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In this review, we focus on the roles of long noncoding RNAs (lncRNAs), including cellular

and viral lncRNAs, in virus replication in infected cells. We survey the interactions and

functions of several cellular lncRNAs such as XIST, HOTAIR, NEAT1, BIC, and several virus-

encoded lncRNAs.

Copyright ª 2013, China Medical University. Published by Elsevier Taiwan LLC. All rights

reserved.
1. Introduction serve as adaptors between messenger RNAs (mRNAs) and
A small portion (less than 2%) of the human genome is used to

encode about 25,000 protein-encoding genes, while based on

the findings from genome tiling arrays and RNA sequencing,

>70% of the human genome is transcribed into RNAs, with the

vast majority of these RNAs being devoid of obvious protein-

coding capacity [1,2]. These numbers suggest that noncoding

RNAs (ncRNAs) may not simply be effete materials, and they,

like their protein counterparts,may play significant functional

roles [3].

Operationally, ncRNAs can be grouped into small non-

coding RNAs (sncRNAs) and long noncoding RNAs (lncRNAs)

according to their length [4]. Within these two groups, there

can be additional subclassifications of the moieties [5,6].

Of these two RNA groups, sncRNAs are transcripts that are

<200 nt in length. Housekeeping RNAs, such as transfer RNAs

(tRNAs) and ribosomal RNAs (rRNAs) (5S, 5.8S), fall within this

noncoding category [7]. The first characterizedncRNAs, tRNAs,
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proteins for the elongation of polypeptide; rRNAs are essential

elements for protein translation [8,9]. Other sncRNAs include

small nucleolar RNAs and small nuclear (snRNAs) that play

certain roles in rRNA modification and RNA splicing [10,11].

Besides these entities, sncRNAs also include threemajor types

of regulatory RNAs: piwi-interacting RNAs (piRNAs), micro-

RNAs (miRNAs), and small interferingRNAs (siRNAs) [12,13]. Of

these regulatory RNAs, piRNAs are involved in the regulation

of transposon activity and chromatin state in germline and

somatic cells [14,15]; miRNAs and cell endogenous siRNAs

contribute to RNA interference (RNAi) or post-transcriptional

gene silencing [16]. Approximately 2000 miRNAs are encoded

by the human genome [17,18]; miRNAs serve as guide RNAs in

an RNA-induced silencing complex (RISC) to target mRNAs

through imperfect complementarity leading to repression of

translation or degradation of the mRNAs [19e21]. Similarly,

cell endogenous siRNAs also participate with RISC proteins in

silencing gene expressionusually via perfect complementarity
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with mRNA targets [22]. The functional roles of sncRNAs have

been reviewed extensively elsewhere [12,18,23e26]. This cur-

rent review focuses on the still lesswell-studied counterpart of

sncRNAs and lncRNAs, and their interactions with viruses.
2. Long noncoding RNAs

The lncRNAs are transcripts that are>200 nt in length [5]. This

class of RNAs includes intergenic ncRNAs, pseudogene tran-

scripts, and many antisense RNAs [5,6]. The majority of

lncRNAs are transcribed by RNA polymerase II; they are

50-capped, spliced, and polyadenylated, and are mRNA-like in

many ways [27]. A small minority of lncRNAs are transcribed

by RNA polymerase III; these include 7SK and 7SL [28,29]. The

21A lncRNA is also an RNA Pol-III transcript, but it is not pol-

yadenylated [30]. Additionally, several other features fre-

quently define lncRNAs, such as epigeneticmarks sharedwith

protein-coding gene (H3K4me3 at the gene promoter and

H3K36me3 throughout the gene body), splicing of multiple

exons via canonical splice site motifs, regulation by tran-

scription factors, and expression in a tissue-specific manner

[6]. It is now increasingly understood that lncRNA sequences

are abundant in the mammalian genome. To date, approx-

imately 6700 lncRNAs have been identified in the human

genome [31,32], and it is estimated that 7000e23,000 lncRNAs

putatively exist in the human genome [33,34]. Whether many

of these deduced lncRNAs are authentically expressed and

serve functional roles remain to be demonstrated. As of

November 2012, 194 lncRNAs have been recorded in the

lncRNAdb, a database that archives lncRNAs reported in

published literature [35].
3. Functions of lncRNAs

Accumulating data support the fact that lncRNAs contribute

functions that affect many cellular processes [6,27,36,37].

Extant findings indicate contributions of lncRNAs to both

transcriptional and post-transcriptional regulations [6,37].

Here, we discuss a few of the better characterized lncRNAs

such as XIST, HOTAIR, H19, HMGA1-p, MALAT1, and NEAT1

among others. Many of these RNAs are expressed during

tumorigenesis or disease pathogenesis, or in different stages

of embryonic stem cell differentiation [36].
4. Transcriptional regulation

Several lncRNAs play roles in transcriptional regulation. XIST,

which was first discovered by searching cDNA libraries [38], is

perhaps the most well-known lncRNA. A double-hairpin RNA

motif in the RepA domain in XIST binds polycomb repressive

complex 2 (PRC2), the complex that has been shown to be

recruited by many lncRNAs to target genes [39] and that

propagates function leading to X chromosome inactivation, as

observed in some breast cancers [40e42]. Hypomethylation of

XIST in lymphoma and male testicular germ-cell tumors has

also been described, although their functional significance

needs more study [6,43].
Another well-studied lncRNA is HOTAIR. The HOTAIR gene

is located within the HoxC gene cluster on chromosome 12

[44]. The HOTAIR transcript represses the expression of genes

in the HoxD gene cluster on chromosome 2. The 50-domain of

HOTAIR binds PRC2, while its 30-domain interacts with the

LSD1/CoRES/REST complex [44,45], leading to methylation of

histone H3 lysine 27 and demethylation of lysine 4, and gene

repression by chromatin remodeling [45]. Mechanistically,

HOTAIR serves as a modular scaffold for assembling a multi-

protein complex [45].

Separately, it has been demonstrated that lncRNAs can

regulate gene expression by increasing enhancer activity [4].

Evf-2, a 3.8-kilobase (kb) alternatively spliced form of Evf-1, is

transcribed from the highly conserved region between theDlx-

5 and Dlx-6 genes, members of the Dlx/dll homeodomain-

containing protein family [46]. Evf-2 specifically recruits DLX

and MECP2 transcription factors to increase the transcrip-

tional activity of the Dlx-5/6 enhancer [47].
5. Post-transcriptional regulation

Recent studies have also provided insights into the post-

transcriptional regulatory roles of lncRNAs. One view sug-

gests that lncRNAs can be precursors of small RNAs, e.g.,

miRNAs [48]. H19, a 2.5-kb RNA polymerase II-dependent

transcript, is an imprinting-associated lncRNA located on

chromosome 11 [49]. The function of H19 has remained elu-

sive since its discovery over 20 years ago. Recently, H19 has

been reported to serve as the precursor of miR-675, which can

act to moderate cell growth. The excision of miR-675 from H19

is under the control of the stress-response RNA-binding pro-

tein HuR; miR-675 is specifically expressed in the placenta

from time of gestation and may function to limit placental

growth [50].

Emerging reports suggest that pseudogenes can play

important roles in regulating coding gene expression. For

example, HMGA1-p, the pseudogene of HMGA1, encodes

a transcript that competes with the HMGA1 30-UTR for a criti-

cal RNA stability factor; this competition triggers a significant

decline in the stability of HMGA1 mRNA [51]. In the case of

PTEN, the transcribed pseudogene PTENP1 competes for

miRNA-binding sites with the authentic PTEN RNA, thereby

regulating the cellular abundance of PTEN mRNA [52].

Recently, Gong andMaquat [53] described a new functional

mechanism of lncRNAs. The half-STAU1-binding site RNA 1

1/2-sbsRNA1 contains an Alu element that can base-pair with

the Alu element in the 30-UTR of SERPINE1mRNA and FLJ21870

mRNA. This base-pairing between twoAlu elements forms the

binding site for Staufen 1 (STAU1) protein, which recognizes

double-stranded RNA [54], resulting in STAU1-mediated

mRNA decay [53].

The lncRNAs can also bind to cellular protein andmodulate

their localization and activity. One of the well-characterized

examples is MALAT1, which regulates alternative splicing by

modulating the phosphorylation of the serine/arginine splic-

ing factors [55]. Another example is NRON (an ncRNA

repressor of the nuclear factor of activated T cells), which is

proposed to block specifically nuclear trafficking of tran-

scription factor NFAT (the nuclear factor of activated T cells)

http://dx.doi.org/10.1016/j.biomed.2013.01.001
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as an RNA component of a protein complex that acts to

repress NFAT activity [56].
6. Structural lncRNAs

There is also evidence that lncRNAs contribute structural/

scaffolding functions. The lncRNA NEAT1, also known as

MEN 3/b, was reported recently to be essential for the forma-

tion and maintenance of the nuclear substructure para-

speckles [48,57e59]. Paraspeckles are found in the

interchromatin space of a nucleus and serve as depots for

RNA-binding proteins in the nucleus [60]. Similarly, the

lncRNA Xlsirts is suggested to be necessary for maintaining

the cytokeratin cytoskeleton in Xenopus oocytes [61,62].
7. Cellular lncRNAs in virus-infected cells

Viruses are parasites that interact with their hosts. Since the

functions of lncRNAs are highly pleiotropic, ranging from gene

regulation to sncRNA precursors [4] and from cell develop-

ment to cancer growth [6,12], it is not surprising that lncRNAs

may be involved in virus replication. Early studies of the

relationship between ncRNAs and viruses mainly focused on

sncRNAs, such as miRNAs [63,64], while the roles of lncRNAs

were not well studied. However, there is emerging evidence

that cellular lncRNA expression can be regulated by virus

infection. Thus, whole transcriptome analyses showed that

during an infection by severe acute respiratory syndrome

coronavirus, approximately 500 annotated lncRNAs and 1000

nonannotated genomic regions are differentially expressed in

lung samples, and 40% of these changes are similarly observed

during influenza virus infection and interferon treatment,

indicating that many lncRNAs may be involved in regulating

the host response to virus infection [65]. A concordant inter-

pretation was separately proposed based on findings that the

expression patterns of eight mRNA-like lncRNAs in immune

tissues of chickens were changed after Marek’s disease virus

infection, similarly suggesting that they may play a role in

host immune response [66]. Another example is PRINS (pso-

riasis susceptibility-related RNA gene induced by stress),

which is increased by herpes simplex virus infection [67].

Separately, we recently profiled 83 disease-related lncRNAs in

HIV-1-infected T cells and identified several lncRNAs that

were changed in both Jurkat and MT4 cells, e.g., BIC, NEAT1,

and PANDA [68].Our findings are also consistent with the

overall notion that some lncRNAs serve in host responses to

viral infections. Finally, studies have found a non-protein-

coding infection-specific gene family called Pinci1, which is

upregulated by Phytophthora infestans infection, in potatoes

[69].

Although the lncRNAs discussed above have differential

expression in virus-infected cells, their specific functions in

virus replication remain incompletely characterized. In the

following, we will discuss briefly some examples of lncRNAs

whose roles in viral life cycle and viral pathogenesis are

beginning to be better understood (Fig. 1).
8. 7SL

The 7SL, a 300-nt RNA transcribed by RNA Pol-III, is the

architectural RNA component of the signal recognition parti-

cle (SRP) ribonucleoprotein complex [70,71], which is a uni-

versally conserved ribonucleoprotein that directs the traffic of

proteins within the cell and allows them to be secreted [72]. In

mammals, six SRP proteins, named SRP9, SRP14, SRP19, SRP54,

SRP68, and SRP72, assemble on 7SL and form SRPs [73,74].

The 7SL was first detected in avian and murine oncogenic

RNA virus particles and then was found to be packaged by

a broad range of retroviruses [75,76]. Tian et al [77] showed

that 7SL RNA is more selectively packaged into HIV-1 virions

than other abundant Pol-III-transcribed RNAs, such as Y

RNAs, 7SK RNA, U6 snRNA, and cellular mRNAs. Interestingly,

7SL has been suggested to participate as a cofactor in the

innate antiviral function of host cytidine deaminases such as

cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F)

[78,79]. Wang et al [78] demonstrated that A3G selectively in-

teracts with 7SL RNAs and both are incorporated into virions,

while A3Gmutants that reduce 7SL RNA binding but maintain

wild-type levels of mRNA and tRNA binding are packaged

poorly and have impaired antiviral activity. Reducing 7SL RNA

packaging by overexpression of SRP19 proteins inhibits 7SL

RNA, and A3G and A3F virion packaging, and impairs their

antiviral functions [78,79]. Moreover, virion packaging of both

A3G and cellular 7SL RNA was mapped to the same regions in

the HIV-1 nucleocapsid (NC) domain [77].
9. NEAT1

NEAT1 serves as a structural scaffold for nuclear paraspeckles

[80]. It has two isoforms: NEAT1_1 (3.7 kb in human) and

NEAT1_2 (23 kb in human); the isoforms are also namedMEN 3

and MENb [60]. Besides NEAT1 RNA, paraspeckles contain

more than 30 nuclear proteins including p54nrb, PSF, and

PSPC1, which are all RNA-binding proteins [60]. Despite much

progress, the function of paraspeckles is still not well defined,

but they are suggested to be involved in regulation of gene

expression through nuclear RNA retention [81].

NEAT1 expression was reported to be increased in the

central nervous system of mice during their infection with

Japanese encephalitis virus (JEV) or Rabies virus [82]. More inter-

estingly, several cellular proteins that play roles in HIV-1

replication are found in paraspeckles (e.g., PSF, p54nrb, and

Matrin 3) [83,84]. Recently, we identified NEAT1 as one of

several lncRNAs whose expression is changed by HIV-1

infection, and we reported that the knockdown of NEAT1

enhances virus production through increased nuclear to

cytoplasmic export of Rev-dependent INS-containing HIV-1

mRNAs [68].
10. BIC

BIC was first identified as an ncRNA upregulated by avian

leukosis virus infection [85]. The integrated provirus activates

bic gene expression by promoter insertion, resulting in high

http://dx.doi.org/10.1016/j.biomed.2013.01.001
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Fig. 1 e Illustrations of the functions of selected cellular lncRNAs in virus-infected cells. (A) The cytidinedeaminase

APOBEC3G and APOBEC3F selectively interact with 7SL RNAs and are incorporated into virions. (B) The lncRNANEAT1 serves

as a structural scaffold for the nuclear substructure paraspeckles. Paraspeckle proteins PSF and p54nrb bind to HIV-1 RNA

and retain the RNA in paraspeckles. (C) The integrated ALV activates bic gene expression by promoter insertion. BIC RNA, the

precursor of miR-155, is suggested to be responsible for virus-induced lymphomas. (D) The lncRNA-HEIH, which is highly

expressed in HBV-related HCC, recruits the PRC2 complex to repress EZH2 (an important subunit of the PRC2 complex)

targeted genes. (E) HULC is upregulated by HBx protein through activation of the HULC promoter via CREB, leading to the

suppression of the tumor suppressor gene p18. ALV [ avian leukosis virus; CREB [ cAMP responsive element binding

protein; EZH2 [ enhancer of zeste homolog 2; HBV [ hepatitis B virus; HBx [ hepatitis B virus X; HCC [ hepatocellular

carcinoma; lncRNAs [ long noncoding RNAs; lncRNA-HEIH [ lncRNA high expression in HCC; HULC [ lncRNAs highly

upregulated in liver cancer; PRC2 [ polycomb repressive complex 2.
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levels of expression of BIC RNA, which was suggested to be

responsible for virus-induced lymphomas [85]. More recently,

BIC was found to be the precursor of oncogenic miR-155 [86],

which is induced by several oncogenic viruses, e.g., Eps-

teineBarr virus, hepatitis C virus, and reticuloendotheliosis

virus strain T [87e89]. Interestingly, Kaposi’s sarcoma-

associated herpesvirus, a gammaherpesvirus, and Marek’s

disease virus, an avian alphaherpesvirus, encode viral miR-

NAs, miR-K11, andmiR-M4, as functional orthologs ofmiR-155

[90,91]. Of interest, it has been shown that EpsteineBarr virus

attenuates NF-kB signaling and stabilizes latent virus persis-

tence by inducing miR-155 [92]. In hepatitis C virus infection,

upregulated miR-155 has been demonstrated to promote

hepatocarcinogenesis by activating Wnt signaling [88]. Retic-

uloendotheliosis virus strain T induces miR-155 to target

JARID2, a cell-cycle regulator that is a part of a histone

methyltransferase complex, in order to promote cell survival

[89]. Induction of miR-155 by virus infection may not only be

due to the induction of BIC RNA, but also arise from enhanced

RNA processing [93].
11. Long ncRNA high expression in HCC and
lncRNAs highly upregulated in liver cancer

Hepatitis B virus (HBV) infection is a major cause of hepato-

cellular carcinoma (HCC) [94]. Recent research has shown that

some lncRNAs are aberrantly expressed in HBV-related HCCs.

Two of these lncRNAs, lncRNA-HEIH (lncRNA high expression

in HCC) and HULC (lncRNA highly upregulated in liver cancer),

are reported to play key roles in HBV-related hepatocarcino-

genesis [95,96]. Of these two lncRNAs, lncRNA-HEIH was

reported to play a key role in G0/G1 arrest and be associated

with enhancer of zeste homolog 2 (EZH2, an important sub-

unit of the PRC2 complex), resulting in the repression of EZH2

target genes [95]. The other lncRNA HULC, a w500 nt mRNA-

like ncRNA, was reported to be upregulated by the hepatitis

B virus X (HBx) protein through activation of the HULC pro-

moter via cAMP responsive element binding protein. Upre-

gulated HULC promotes proliferation of hepatoma cells

through suppressing a tumor suppressor gene p18 [96].

http://dx.doi.org/10.1016/j.biomed.2013.01.001
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Table 1 e Virus-encoded lncRNAs.

Length Name Virus Characteristics References

<200 nt EBERs EpsteineBarr

virus

w170 nt, play roles in oncogenesis and

modulate innate immune signaling

[102]

(EBER1, EBER2)

HSURs Herpesvirus

saimiri

HSUR1 (143 nt), HSUR2 (115 nt);

HSUR1 directs degradation of miR-27

to manipulate host T-cell gene expression

[103,104]

(HUSR1, HUSR2)

VA I and II Human

adenovirus

w160 nt, block PKR activity, avoiding

phosphorylation of eIF-2a and inhibition

of viral mRNA translation; can be processed

by Dicer into small RNAs that are

incorporated into RISC

[105e108]

>200 nt b2.7 Human

cytomegalovirus

2.7 kb, binds to the mitochondrial enzyme

complex I, protecting virus-infected cells

from apoptosis, resulting in continued ATP

production

[100,109]

sfRNA Flaviviruses 0.3e0.5 kb, produced from the incomplete

degradation of the viral genome by the host

exonuclease XRN1 and required for virus-induced

cytopathicity and pathogenicity

[110]

ATP ¼ adenosine triphosphate; EBERs ¼ EpsteineBarr virus-encoded RNAs; HSURs ¼ Herpesvirus saimiri U-rich RNAs; lncRNAs ¼ long non-

coding RNAs; mRNA¼messenger RNA; PKR¼ double-stranded RNA-activated protein kinase; RISC ¼ RNA-induced silencing complex; VA I and

II ¼ virus-associated RNA I and II.
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12. Theiler’s murine encephalomyelitis virus
persistence candidate gene 1

Previously, the Tmevp3 locus, located on the telomeric re-

gion of chromosome 10, was shown to control the persis-

tence of Theiler’s virus in the central nervous system of

mice [97]. More recently, an ncRNA Tmevpg1 (Theiler’s

murine encephalomyelitis virus persistence candidate gene

1) was identified, at that locus through a positional cloning

approach, as a candidate gene for controlling the persis-

tence of Theiler’s virus [98]. The promoter of Tmevpg1

contains binding sites for E2A and the Ets family of tran-

scription factors, indicating that it is regulated by tran-

scription factors involved in the immune system [99]. Since

Tmevpg1 and its human ortholog, TMEVPG1, are located in

a cluster of cytokine genes that includes the genes for

gamma interferon and homologs of interleukin-10, Tmevpg1

is suggested to be involved in the control of Interferon-

gammagene (Ifng) expression [98]. However, its precise

role requires further characterization.
13. Virus-encoded lncRNA

To date, over 200 miRNAs encoded by several virus families

have been identified [18]. Similarly, several lncRNAs encoded

by viruses have also been discovered [100,101] (Table 1)

[102e110]. Although each is less than 200 nt in size, Eps-

teineBarr virus-encoded RNAs (EBERs) [102], herpesvirus sai-

miri U-rich RNAs (HSURs) [103,104], and virus-associated RNA I

and II (VA I and II ) encoded by adenovirus [105e108] are

sometimes also referred to as viral lncRNAs, because they are

significantly longer than viral miRNAs [111]. Here, we focus an

illustrative discussion on two viral lncRNAs, b2.7 and sfRNA,

which are longer than 200 nt in size.
14. Viral lncRNA b2.7

b2.7 RNA, a highly conserved 2.7-kb transcript of human cyto-

megalovirus, accounts for more than 20% of total viral gene

transcriptionduring the early phaseof infection [100]. Since the

replication rate of a b2.7 deletionmutant virus is similar to that

of a wild-type virus, the b2.7 gene was considered not to be

essential for virus replication in vitro [112]. However, recently,

byNorthwestern screeningof ahumancDNA librarywith a b2.7

probe, Reeves et al [109] found that b2.7 binds directly to the

mitochondrial enzyme complex I (reduced nicotinamide ade-

nine dinucleotideeubiquinone oxidoreductase). This binding

protects virus-infected cells from apoptosis and results in

continued adenosine triphosphate (ATP) production, which is

critical for the successful completion of the viral life cycle. The

b2.7 RNA can also protect rat aortic endothelial cells from

ischemia/reperfusion injury-inducedapoptosisby reducing the

formation of reactive oxygen species [113].
15. Subgenomic flavivirus RNA

The subgenomic flavivirus RNA (sfRNA), 0.3e0.5 kb, is derived

from the 30 untranslated region of the RNA genome of flavi-

viruses, a large group of single-stranded, positive-sense RNA

viruses that includes several human pathogenic viruses, such

as yellow fever virus, JEV, and West Nile virus (WNV)

[101,114,115]. The sfRNA has been demonstrated to be pro-

duced from the incomplete degradation of the viral genome by

the host 50 to 30 exonuclease XRN1. The rigid secondary

structure stem-loop II located at the beginning of the 30-UTR of

the above viral genomes is resistant to nuclease XRN1 degra-

dation and results in the production of sfRNA [116]. Production

of sfRNA has been shown to increase the replication efficiency

of WNVs and is important for virus-induced cytopathicity in

http://dx.doi.org/10.1016/j.biomed.2013.01.001
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cell culture and also for viral pathogenicity in mice [110,117].

However, the exact mechanisms explaining how sfRNA leads

to increased virus replication and cell death remain elusive.

sfRNA is also found in JEV infection. In this setting, sfRNA

becomes apparent at the time during which minus-strand

RNA (antigenome) reaches a plateau, suggesting a role for

sfRNA in the regulation of antigenome synthesis. The pres-

ence of sfRNA may inhibit antigenome synthesis and may

exert a negative effect on JEV translation [118].
16. Perspective

In recent years, technological advances have made it possible

to investigate the expression of whole transcriptomes in an

unbiased manner. This new capability has driven the dis-

covery of an increasing number of lncRNAs. Nonetheless, our

knowledge regarding the functions of these lncRNA tran-

scripts remains quite limited [119]. Because lncRNAs have

diverse functions, they likely represent important bioentities

that merit further investigation. Here, we have focused on

a few examples of lncRNAs, including cellular and viral

lncRNAs. Our brief survey shows that we are at the initial

stages of uncovering their functions and their relationships

with viruses. This review is meant to serve as a brief illus-

trative introduction to lncRNAs, which we hope may spur

interest by readers for conducting further studies on these

interesting and important biomolecules.
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