGPEAGHRAGWYNHYGRVWVL--
ST_Q8ZMC0 : ASVASDRSIIPPGTTLLAEVPLLDNNGKFSGQ-YE-LRLMVALDVGGAIKGQ-HFDIYQGIGPDAGHRAGWYNHYGRVWVL--
STi_Q8Z423 : ASVASDRSIIPPGTTLLAEVPLLDNNGKFSGQ-YE-LRLMVALDVGGAIKGQ-HFDIYQGIGPDAGHRAGWYNHYGRVWVL--
YP_Q8ZH84 : ASVASDKSLIPPGTTLLAEVPLLDDQGKFTGK-YQ-MRLMVALDVGGAIKGQ-HFDIYQGIGHEAGQAAGFYNHYGRVWVL--
HD_Q7VL47 : ASVASDKNLVPSGSVLLVEMPLIDHHGNWTGK-HE-MRLMVALDVGGAVKGQ-HFDLYQGIGERAGHQAGLMKHYGRVWVL--
VC_Q9KPQ4 : ASVAGDRSILPMGTPILAEVPLLNADGTWSGA-HQ-LRLLIVLDTGGAVKQN-HLDLYHGMGPRAGLEAGHYKHFGRVWKL--
PA_Q9I4B6 : YSVAIDRKVIPLGSLMWLSTTRP-----DDGS-AV-VRPVAAQDTGGAIVGEVRADLFWGTGDAAGELAGHMKQPGRLWLL--
BS_Q8FY16 : RSMAVDRLLHTFGTPFYVSAPTLC---AFGGE-PF-ARLMIAQDTGTAIVGPARGDLFTGSGDEADKIAGGIKDEADFYVL--
RL_Q98DU5 : RSVAVDRLLHTFGTPFYIDAPTLT---AFEKR-PF-RRLMIAQDTGSAITGPARGDLFAGSGDAAGEIAGVVRNAADFYAL--
BH_BH0055 : KVIAVDPNVIPLGSRVHVEG----------------YGTAIAGDTGGAIVGN-KIDVHMPSTAEA---QRWGRKTVKVTILD-
BSu_YabE : KVIAVDPNVIPLGSKVHVEG----------------YGYAIAADTGSAIKGN-KIDVFFPEKSSA---YRWGNKTVKIKILN-
CP_CPE1229 : STIAVDPSVIPLGSKVYIPG----------------YGYAIASDTGGVIKGN-IIDLYMNSHDEC---ISWGRRQVTLHIV--
EF_EF0944 : -VVAVDPSVIPLGSLVKVSG----------------YGFAIAGDTGGAIQGN-IIDVHFDSVDQC---RLWGRRQVTVEI---
LI_LIN0225 : KVIAVDPNVIPLGSKVWVEG----------------YGEAIAGDTGGVIKGN-IVDVYFPNESQC---YSWGRRMVTVKVLN-
LM_LMO0186 : KVIAVDPRIIPLGSKVWVEG----------------YGEAIAGDTGGAIKGN-IVDVYFPNESQC---YSWGRRMVTVKVLN-
OI_OB0048 : KIIAVDPSVIPLGTKVHVEG----------------YGEAIAGDTGGNIVGN-RIDVHVPSRSDA---YAWGVRTVKVTILD-
DH_DESU702 : GLIAVDPRVIPLGTEVYVEG----------------YGHAIAADTGGAIKGN-IIDVFFPSLQRC---IQWGRRPVVIHIL--
CT_CHTE712 : RTVAVDPSVIPLGTRVYISFPVAYSH---------LDGIYIAEDTGSLIKGN-KIDIFFGE------------DKPGETVIYN
CA_CAC2045 : RVIAVDPSVIKLGTRVYLQFPDNKRYQTKNGQRYDLNGWYTAHDTGGAIKGN-HIDLF-------------------------

MltA

Sps

V VI

* * *
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Discussion
We have presented evidence indicating that the firmicutes
contain a family of proteins functionally equivalent to the
actinobacterial Rpf family. The original link between the
two protein families was provided by M. tuberculosis RpfB
and B. subtilis YabE, which share a large N-terminal region
containing DUF348 and G5 domains. In spite of this strik-
ing similarity, YabE lacks a C-terminal Rpf domain and
contains instead a domain of similar size that we have
called Sps (see above). Although the Rpf and Sps domains
are totally unrelated in both sequence and secondary
structure (see additional data files 1 and 2), we have pre-
sented evidence that they have a similar biological func-
tion. According to the definition proposed by Koonin et
al. [26], an event of non-orthologous gene displacement
can be suspected when the same function is fulfilled by
unrelated or distantly related proteins. The RpfB and YabE
proteins provide an example of a related phenomenon
applicable to protein domains that we have called "non-
orthologous domain displacement". Phylogenetic trees
constructed using only the shared N-terminal region of
RpfB-like and YabE-like (SpsB) proteins (Fig. 5) resemble
trees generated with 16S rRNA, suggesting that these pro-
teins have undergone vertical transmission from a com-
mon ancestor and that the Rpf domain displaced the Sps
domain (or vice versa) sometime after the actinobacterial
and firmicute lineages diverged. Most probably, this event
has been followed by duplication and diversification
within each lineage to create paralogues of the Rpf pro-
teins in the actinobacteria and the Sps proteins in the fir-
micutes. Other instances of what could be referred to as
non-orthologous domain displacement have been docu-
mented previously, e.g. aminoacyl tRNA synthetases. Bac-
terial and eukaryotic glutamyl-tRNA synthetases have
generally similar domain architectures but they contain
unrelated anticodon-binding domains [27,28]. Similarly,
eukaryotic tyrosyl tRNA synthetases contain two domains
that are unrelated to those of their bacterial counterparts
[28,29]. The DnaG-like primases of bacteria and their
phages differ from their archaeal orthologues in that the
former contain a Zn-finger DNA-binding domain,
whereas the latter contain a helicase-derived domain
probably involved in the same function [30,31]. Protein
domains are considered as the basic units of folding, func-
tion and evolution [32-35] and we suspect that the phe-
nomenon of non-orthologous domain displacement
could be quite widespread. Moreover, it might have pre-
dictive value in cases where the function of only one of a
pair of non-orthologous domains is already known.

Most rpfB and spsB genes lie within a very similar genomic
context flanked by tatD and ksgA(with rnmV inserted
between spsB and ksgA in firmicutes). The only exceptions
are the duplicate spsB genes found in C. perfringens and C.
tetani, one of which is located elsewhere in both organ-

isms. Statistical analysis of the enormous amount of
genome sequence information that has become available
in recent years has shown that conservation of genome
context may often be employed to infer functional
relationships between neighbouring genes [36]. In our
case, a functional association is indeed predicted by the
SNAP algorithm (Similarity Neighbourhood APproach
[37,38]), though it is not obvious what the relationship
might be. TatD is a Mg2+-dependent deoxyribonuclease of
unknown function [39], RnmV is a ribonuclease M5/pri-
mase-related protein involved in maturation of the 5S
rRNA [40,41] and KsgA is a 16S rRNA methyltransferase
that may play a role in translation initiation [42]. In B.
subtilis the tatD (yabD) gene does not appear to be
expressed during either vegetative growth or sporulation,
whereas the rnmV (yabF) and ksgA genes appear to be co-
transcribed during vegetative growth. They are highly
expressed at the beginning of exponential phase and their
expression declines sharply shortly afterwards, an almost
identical pattern to that of yabE (data from the B. subtilis
Genome Database [43]. These observations may reflect a
connection between protein synthesis (RnmV, KsgA) and
cell wall expansion (RpfB or SpsB – see below) as would
be required when a cell restarts growth after dormancy (in
the case of Rpf) or prolonged stationary phase (in the case
of Sps). The SNAP algorithm also predicts a functional
association between RpfB/SpsB and the 4-diphosphocyti-
dyl-2C-methyl-D-erythritol kinase. The gene encoding
this protein (ispE) is located immediately downstream of
ksgA in actinobacteria and two to four genes downstream
of ksgA in Listeria and Bacillus spp., respectively (however,
it appears to have a scattered distribution in clostridia).
The 4-diphosphocytidyl-2C-methyl-D-erythritol kinase
participates in the non-mevalonate pathway for isopre-
noid synthesis, which is involved in cell wall biosynthesis
in E. coli and B. subtilis [44].

A functional relationship between neighbouring genes is
normally inferred when they also show the same phyloge-
netic profile. This is not universally true in the present
case, since some firmicutes, e.g. S. aureus, Streptococcus aga-
lactiae, Streptococcus pyogenes, B. anthracis and B. cereus,
contain neither rpfB nor spsB although the other genes
normally associated with them, tatD, ksgA and rnmV (in
firmicutes) are present in the same relative order. Presum-
ably, rpfB or yabE have been lost from these organisms
(the alternative, necessitating several independent gene
acquisition events, seems less likely). This is particularly
evident in the mollicutes, where the occurrence of the
genes in question is patchy. None of the strains sequenced
contain rpfB/spsB (these organisms lack a cell wall), but
some contain rnmV-ksgA (Mycoplasma capricolum and Myc-
oplasma mycoydes – D14983 and NC_005364, respec-
tively), some contain tatD-ksgA (Mycoplasma pulmonis,
NC_002771) and some contain only ksgA (Mycoplasma
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genitalium, Mycoplasma gallisepticum, Mycoplasma penetrans
and Mycoplasma pneumoniae – NC_000908, NC_004829,
NC_004432 and NC_000912, respectively). As mollicutes
are believed to derive from bacilli by reductive evolution
[45], it seems that this group has lost rpfB/spsB and is in
the process of loosing the remaining genes in the string.
Note that rpfB, yabE and ksgA are non-essential genes
[6,8,46] (Ravagnani et al., in preparation), as are tatD and
rnmV in B. subtilis [41,43]).

Information from gene fusions may also be used to pre-
dict gene function. The "Rosetta stone" [47] and "guilt by
association" [48] approaches propose that if a
combination of domains A and B is detected in one pro-
tein and a combination of domains B and C in another,
then it may be predicted that domains A, B and C are func-
tionally related. The "Rosetta stone" hypothesis suggests
that the function of one protein domain may be predicted
on the basis of its fusion to another domain of known
function. Since we do not know the function of the
domains connecting RpfB and SpsB (DUF348 & G5), it

might be more correct to invoke "guilt by association" in
the present case.

More recently, a new method based on consideration of
genomic context has been employed to predict ortholo-
gous relationships between genes on the basis of anti-cor-
relating occurrences of genes across species [49]. Given
three genes A, B and C, if A is always present in a particular
group of organisms in association with either B or C, but
B and C are never found in the same organism, it can be
predicted that B and C fulfil the same function. Extending
this approach to protein domains, we may predict that the
Rpf domain of RpfB and the Sps domain of SpsB have the
same function, as they are both fused to the same
DUF348- and G5-containing region, but never occur in
the same organism (or, at least, in those so far sequenced).

In bacteria, the DUF348 domain appears to be restricted
to proteins containing either Rpf or Sps domains (but it is
also found in the yeast Myb-like protein Snt1). B. anthracis
and B. cereus are the only organisms containing multiple

Phylogenetic analysis of the RpfB and SpsB proteinsFigure 5
Phylogenetic analysis of the RpfB and SpsB proteins. Phylogenetic trees based on the N-terminal moieties (DUF348 & 
G5 domains) from RpfB and SpsB proteins (right) and 16S rRNA sequences of organisms that contain RpfB and SpsB proteins 
(left). Trees were constructed by neighbour joining methods using MEGA v2.1 [77]. Bootstrap values are shown at the branch 
points.
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sps genes that do not have an spsB gene, despite
conservation of the genes with which it is normally asso-
ciated (tatD, rnmV and ksgA). These bacteria have instead
four and three copies, respectively, of spsE genes encoding
proteins containing two SH3b domains. SH3b is the
equivalent of the eukaryotic SH3 (Src homology 3)
domain, which is found in a variety of membrane-associ-
ated and cytoskeletal proteins and mediates protein-pro-
tein interactions by typically binding proline-rich
polypeptides [50]. In bacteria, SH3b domains are found
in various cell wall amidases and peptidases. Although
their function is unknown, the SH3b-containing region of
Staphylococcus simulans lysostaphin, which cleaves pepti-
doglycan, mediates binding to the S. aureus cell wall [51].
Such a function would be consistent with the occurrence
of this domain in muralytic enzymes. It is tempting to sug-
gest that the DUF348 domain has a role similar to that of
the SH3b domain. Whatever their functions might be,
invoking again the principle of "guilt by association" [48],
the association of the Sps domains with other domains
present in muralytic enzymes (SH3b, COG3883, LysM)
points very strongly to a role for the Sps proteins in cell
wall metabolism. This hypothesis is also supported by the
occurrence of an M23 peptidase domain in S. coelicolor
and S. avermitilis Rpf5, Thermotoga maritima TM0568 and
some lytic transglycosylases, such as B. subtilis YomI.

The sequence similarity between the C-terminal region of
the Sps domain and that of the Gram-negative mem-
brane-bound lytic transglycosylase, MltA, serves to
reinforce this connection. Figure 4A shows that the simi-
larity between Sps and MltA encompasses all three aspar-
tate residues that have been highlighted as potential
catalytic residues for the lytic transglycosylase family 2 –
classification according to Blackburn and Clarke [25]. In
parallel with this, there is also sequence similarity
between the Rpf domain and the N-terminal region of the
Gram-negative endo membrane-bound lytic transglycosy-
lase, EmtA [2,14]. Although quite limited, the similarity in
this case encompasses the absolutely conserved catalytic
glutamate residue of the lytic transglycosylase family 1
(Fig. 4B).

Lytic transglycosylases are enzymes that catalyse cleavage
of the β-1,4-glycosidic bond between N-acetylmuramic
acid and N-acetylglucosamine in the peptidoglycan back-
bone. Unlike lysozyme, they also catalyse an intramolecu-
lar glycosyltransferase reaction to form terminal 1,6-
anhydromuramic acid-containing products. The exact
function of these enzymes is unknown, but they are
thought to be involved in cleavage of the peptidoglycan to
permit the insertion of newly synthesised material during
cell elongation and division. Remodelling of the cell enve-
lope requires the concerted action of both hydrolases and
synthetases, which may form large multienzyme com-

plexes [52,53]. Consistent with this, physical interactions
between some E. coli lytic transglycosylases and penicillin-
binding proteins (enzymes involved in the synthesis of
peptidoglycan) have been demonstrated experimentally
[54,55].

In E. coli there are at least six lytic transglycosylases, one
soluble and five membrane-bound [56-60], with different
substrate specificities. Due to the high degree of redun-
dancy, no obvious effect on growth is observed after
deletion of their genes [60]. This is in agreement with the
results obtained after disruption of three of the five rpf-like
genes in S. coelicolor [2] and the five rpf-like genes of M.
tuberculosis [6,8]. In contrast, there is evidence for essenti-
ality of the apparently unique rpf gene of M. luteus, whose
chromosomal copy could be disrupted only in the pres-
ence of an extra plasmid-encoded copy of the gene [5].
However, definitive proof of essentiality would require
the construction of a conditional mutant and this technol-
ogy is not currently available for M. luteus.

In B. subtilis the sps genes are not essential, but a clear phe-
notype is associated with disruption of yocH and this is
much accentuated by the disruption of all four sps genes:
these mutants show reduced survival after prolonged sta-
tionary phase (Ravagnani et al., ms. in preparation). This
phenotype has been observed previously, associated with
disruption of genes involved in cell wall metabolism, such
as the E. coli nlpD, encoding an M23 endopeptidase [61],
and surA, encoding a peptidyl-prolyl isomerase [62]. The
latter is required for the correct folding of extracytoplas-
mic proteins and it has been proposed to be necessary for
the assembly of the murein-synthesizing complex, of
which lytic transglycosylases are a component [62]. In the
Gram-positive bacteria, rpfB or spsB occupy a highly con-
served genomic context, within a group of genes including
ksgA (see above). Interestingly, in E. coli and related
enteric bacteria, ksgA lies within the same transcription
unit as surA (surA-pdxA-ksgA-apaG-apaH), suggesting again
a possible association between protein synthesis and cell
wall expansion.

The assignment of a muralytic function to the Sps and Rpf
domains is entirely consistent with the presence of an Sps
protein, YorM, in the B. subtilis prophage SPβ, and the
recent discovery of the Rpf domain in a large mycobacte-
riophage "tape measure protein" [13]. Muralytic transgly-
cosylase activity is often associated with bacteriophage
virions and confers upon them the highly localised mura-
lytic activity that is required for the process of phage infec-
tion, without provoking premature lysis of the host [63].

The bioinformatic evidence in favour a role for the Rpf
and Sps proteins in peptidoglycan metabolism is now
compelling. This prediction has recently been confirmed;
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both M. luteus Rpf and B. subtilis YocH have murein
hydrolase activity in zymograms (Mukamolova et al., ms.
in preparation; Ravagnani et al., ms. in preparation).

Conclusions
As a result of the observed catalytic activity of the Sps and
Rpf proteins, our views on the nature of bacterial non-cul-
turability are changing. The various models of non-cultur-
ability we have developed over the years [1,64,65] might
be explained by the disappearance of nascent
peptidoglycan and its gradual replacement by inert pepti-
doglycan in the bacterial cell wall. This has recently been
proposed as a key feature of the mechanism that deter-
mines the position of growth zones in the bacterial cell
wall [66-68]. We suggest that the walls of non-culturable
organisms may contain such a preponderance of inert
peptidoglycan that their envelope has effectively become
a "cocoon", requiring the action of specialised muralytic
enzymes to make a restricted number of scissions, before
growth and wall expansion can resume. The Sps and Rpf
proteins may have been recruited to serve this function.
Resumption of cell wall synthesis might therefore be
regarded as one of the "core processes" (see above), along
with re-initiation of protein synthesis, that would need to
be activated by cells emerging from dormancy (in the case
of Rpf) or prolonged stationary phase (in the case of Sps).
Signalling could be part of such a resuscitation mecha-
nism, mediated perhaps by a small molecule released
from murein as a result of the action of Rpf / Sps proteins.
This hypothesis is currently being tested.

Methods
Database searching was carried out using either the posi-
tion-specific iterative BLAST (PSI-BLAST) method [69] or
the Hidden Markov model (HMM) database searching
algorithm of HMMER 2.2 g http://hmmer.wustl.edu/.
Both local and global profiles of aligned sequences were
generated, and searches were carried out using the default
parameters. For one application, FASTA [70] was
employed.

Domain analysis was undertaken using COG [71-73],
MEME [18,19], PFAM [22], SEG [17], SignalP [11],
TMHMM [12] and SMART [23,24].

Sequence alignments were generated using ClustalX ver-
sion 1.81 [74] and T-coffee [75,76].

Phylogenetic trees were generated using MEGA v2.1 [77].
T-coffee-aligned sequences were analysed using the neigh-
bour-joining method (options: p-distance model, com-
pete removal of gaps, 10,000 bootstrap replications).
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