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Abstract: In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. 
In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random 
perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep 
network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges 
in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness 
in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a 
biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus 
environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The 
tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness 
and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and vari-
ance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene 
network and discussed from the systems biology perspective.
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Background
For a long time, biologists have known that many bio-
logical functions and diseases cannot be explained by 
the function of an individual gene or protein. Instead, 
they are the result of an interactive network between 
a protein and another protein, or protein with other 
molecules.1,2 It has also been found that some particu-
lar characteristics of biological systems evolve under 
robust regulation, despite large changes in the envi-
ronment or alternations to the internal parameters of 
the system.3,4 Robustness is a ubiquitously observed 
property of biological systems, at many levels, from 
biochemical to ecological systems.5–9 For example, a 
genome may be robust, because it encodes proofread-
ing and repairing systems that can reduce replication 
errors; a metabolic function may be robust, when 
it encounters stresses, like a temperature change, 
because some enzymes can maintain their shapes 
and specificity, or the interconnected network of their 
reactions can sustain the supply of product, even when 
they fail; an ecosystem might be robust, if it resists the 
extinction of some species because of the compensa-
tory effect of other surviving species.10 In the genetic 
robustness, since the random variations, due to muta-
tion, deletion, duplication, insertion, inversion, trans-
lation of a chromosome in germ cell or the random 
transmissions of genes from parent to offspring, arise 
constantly in the evolutionary process, it implies that 
evolution, as a genetic process, must allow for this 
randomness, because it provides the raw material for 
evolutionary adaptation. The mechanisms of genetic 
robustness, such as genetic redundancy, proofread-
ing and repairing systems, are considered to be the 
fundamental features that balance the randomness of 
a complex evolvable gene network.10 However, too 
much robustness is not conductive to a biological sys-
tem to adapt to environmental changes, which play an 
important role in the natural selection.

Robustness, undoubtedly, is the result of an 
organism’s ability to adapt to the environmental 
changes, through long-term evolution. In individ-
ual level, robustness has important implications for 
both disease and evolution, as it reduces the pheno-
typic expression of genetic changes. For evolution-
ary biologist, the concept of phenotype robustness 
(or phenotypic stability, sometimes referred to as 
‘canalization’)11 is viewed as genetic buffering 
that has evolved under natural selection in order to 

stabilize the phenotype.12 Concerning the interplay 
between the evolvability and robustness, some 
important issues exist and claim that robustness can 
either increase or decrease the evolvability.10,13 On 
one hand, high robustness implies low production 
of heritable phenotypic variation. On the other hand, 
both experimental and computational analyses of 
neutral networks indicate that robustness enhances 
evolvability. There should exist some delicate balance 
between the evolvability and network robustness, in 
an evolutionary biological network. The paradoxical 
tension between genetic robustness and evolvability 
has been confirmed by studying RNA genotypes and 
their secondary structure phenotypes.14 A high level of 
correlation between genetic robustness and environ-
mental robustness was found from the biophysics of 
RNA folding that the genetic robustness observed in 
miRNA is considered as the byproduct of selection for 
environmental robustness.15 Based on the yeast gene 
deletion collection, the effects of mutations on envi-
ronmental robustness,16,17 genetic robustness18,19 and 
phenotypic robustness20,21 can be measured and com-
pared on a genome-wide scale. Using global quantita-
tive genetic datasets in yeast,22 the phenomenon, that 
the coupled genetic and environmental robustness are 
both also coupled to stochastic robustness, are found 
and largely consistent with Waddington’s intuition, 
ie, environmental change, phenotypic variation and 
genetic mutation have similar effects on an organism 
via the same underlying molecular processes. These 
brilliant research results provide the firm bases to 
make the global quantification of robustness become 
possible by recent genomic experiments. However, 
there still lack some appropriate mathematical meth-
ods to clarify the ambiguous relationship among 
these different types of robustness and the interplay 
between the evolvability and robustness.

It has been previously reported that robustness 
of biological systems may come from a precise net-
work structure.5 To understand the interplay between 
the evolvability and network robustness of biological 
systems, in the evolutionary process, it is necessary to 
integrate the information of genome sequences, mRNA 
expression, proteomes and so on, from the system level 
point of view, and to analyze the composition of biolog-
ical systems, at various levels- the interactions between 
modules, stochastic system dynamics, underlying sta-
bility robustness and sensitivity in control theory23,24 
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and natural selection in evolution.7,25 In the past, most 
molecular biologists and biochemists assumed that 
biological evolution occurs, due to random variations 
in genes and natural selection. However, the evolu-
tion of biological networks via natural selection is 
still in the conceptual phase, with no dynamic system 
rules.8,9,25 The study of the evolvability and robustness 
of gene networks, or biochemical networks is still in its 
infancy. In fact, robustness allows changes in the struc-
ture and components of gene networks, due to intrinsic 
random fluctuations, while still allowing the specified 
network function to be maintained. Evolvability also 
allows some extrinsic random disturbances to influ-
ence gene networks, so that a new phenotype of the 
gene network may evolve by natural selection, to adapt 
to the new environment.9

In this study, the interplay between the evolv-
ability and robustness of a biological network in 
evolution, is considered from a systems perspective. 
According to the hierarchical network interplaying in 

Figure 1,8 the high-level selected network will specify 
a selection force on lower levels. The external envi-
ronment molds the evolution of the local adaptation 
of organisms by natural selection. Once the favored 
organisms are selected, the low-level biological net-
works have to maintain the favored physiological sys-
tems of the selected organisms. Hence, these favored 
organisms become selection forces, able to select 
their favored physiological systems.26–28 The favored 
physiological systems exert a selection force on the 
biochemical networks. The favored biochemical net-
works then become the selection forces for their regu-
latory gene networks. Finally, the low-level selected 
networks send feedback to influence the evolution of 
the high-level network. In this way, natural selection 
actually acts on the interplaying of multiple biologi-
cal networks. The development of robust adaptive 
design rules, for the natural selection of biological 
networks, might allow more insight into the evolu-
tionary mechanisms of biological networks, under the 

Feedback to influence the
traits of organisms

Feedback to influence the
physiological systems

Feedback to influence the
biochemical networks

Environmental disturbances Parameter variations

Environmental disturbances Parameter variations

Favored traits of organisms

Selection force on physiological systems

Favored physiological systems

Selection force on biochemical networks

Favored biochemical networks

Favored genetic networks

Environmental disturbances Parameter variations

Biochemical networks

Physiological systems

Organisms

Environmental disturbances

Natural selection for organisms

Genetic networks

Figure 1. The natural selection process on the interplaying of hierarchical biological networks. The high-level biological network selection will become 
the selection force on low-level biological network. The natural selection on organisms selects its favored organisms. Once the favored organisms are 
selected, the low-level biological networks have to maintain the favored physiological systems of the selected organisms. Hence, these favored organisms 
become the selection force to shape their favored physiological systems. The favored physiological systems will lead to the selection force on biochemical 
networks. The favored biochemical networks by natural selection will become the selection force on genetic networks. On the other hand, the lower-level 
selected networks will feedback to influence the higher-level networks in evolution. Therefore, the natural selection actually acts on the interplaying of the 
multiple bio-networks.8
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influence of random intrinsic noise and environmental 
disturbances.5

One of the most important features of biology is 
that the organism’s phenotypes can be robust, against 
either heritable genetic variations or non-heritable 
environmental disturbances. In the evolutionary pro-
cess, an evolving gene network can be represented 
by a nonlinear stochastic system that is subject to 
heritable random genetic variations and non-heritable 
random environmental disturbances. The phenotype 
of a gene network can be represented by the equi-
librium point of a nonlinear stochastic system. There 
are many variations of phenotypes around this equi-
librium point, due to intrinsic random genetic varia-
tions and extrinsic environmental disturbances.8,9,29–32 
When a variation of a phenotype is perturbed too 
much, from the domain of its equilibrium point into 
the domains of other equilibrium points, a new phe-
notype is generated and preserved, if it is suited to 
natural selection, otherwise the variation of the pheno-
type is terminated. A gene locus that does not help an 
organism to cope with the environmental stress, or to 
increase its fitness is neutral. These genetically varied 
phenotypes are heterogeneous and allow evolvability, 
to cope with environmental changes.9 In evolution, 
a robust gene network can harbor a large number 
of neutral genetic variations, before the phenotype 
transforms to another equilibrium point. The capac-
ity to harbor these neutral genetic variations is called 
the genetic robustness of the phenotype in evolution. 
Therefore, the phenotype robustness of a stochastic 
gene network at the equilibrium point (phenotype), 
under the influence of parametric fluctuations, due to 
genetic variations, will be discussed from the point of 
view of stochastic Lyapunov stability.29 Furthermore, 
the evolvability in response to environmental changes 
and the genetic variations of a stochastic gene network, 
in the evolutionary process, can be also discussed 
from the point of view of stochastic H∞ filtering.33 In 
this study, both the evolvability and network robust-
ness of a nonlinear stochastic gene network, in the 
evolutionary process, are discussed from a nonlinear 
stochastic system perspective. The tradeoff between 
the genetic robustness and environmental robust-
ness is also investigated. It is found that, if a gene 
network has enough network robustness to cover 
both genetic robustness and environmental robust-
ness, to buffer the effect of genetic variations and to 

resist environmental stimuli respectively, then the 
phenotype of the gene network is maintained, in the 
evolutionary process. However, the accumulation of 
these neutral genetic variations may destroy the net-
work robustness and provide new material for evolu-
tion, so that a phenotype transition may eventually 
occur by a shift to another equilibrium point, with the 
help of environmental stimuli. However, any study of 
the interplay between the evolvability, to cope with 
environmental disturbances, and network robustness, 
to allow intrinsic genetic variations of the phenotype 
of the gene network, must deal with a very difficult 
Hamilton-Jacobi inequality (HJI). At present, there 
exists no method to efficiently solve the HJI analyti-
cally or numerically.

This study uses a global linearization method34 to 
interpolate several linearized stochastic systems, at 
different operation points, to approximate the non-
linear stochastic gene network, so that the interplay 
between the evolvability and network robustness can 
be discussed from a systematic viewpoint, using a set 
of linear matrix inequalities (LMIs), instead of the 
HJI. Using this method, the evolvability and network 
robustness are related to the locations of the eigenval-
ues of the linearized stochastic systems of nonlinear 
stochastic gene networks. If the eigenvalues of these 
linearized stochastic systems of a nonlinear stochastic 
gene network are all located in the far left hand side of 
the s-complex domain, then the nonlinear stochastic 
gene network is more robustly stable but less adapt-
able, in the evolutionary process. On the other hand, 
if these eigenvalues are closer to the imaginary axis in 
the s-complex domain, and are more easily perturbed 
to the right hand side, then the nonlinear stochastic 
gene network is less robustly stable but more adapt-
able, in the evolutionary process. The quantitative 
measures of the evolvability and network robustness 
are also investigated, from this systematic perspec-
tive. If the capacity of the neutral genetic variations 
tolerated by a gene network is denoted as the genetic 
robustness, and the evolvability is considered as the 
inversion of the environmental robustness, then it is 
also found that the phenotype of the gene network 
is robust in evolution, if the genetic robustness plus 
the environmental robustness is less than the network 
robustness of a gene network under the influence of 
genetic variation and environmental disturbance, in 
the evolutionary process. The correlation between 
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the genetic robustness and environmental robustness 
of a biological network in evolution,15,35 can also be 
confirmed by the proposed network robustness, in the 
evolutionary process.

Since biochemical networks play the central role 
in cellular function, there is strong motivation to 
investigate the interplay between the evolvability 
and network robustness of evolutionary biochemical 
networks. As shown in Figure 1, the favored physio-
logical systems exert a selective force on biochemi-
cal networks, in the evolutionary process. The varied 
phenotypes of the biochemical networks result from 
random changes in protein sequences, protein struc-
ture and promiscuous protein functions, due to the 
corresponding genetic variations, in the evolution-
ary process.9 Since several biochemical networks 
are the backbone of physiological systems, they 
should have enough network robustness to tolerate 
intrinsic parametric variation and less evolvability, 
in response to external stimuli,36,37 which means that 
the steady state of the system variables (concentra-
tions or rates) is invariant, under perturbations. In 
this study, based on the S-system model,36 the evolv-
ability and the network robustness of nonlinear sto-
chastic biochemical networks are measured from the 
steady state perspective. A formula is also derived, 
to define their interplay, in order to discuss their 
relationship, in the evolutionary process. Finally, 
the interplay between the evolvability and network 
robustness of high-level biological networks, for 
example, physiological systems and bio-ecological 
systems, is also discussed in the same vein. The inter-
play between the evolvability and network robust-
ness of a biological network in evolution is related 
to evolutionary antagonistic pleiotropy.38 Based 
on the evolutionary theory of aging,38 antagonistic 
pleiotropy holds that what is good for an organism 
when it is young can be bad for it when it is old. 
This study discusses some evolutionary antagonis-
tic pleiotropic actions of a biological network, from 
the viewpoint of the tradeoff between the genetic 
robustness and environmental robustness in evolu-
tion. In this situation, the evolutionary antagonistic 
pleiotropic effect is extended, from the individual 
gene level to biological network level, for the evo-
lutionary process. Furthermore, based on stability 
robustness,23,39 noise filtering theory33,40 and systems 
biology,5,41 the interplay between the evolvability 

and network robustness in evolution, can be applied 
to a synthetic gene network to model its progress, 
using a fast evolutionary computation method (eg, 
genetic algorithm and evolution algorithm) to select 
adequate circuit components for a synthetic gene 
network, in order to achieve a desired behavior (ie, 
robustness and filtering ability).42–49

In the following, the interplay between the evolv-
ability and network robustness in a linear gene net-
work is firstly discussed from the point of view of 
systems biology and then the results are extended to 
the evolutionary nonlinear gene network.

On the Interplay between  
the Evolvability and Network 
Robustness of Linear Stochastic 
Gene Regulatory Network
Network robustness of linear gene 
regulatory networks in evolution
For initial simplicity of analysis, we consider a 
linear dynamic gene regulatory network as follows 
(see Fig. 2).

	 x t Ax t( ) ( )= 	 (1)

where x(t)  =  [x1(t) x2(t) … xn(t)]
T denotes the gene 

expressions of n genes in the network and
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denotes the regulatory interaction matrix between 
these genes, for example aij denotes the regulatory 
interaction from gene j to gene i.

Remark 1: The linear gene regulatory system in (1) 
can be considered as a linearized system of a nonlinear 
gene network x t f x t( ) ( ( ))=  at an equilibrium point 
(phenotype) xe, ie, A f x x

x xe
= ∂ ∂ =( ) / .  Maintaining 

generality, the origin of the nonlinear gene network is 
always shifted to the equilibrium point (phenotype) xe, 
ie, xe = 0. The detail will be discussed in Section 3.

In the evolutionary process, the interaction aij 
may suffer from random parametric fluctuations, due 
to heritable DNA mutation, genetic variations and 
recombinations in the germ cell (see Fig. 2).
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	 a a a n t l Lij ij ij
l

l→ + ∆ =( ), , ,1  	 (2)

where ∆aij
l  denotes the amplitude of random paramet-

ric fluctuation; n1(t) is a white noise with zero mean 
and unit variance, ie, ∆aij

l  denotes the ranges of the 
corresponding parametric fluctuation and n1(t) absorbs 
the stochastic properties of parametric fluctuation, due 
to the corresponding DNA mutations and genetic vari-
ations of the germ cell in evolution.9 Let us denote 
n1(t), …, nL(t) as L independent random parametric 
fluctuation sources, such as heritable DNA mutations, 
genetic variations and recombinations in evolution. 
Then their covariances are calculated as follows.33,39

	 Cov a n t a n a tij
l

l ij
l

l ij
l[ ( ), ( )] ( ) ( , )∆ ∆ = ∆τ δ τ2 	 (3)

In this equation, δ (t,τ) denotes the delta func-
tion, ie, δ (t,τ) = 1, if t = τ and δ (t,τ) = 0, if t ≠ τ. 
In other words, ∆aij

l  denotes the corresponding 
standard deviation of random fluctuation ∆a n tij

l
l ( )  

from the random source nl(t). The reason why nl(t) 
in (2) is assumed to be zero mean with unit vari-
ance is that the mean of nl(t) can be merged in the 
nominal aij and the variance can be absorbed in ∆aij

l  
in (2). Therefore, without loss of generality, nl(t) 
is assumed as white noise with zero mean and unit 
variance.

Suppose the gene regulatory network in (1) suffers 
from the following genetic parameter fluctuations in 
evolution
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denotes the parametric fluctuations, due to the l-th 
random source of nl(t). If ∆aij

l  in Al is not affected 
by nl(t), then let ∆ =aij

l 0 . The term ∑l
L

l lA n t=1 ( )  
denotes the accumulated kinetic parametric fluctua-
tions, due to heritable genetic variations during the 
evolution of the gene network. The consequent kinetic 
parametric fluctuations, due to the heritable genetic 
variations in (4), will lead to permanent changes in 
the phenotypes.

The stochastic gene regulatory network in (4) 
is termed stochastically stable, if there exists a 
Lyapunov (power) function V(x)  =  xT(t)Px(t) for a 
positive definite matrix P such that the expectation 
of the derivative E d dt V x/ ( )  0 , ie, the average 
power of the gene network does not increase, with 
the parameteric fluctuations in evolution. For conve-
nience, in the analysis of network robustness, the sto-
chastic system in (4) can be written as the following 
Ito stochastic system.33,39

	
dx t Ax t dt A x t dw tl l

l

L

( ) ( ) ( ) ( )= +
=

∑
1

	 (5)

where dwl(t) = nl(t)dt and wl(t) denote the correspond-
ing Wiener process or Brownian motion of random 
parametric fluctuations in evolution, ie, the stochastic 
system in (5) denotes the phenotypic heterogeneity in 
the gene network population, in evolution.

Proposition 1: The stochastic gene network in 
(5) is said to be robustly stable in evolution, with its 
phenotype xe = 0, if the following phenotype robust-
ness inequality holds.

a12

a21

a13

a31 a42a24

a32

a23

a43 a34

x3

x4xn

x1

x2

a14

a41

an2

an4

an1

a4n

a1n

a2n

Figure 2. A linear n-gene regulatory network. aij denotes the interaction 
from gene j to gene i and xi(t) denotes the gene expression of gene i.
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P A A P A PAT

l
T

l
l

L

. 0 0
1

,  P + +
=

∑ 	 (6)

Proof: See Appendix A in Supplementary data.
Remark 2: In the case of the nominal gene regu-

latory network in (1), the robust stability condition is 
reduced to the following stability inequality with

	 P PA A PT. 0 0,  + 	 (7)

ie, the stability condition for a gene network free of 
parametric fluctuations in (1). The stability inequality 
in (7) implies that all of the eigenvalues of A should be 
on the left hand side of the s-domain, ie, the real parts 
of all eigenvalues of A should be negative or zero.23 
However, for the stochastic gene regulatory network 
in (5), the eigenvalues of A should be more further 
to the left hand side of the s-domain, so that the phe-
notype robustness inequality in (6) can hold, ie, the 
eigenvalues of A should be more negative (robust), 
in order to tolerate the positive term ∑l

L
l
T

lA PA=1 , due 
to genetic parametric fluctuations, in the evolutionary 
process. Therefore, the smallest distance between the 
eigenvalues of A and the image axis in the s-domain 
can be considered as a measure of the network robust-
ness of the linear gene regulatory network in (1). 
From (6), it is seen that the gene network with greater 
network robustness (ie, a more negative eigenvlaue) 
will tolerate more stochastic parametric fluctuations, 
due to the neutral genetic variations, in the evolution-
ary process, ie,

	
A PA PA A Pl

T
l

l

L
T

=
∑ − +

1

 ( ) 	 (8)

Since the right hand side of (8) can be considered 
as an indication of the network robustness of the gene 
regulatory network, if the effects of these stochastic 
parametric fluctuations on the gene network, due to 
genetic variations, in evolution, can be overridden by 
the network robustness of the gene network, then they 
will be tolerated, without changing the pleiotropic 
phenotype of the gene network, in evolution. In this 
situation, the parametric fluctuations ∑l

L
l lA n t=1 ( ) , due 

to genetic variations are neutral variations, which do 
not change the phenotype of the gene network, and the 
stochastic gene networks in (5) represent the neutral 
diversity of the gene network in (1). Therefore, a more 

robust gene network can harbor a large diversity of 
neutral gene networks in its population. These neutral 
gene networks may have the potential for evolution-
ary adaptation, if genetic variations are accumulated, 
such that the phenotype robustness in (6) or (8) is 
violated. In this situation, the evolutionary gene net-
work in (5) becomes stochastically unstable and x(t) 
is hugely increased.

Evolvability of a linear gene  
regulatory network in evolution
Suppose the gene regulatory network in (1) only 
suffers from stochastic environmental stimuli as 
follows.33,39

	 x t Ax t Bv t( ) ( ) ( )= + 	 (9)

where v(t) = [v1(t) v2(t) … vn(t)]
T denotes the external 

stimuli or molecular noises, due to environmental 
changes or stresses such as temperature or salinity, 
and B denotes the coupling matrix between exter-
nal stimuli and the gene network. Environmental 
stimuli can perturb x(t) away from its phenotype 
xe  =  0. Let us denote the phenotype variation as 
x t x t x x te( ) ( ) ( )= − = . Then the response r of the gene 
network to external stimuli from the environment, in 
the evolutionary process, is defined as

	

r
E x t x t dt

E v t v t dt

Tt

Tt

p

p
= ∫

∫
 ( ) ( )

( ) ( )

0

0

	 (10)

The numerator in (10) denotes the total average 
phenotype variations to present time tp. The response 
r indicates the effect of environmental stimuli on the 
phenotype variations from a total energy point of 
view. The fitness function f for the phenotype xe in 
evolution is inversely proportional to the response r 
of the gene regulatory network

	
f r= 1 	 (11)

ie, a gene network with less (more) response to envi-
ronmental stimuli exhibits more (less) fitness to the 
phenotype xe = 0. Therefore, the maximization of the 
fitness function for phenotype xe = 0  in evolution is 
equivalent to the minimization of the response r in 
(10). We solve for the maximum fitness of phenotype 
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xe under the influence of environmental stimuli, using 
the following equivalent minimization problem for 
phenotype variation in response to environmental 
stimuli, in evolution

	

r
E x t x t dt

E v t v t dt

Tt

Tt

p

p0
0

0

= ∫
∫

min
( ) ( )

( ) ( )

 

	 (12)

We call r0 the evolvability of the stochastic gene 
regulatory network in (9), in response to environmental 
stimuli, and the maximum fitness f r0 01= /  is an 
indicator of environmental robustness for phenotype 
xe in the gene regulatory network. The minimization in 
(12) means that optimal tracking of the target phenotype
xe (ie, the minimization of E x t x t dtTtP

 ( ) ( )
0∫  is achieved

and the effect of v(t) on x t( ) is also minimized simul-
taneously. The choice of the fitness function in (11) 
is based on both the robust tracking of target pheno-
type xe and the resistance against the environmen-
tal stimuli v(t) for the target phenotype tracking.

However, it is still very difficult to solve the mini-
mization problem (12) for the evolvability r0. A subop-
timal method is employed to solve it, by minimizing 
its upper bound. Let us denote the upper bound of  
r in (10) as follows

E x t x t dt

E v t v t dt
E x t x t dt

E

Tt

Tt
Tt

P

P

P
 

 

( ) ( )

( ) ( )
( ) ( )0

0

0

∫
∫

∫



ρ or

ρρ v t v t dtTtP
( ) ( )

0∫ 	 (13)

where the evolution level ρ denotes the upper bound 
of the evolvability, ie, the upper bound of the influ-
ence of environmental stimuli, in the evolutionary 
process, on the phenotype variation of the gene reg-
ulatory network, from the average energy point of 
view. tp denotes the present time. If ρ in (13) is large, 
then the influence of environmental stimuli (or distur-
bances) on the phenotype variation of the gene net-
work is large, ie, the gene network is more evolvable 
to the environmental stimuli and vice versa. In the 
following, the upper bound ρ is minimized, until its 
minimum value approaches the evolvability r0 in (12), 
ie, solving for r0 in (12) by the so-called suboptimal 
method.33 If the initial 

x( )0 0≠ , its effect should be 
considered and (13) should be modified as follows.39

E x t x t dt V x E v t v t dtTt TtP P
  ( ) ( ) ( ( )) ( ) ( )

0 0
0∫ ∫+ ρ 	 (14)

then we get the following result.
Proposition 2: For the gene regulatory network 

with environmental stimuli (or disturbances) in (9), 
in the evolutionary process, if the following inequal-
ity holds for P . 0.

	
A P PA I PBB PT T+ + + 1

0
ρ

 	 (15)

then the evolutionary inequality in (13) or (14) holds, 
ie, the gene regulatory network in (9) has an evolu-
tion level ρ.

Proof: See Appendix B in Supplementary Data.
Since the evolution level ρ is the upper bound 

of the evolvability of the gene regulatory network, 
the evolvability r0 of the gene regulatory network is 
obtained as follows

	
r

P
0

0
=

>
min ρ 	 (16)

subject to (15).
The constrained optimization problem for solving 

the evolvability r0 for the linear gene regulatory network 
in (9) can be achieved by decreasing ρ until no solution 
P . 0 exists in (15). By Schur complement,34 the qua-
dratic inequality in (15) can be transformed into the fol-
lowing equivalent linear matrix inequality (LMI).

	

A P PA I PB

PB I

T

T

+ +
−











( ) ρ
 0 	 (17)

Therefore, the evolvability measure in (16) is 
equivalent to solving the following constrained opti-
mization problem

	
r

P
0

0
=

>
min ρ 	 (18)

subject to (17).
The evolvability r0 in (18) is measured by decreas-

ing ρ until the LMI in (17) has no solution P . 0. The 
solution P . 0 of the LMI in (17) is easily obtained 
with the help of the LMI toolbox in Matlab.34 After 
obtaining r0 by solving the constrained optimization 
in (18), by the fact f r0 01= / , then the inequality in 
(15) can be modified as
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I
r

PBB P I f PBB P A P PAT T T+ = + − +1

0
0  ( ) 	(19)

From the above, it is seen that if the network 
robustness −(ATP  +  PA) on the right hand side of 
(19) is larger (ie, with more negative eigenvalues 
of A), then the gene network has a small evolv-
ability r0 or large environmental robustness f0 to 
resist external stimuli. In this situation, the gene 
network is less adaptive. Taken in a broad sense, 
f0 is related to the environmental robustness or the 
buffering ability against environmental stimuli, in 
evolution, to resist these environmental stimuli,35 
ie, the evolvability r0 is inversely proportional to 
the environmental robustness indicator f0. Small r0 
indicates that the phenotype xe has good environ-
mental robustness and can resist environmental 
stimuli and large r0 indicates that the phenotype xe 
has less environmental robustness to environmental 
stimuli. If the network robustness of the gene net-
work is large, or r0 is small, evolutionary adaptation 
may be promoted, because of the increased likeli-
hood of having a small subpopulation that can cope 
with the environmental stimuli. Conversely, if the 
network robustness of the gene regulatory network 
is small, the evolvability r0 must be large enough to 
respond to environmental stimuli, in order to guar-
antee the evolution inequality in (19). In this case, 
the population becomes increasingly heterogeneous 
in evolution. It can be seen that the evolvability and 
network robustness are two antagonistic character-
istics of the gene regulatory network, in the evolu-
tionary process. If one is large, then the other must 
be small and vice versa.

Tradeoff between environmental 
robustness to respond to environmental 
stimuli and genetic robustness to tolerate 
parametric fluctuations in evolution
If the gene regulatory network in (1) suffers from 
simultaneous intrinsic parametric fluctuations and 
environmental stimuli in evolution, then we get

	
x t Ax t A x t n t Bv tl l

l

L

( ) ( ) ( ) ( ) ( )= + +
=

∑
1

	 (20)

Then we get the following result.

Proposition 3: If the following phenotype robust-
ness criterion has a solution P . 0

A P PA A PA I PBB PT
l
T

l
l

L
T+ + + +

=
∑

1

1
0

ρ
 	 (21)

then the stochastic gene network in (20) has enough 
network robustness to tolerate genetic parametric 
fluctuations and an evolutionary level ρ that allows it 
to respond to environmental stimuli, in the evolution-
ary process.

Proof: See Appendix C in Supplementary data.
Then the evolvability of the stochastic gene net-

work in (20) can be measured by solving the follow-
ing constrained optimization problem.

	
r

P
0

0
=

>
min ρ 	 (22)

subject to A P PA A PA I PB

PB I

T
l
T

l
l

L

T

+ + +

−

















=
∑

1 0

( ) ρ


After solving r0 from (22), the phenotype robust-
ness criterion in (21) can be modified as

A PA I f PBB Pl
T

l
l

L

genetic robustness

T

environmental=
∑ + +

1
0

 
    rrobustness

l
T

l
l

L

T T

network

A PA

I
r

PBB P A P PA

  

=

+ + − +

=
∑

1

0

1
 ( )

  robustness
  

	
(23)

From (23), it is seen that the phenotype of the gene 
network can be maintained, if the network robustness 
can take over the genetic robustness to tolerate para-
metric fluctuations, and the environmental robust-
ness to resist environmental stimuli, in evolution. 
The interplay between the evolvability and network 
robustness of a gene regulatory network in evolution, 
is discussed in the following.

For the gene network with only environmental 
stimuli v(t) in (9) and with the network robustness in 
(19), if the eigenvalues of A are more negative, then 
the gene network is more robust and should be less 
evolvable (small evolvability r0 or large environmen-
tal robustness indicator f0) to resist the influence of 
environmental disturbance v(t). However, for the gene 
network in (20) with the same network robustness 
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as in (23), ie, with the same network robustness 
−(ATP + PA) as (19), the tradeoff between the evolv-
ability and genetic robustness is discussed in the fol-
lowing. Since an extra genetic robustness ∑ l

L
l
T

lA PA=1  
is needed to buffer genetic variations ∑l

L
l lA x t n t=1 ( ) ( )  

in evolution, the evolvability r0 must be decreased so 
that the environmental robustness f0 is increased to 
provide greater resistance to environmental stimuli. If 
the stochastic gene network in (23) needs to maintain 
the same evolvability r0 as the gene network in (9), 
more network robustness −(ATP + PA) is needed, in 
order to cover the extra genetic robustness, ie, in order 
to maintain the phenotype in evolution, a more robust 
network is needed, in order to simultaneously tolerate 
intrinsic parametric variations and to resist the effect 
of environmental disturbance.33,39,40 However, if the 
gene network is subject to both environmental distur-
bances and genetic parametric fluctuations in evolu-
tion, as shown in the stochastic system in (20), then 
from the criterion in (23), we get

I f PBB P I
r

PBB P

A P PA A PA

T T

T
l
T

l
l

L

+ = +

− + −
=

∑

0
0

1

1

 ( ) 	 (24)

Due to the destruction of network robustness by 
parametric fluctuations, the evolvability r0 in (24) is 
increased, or the environmental robustness indica-
tor f0 is decreased, in order to guarantee the above 
inequality, because of the diminution of the network 
robustness, on the right hand side, ie, the effect of 
parametric fluctuations, due to genetic variations in 
evolution, may make the gene network more respon-
sive (or evolvable) to environmental stimuli.50 Simi-
larly, the inequality can be changed to

A PA A P PA I
r

PBB P

A P PA I f PBB P

l
T

l
l

L
T T

T T
=

∑ − + − +

= − + − +
1 0

0

1
 ( ) ( )

( ) ( ) 	 (25)

Due to the diminution of network robustness by 
the evolvability r0 to the response to environmental 
stimuli in (25) or by environmental robustness, the 
tolerable amount of genetic parametric fluctuations 
∑l

L
l
T

lA PA=1  (genetic robustness) is diminished, for a 
gene regulatory network, in the evolutionary process. 

From (25), it is seen that a gene network cannot 
tolerate a large amount of genetic parametric varia-
tions and resist (respond less to) a large amount of 
environmental changes simultaneously in evolution. 
The results of this analysis show that the tradeoff 
between the genetic robustness to tolerate parametric 
fluctuations, due to genetic variations, and the envi-
ronmental robustness to respond to the environmental 
stimuli, in the gene regulatory network in evolu-
tion, can be studied from the systematic perspective. 
Actually, the tradeoff between the genetic robustness 
and environmental robustness of a gene regulatory 
network in evolution, is equivalent to the tradeoff 
between stability robustness and sensitivity in linear 
system theory,24 ie, “transfer function  +  sensitivity 
function = 1” in the frequency domain. The tradeoff 
between the genetic robustness and environmental 
robustness of a stochastic gene network is perhaps 
most relevant to the well-known statistical tradeoff 
between bias and variance.24,51 Further discussion of 
this is undertaken, in the following sections.

Let us denote the tolerable value ∑l
L

l
T

lA PA=1  in 
(23), due to genetic variations in (20), as the mea-
sure of genetic robustness,35 the tolerable value 
I r PBB P I f PBB PT T+ = +1 0 0/  in (23) as the mea-
sure of the environmental robustness of the stochastic 
gene network in (20) and −(ATP  +  PA) as the mea-
sure of network robustness; then according to (23), 
the stochastic genetic network exhibits phenotype 
robustness under the influence of genetic variations 
and environmental disturbances in evolution, if the 
following phenotype robustness criterion holds

genetic robustness environmental robustness 
network robu

+
  sstness 	�

(26)

ie, if the genetic robustness plus environmental 
robustness is less than the network robustness, in the 
evolutionary process, the phenotype of the stochastic 
gene network in (20) is robust in evolution.

In,35 the evolutionary causes of genetic robust-
ness were discussed, using different evolution-
ary scenarios. The correlation with environmental 
robustness is considered to be the most probable 
cause of genetic robustness in evolution. Based on 
the congruence scenario, the genetic robustness of 
a gene network in evolution is a by-product of the 
environmental robustness of a gene network to resist 
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the environmental stimuli (or perturbations), because 
environmental stimuli (perturbations) are more fre-
quent than the genetic perturbations in evolution, 
which have been confirmed in RNA folding and 
heat-shock proteins.15,35 This correlation between the 
genetic robustness and environmental robustness is 
obvious in (23) and (26). In order to provide a buffer 
against environmental disturbances, the gene network 
may develop feedback, hub and redundant mecha-
nisms, to improve its network robustness, resulting 
in a large −(ATP + PA). This greater network robust-
ness can also provide a buffer against large amounts 
of neutral genetic variations simultaneously in evolu-
tion. However, this large amount of genetic variations 
may provide raw material for new evolutionary possi-
bilities. Therefore, the phenotype robustness criterion 
in (23), gives more insight into the interplay between 
the evolvability and network robustness.

On the Interplay between the 
Evolvability and Network Robustness 
of a Nonlinear Stochastic Gene 
Regulatory Network in Evolution
In real biological systems, the gene regulatory networks 
are always nonlinear. In the case of a nonlinear gene 
regulatory, the dynamic system in (1) is modified as

	 x t f x( ) ( )= 	 (27)

where f(x) denotes the nonlinear interactive func-
tion vector among these regulatory genes in the gene 
network.

Network robustness of a nonlinear gene 
regulatory network in evolution
For a nonlinear stochastic gene regulatory network 
with stochastic parametric fluctuations in evolution, 
the stochastic system in (5) is modified as follows29,42

	
dx t f x dt f x dw tl l

l

L

( ) ( ) ( ) ( )= +
=

∑
1

	 (28)

where fl(x) denotes the nonlinear stochastic parametric 
fluctuation, due to the l-th random genetic fluctuation 
source wl(t), in the evolutionary process. Sources of 
these random genetic fluctuations, in the evolutionary 
process, include DNA mutation, deletion, duplication, 
inversion and translocation of chromosome. The 
nonlinear stochastic system in (28) represents the 
phenotypic heterogeneity in a gene network popula-
tion, due to random genetic variations in evolution.

Consider the nonlinear system in (27) or (28). Many 
equilibrium points (phenotypes) exist (see Fig.  3). 
Suppose a phenotype near a stable equilibrium point 
xe is of interest. For convenience in analysis, the ori-
gin of the nonlinear stochastic gene network in (28) 
is shifted to the equilibrium point (phenotype) xe. In 
this case, if the shifted nonlinear stochastic system 
is robustly stable at the origin, then the equilibrium 
point (phenotype) of interest is also equally stable. 
Analysis of the procedure of the evolvability and 
network robustness of a nonlinear gene regulatory 
network in evolution, is thus simplified. Let us denote 
x t x t xe( ) ( )= − , then the following shifted nonlinear 
stochastic gene network is obtained34

Other equilibrium point 1
(other phenotype 1) Other equilibrium point 2

(other phenotype 2)

Equilibrium point of interest
(phenotype of interest)

xe

Figure 3. The stochastic nonlinear gene network has many local stable equilibrium points (phenotypes). The landscape of three stable equilibrium points 
is shown with vertical scale illustrating the relative network robustness of the equilibrium point (phenotype) of the nonlinear gene network. Suppose xe is 
the equilibrium point (phenotype) of interest.
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dx t f x x dt f x x dw te l e l

l

L

  ( ) ( ) ( ) ( )= + + +
=

∑
1

	 (29)

ie, the origin 
x t( ) ≡ 0  of the nonlinear stochastic gene 

network in (29) is at the equilibrium point xe of the 
original nonlinear stochastic gene network in (28).

Then, let us consider the robust stabilization of the 
nonlinear stochastic gene network in (29) in evolu-
tion. Based on the stochastic Lyapunov stability,33,39 
the following result, for phenotype robustness, is 
obtained.

Proposition 4: The phenotype xe of the stochastic 
nonlinear gene network in (29) exhibits phenotype 
robustness in evolution, if the following Hamilton 
Jacobi inequality (HJI) holds for some positive func-
tion V x( )  0,

∂
∂







+ + +

× ∂
∂

=
∑V x

x
f x x f x x

V x

x
f

T

e l
T

e
l

L

l

( )
( ) ( )

( )
(





 







1

2 1
2

2 xx xe+ )  0 	 (30)

ie, the nonlinear fluctuating gene network in (28) or 
(29) is robustly stable, at the equilibrium point xe, 
under the influence of random genetic fluctuations in 
evolution, if the above HJI holds for a positive func-
tion V x( )  0 .

Proof: See Appendix D in Supplementary data.
Remark 3: (i) If a nonlinear gene regulatory 

network is free of parametric fluctuations, then 
from (30), the stability of the nonlinear gene net-
work in (27), at the equilibrium point (pheno-
type), is guaranteed by ∂ ∂ +V x x f x xe( ) / ( ) .    0
Therefore, if ∂ ∂ +V x x f x xe( ) / ( )    is more nega-
tive, the nonlinear gene network in (29) is more 
robustly stable and more able to tolerate the term 
1/2 ∑l

L
l
T

e l ef x x V x x f x x= + ∂ ∂ +1
2 2( ) ( ) / ( )     in (30), by 

nonlinear parametric fluctuation, due to genetic varia-
tions in evolution. (ii) For the network robustness of 
nonlinear stochastic gene network in (29), the HJI in 
(30) replaces the quadratic inequality in (6), for the 
linear gene network in (5). If the network robustness 
is very great, ie, ∂ ∂( ) +V x x f x x

T

e( ) / ( )    is more nega-
tive and the basin of the phenotype is much deeper 
(see Fig.  3), the accumulated genetic variations 
∑l

L
l e lf x x dw t= +1 ( ) ( )  in evolution cannot override 

the HJI inequality in (30), in order to escape from the 
basin of the phenotype. These genetic variations are 
termed phenotypically neutral genetic variations. If 
the stochastic phenotypically neutral genetic varia-
tions ∑l

L
l e lf x x dw t= +1 ( ) ( )  are accumulated in (29), 

so that the HJI inequality in (30) is violated in the 
evolution process, then they may cause a transition 
from one phenotype to another, for example, from the 
basin of xe to another basin in Figure 3. The accumula-
tion of neutral genetic variations is a common prop-
erty of locally adapted gene regulatory networks.50 
(iii) In the evolutionary process, two strategies main-
tain the network robustness in (29). One strategy is 
to make the term ∂ ∂( ) +V x x f x x

T

e( ) / ( )    more nega-
tive (more robust), in order to tolerate more paramet-
ric fluctuations, due to genetic variations. Therefore, 
the negative feedback loops in the gene network are 
favored by natural selection. Another strategy is to 
attenuate the effect of the genetic variations, so that 
∑l

L
l e lf x x dw t= +1 ( ) ( )  is small. In this case, some mech-

anisms, such as genetic redundancy, parallel compo-
nents, proofreading and repairing mechanisms are 
also favored by natural selection, in the evolutionary 
process. (iv) Let us denote − ∂ ∂( ) +V x x f x x

T

e( ) / ( )    
as a measure of the network robustness of the gene 
network in (27) or (28), and the tolerable value 
1/2 ∑l

L
l
T

e l ef x x V x x f x x= + ∂ ∂ +1
2 2( ) ( ) / ( )    , due to 

genetic variations as a measure of the genetic robust-
ness of the gene network, then the phenotype at xe in 
(28) is robust in evolution, if the genetic robustness is 
less than the network robustness. If the genetic robust-
ness is greater than the network robustness ie, the 
phenotype robustness criterion in (30) is violated, the 
phenotype at xe may lose its robustness and the gene 
network may transit to another phenotype (another 
equilibrium point). At first sight, one might expect a 
large network robustness to slow or even stop the evo-
lution of a phenotype in a gene network, but because 
the robust phenotype hides a large amount of neutral 
genetic variations, the robust phenotypes of gene net-
works might show increased rather than decreased 
evolutionary potential, in the long term. The reasons 
for increasing the evolvability of robust phenotypes 
include the accumulation of hidden neutral genetic 
variations that may be useful for later evolution, the 
buffering of the pleiotropic side effects of evolution 
and the increased potential for a neutral exploration 
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of genotype space.35 This is why network robustness 
is intrinsic to evolution and network robustness can 
improve evolutions.5,35 This study extends these evolu-
tionary results from the genetic level to a dynamic gene 
network level, using the systems biology perspective.

Evolvability of a nonlinear gene 
regulatory network in evolution
In the nonlinear gene regulatory network with only sto-
chastic environmental stimuli, eq. (29) is modified as

	 dx t f x x dt Bv t dte ( ) ( ) ( )= + + 	 (31)

Based on the nonlinear stochastic gene network 
in (31) and the evolution level ρ of the gene regula-
tory network defined in (13), the following result is 
obtained.

Proposition 5: For the nonlinear gene regulatory 
network with external stimuli in (31), if the following 
HJI holds for some positive function V x( )  0.

∂
∂






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+ ∂
∂






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x
f x x x t x t

V x

x
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T

e
T

T

( )
( ) ( ) ( )
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



  





x

1

4ρ
TT V x

x

∂
∂







( )



 0 	 (32)

then the evolution level ρ in (13) holds for the gene 
regulatory network with a phenotype at the equilib-
rium point xe.

Proof: See Appendix E in Supplementary data.
In this case, the evolvability measure of the gene 

regulatory network in (31) in evolution, can be 
obtained as follows

	
r

V x
0

0
=

>
min
( )

ρ 	 (33)

subject to (32).
Remark 4: (i) Comparing (33) with (16), it is seen 
that the evolvability inequality in (15), for the lin-
ear gene network, is replaced by the above HJI in 
(32), for the nonlinear gene network. (ii) If the non-
linear gene network is more robustly stable, ie, if 
∂ ∂( ) +V x x f x x

T

e( ) / ( )  

 in (32) is more negative, then 
the evolvability r0 is smaller, such that the nonlinear 
gene network has a greater ability to resist (or avoid) 
the environmental stimuli, ie, it is less responsive to 
environmental stimuli. In this case, the phenotype is 

constrained to the basin of a stable equilibrium point 
and finds it difficult to transit to another basin in 
Figure  3. (iii) If the nonlinear gene network is less 
robustly stable, ie, ∂ ∂( ) +V x x f x x

T

e( ) / ( )  
 is less 

negative, then the evolvability r0 becomes larger and 
the gene network is more responsive to environmen-
tal stimuli. In this situation, the stress-induced genetic 
variation50 becomes larger, so that the gene regulatory 
network may be pushed from the basin of one stable 
equilibrium point to another stable basin in Figure 3. 
(iv) The value 1 4 0/ ( ) / ( ) /r V x x BB V x x

T T∂ ∂( ) ∂ ∂( ) =     
1 4 0/ ( ) / ( ) /f V x x BB V x x

T T∂ ∂( ) ∂ ∂( )     in (32) 
is related to the environmental robustness and 
− ∂ ∂( ) +V x x f x x

T

e( ) / ( )    is a measure of network 
robustness. Therefore, (32) shows that if the envi-
ronmental robustness is still less than the network 
robustness, then the phenotype of the stochastic gene 
network in (31) is robust, under the influence of envi-
ronmental stimuli, in the evolutionary process.

Based on evolutionary aging theory in,38 if the 
gene network exhibits greater environmental robust-
ness (ie, large f0 or smaller r0 in (32)) at an early 
stage, resulting in a diminution of the external stimuli 
and genetic variations, so that the phenotype always 
remains in the basin of an equilibrium point in Fig. 3, 
then the effects of pathogen infections and genetic 
variation can be easily attenuated by the gene net-
work, and disease and cancer can be efficiently sup-
pressed, at an early stage. However, at a more mature 
stage, the gene network is less robust to genetic varia-
tions, or more responsive to environmental changes, 
so that the phenotype will be easier to transit from 
one equilibrium to another and aging (senescence) of 
the gene network will occur. Therefore, the interplay 
between the evolvability and network robustness is 
inherent to the antagonistic pleiotropic effect of the 
gene network, in evolutionary process.

Tradeoff between the environmental 
robustness and genetic robustness 
of a gene regulatory network in the 
evolutionary process
If the nonlinear gene regulatory network (27) suffers 
from simultaneous parametric fluctuations and envi-
ronmental stimuli in evolution, the result is the fol-
lowing nonlinear stochastic system
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dx t f x x dt f x x dw t Bv t dte l e l
l

L

  ( ) ( ) ( ) ( ) ( )= + + + +
=

∑
1� (34)

near the equilibrium point (phenotype) xe.
Then we get the following result.
Proposition 6: If the following HJI has a positive 

solution V x( )  0
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(35)

then the nonlinear stochastic gene regulatory net-
work in (34) has enough network robustness to toler-
ate genetic parameter fluctuations and a sufficient an 
evolution level ρ to respond to environmental stimuli, 
in the evolutionary process.

Proof: See Appendix F in Supplementary data.
Based on the HJI in (35), the evolvability of the 

nonlinear stochastic gene network, under the influence 
of both parameteric fluctuations and environmental 
stimuli, can be measured by solving the following 
constrained optimization

	
r

V x
0

0
=

>
min
( )

ρ 	 (36)

subject to (35).
If we substitute r0 into (35), the following HJI is 

obtained, for phenotype robustness in evolution.

∂

∂
+ +

∂

∂
+



 +

=

V x

x
f x x f x x

V x

x
f x x

T

e l

T

e l e

l

( )
( ) ( )

( )
( )





 







1

2

2

2
1

LL

T

T

Tx t x t
r

V x

x
BB

V x

x

∑

+
∂

∂

∂

∂










+  









( ) ( )
( ) ( )1

4
0

0



� (37)

Obviously, from (35), it is seen that a nonlinear 
gene network requires more network robustness in 
(37), than in (30) or (32), when it suffers from simul-
taneous genetic parametric fluctuations and environ-
mental stimuli in evolution, ie, ∂ ∂( ) +V x x f x x

T

e( ) / ( )    
must be more negative to enable the phenotype to tol-
erate the genetic parametric fluctuations and to resist 
environmental stimuli simultaneously, in the evolu-
tionary process.

If a gene regulatory network selects a strategy 
with enough genetic variation tolerance and stimuli 
resistance,50 the basin of the equilibrium xe in 
Figure 3 must be deeper and wider, so that the genetic 
variations and environmental stimuli are inhibited 
and the phenotype can be securely retained within the 
basin. In this case, the term ∂ ∂( ) +V x x f x x

T

e( ) / ( )    
in (37) must be more negative, in order to tolerate 
the term 1/2 ∑l

L
l
T

e l ef x x V x x f x x= + ∂ ∂ +1
2 2( ) ( ) / ( ) ,   

due to genetic variations and to resist the term 
1 4 0/ ( ) ( )/ /r V x x BB V x x

T T∂ ∂( ) ∂ ∂( )    , due to environ-
mental stimuli. Let us denote − ∂ ∂( ) +V x x f x x

T

e( ) / ( ) ,  

1 2 1
2 2/ ( ) ( ) / ( )∑l

L
l
T

e l ef x x V x x f x x= + ∂ ∂ +     and

1 4 1 40 0/ / ( )/ / /( ) ( )r V x x fV x x B V x x
T T T∂ ∂ ∂ ∂( ) ∂ ∂( ) = ( )    B  

BBT V x x∂ ∂( )( )/   in (37), respectively as the mea-
sures of the network robustness, genetic robustness 
and environmental robustness of a stochastic gene 
network (34). The phenotype robustness criterion in 
(37) can be denoted as “genetic robustness +  envi-
ronmental robustness  network robustness”, ie, if 
the genetic robustness plus the environmental robust-
ness is still less than the network robustness, then 
the phenotype of the gene network remains robust, 
under the influence of genetic variation and environ-
mental disturbance, in the evolutionary process. The 
phenotype robustness in (37), shows that if greater 
network robustness is evolved, to allow a gene net-
work to provide a buffer against the more common 
environmental disturbances in evolution, it can also 
provide a buffer against the genetic (heritable) varia-
tions. Obviously, the correlation between genetic 
robustness and environmental robustness affects the 
network robustness of a gene network, in the evolu-
tionary process.

When the phenotype robustness inequality 
(37) holds, the accumulated genetic variations 
∑l

L
l e lf x x dw t= +1 ( ) ( )  and the effect due to environ-

mental stimuli cannot impel the gene network to 
move from one stable basin to another stable basin, 
to change the phenotype. In this case, the evolution 
is still in stasis state under the influence of environ-
mental stimuli. However, if these random genetic 
mutations and stress-induced genetic variations 
persist and accumulate for a long time, so that the 
HJI inequality in (37) is violated, then a gene net-
work transition, from the basin of one equilibrium 
point to another basin may occur, in order to change 
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the phenotype. In general, the cost of the strategy 
of resistance to stimuli and tolerance of genetic 
variation is much higher.50 In the case of the stress-
avoidance strategy,50 the basin of the equilibrium 
point in Figure  3, becomes shallow, ie, the term 
∂ ∂( ) +V x x f x x

T

e( ) / ( )    in (37) is less negative. In 
this case, the evolvability r0 must be large and envi-
ronmental robustness must be small in evolution, so 
that the gene regulatory network is sufficiently flex-
ible to respond to environmental stress under rapid 
evolutionary change.

In general, it is still very difficult to solve the HJI 
in (30) directly, in order to determine the extent to 
which stochastic parametric fluctuations can be 
tolerated by the gene network, or to solve the HJI-
constrained optimization in (33) or (36), in order to 
measure the evolvability of the gene network, to gain 
a greater insight into the dynamic mechanism of a 
nonlinear stochastic gene network, in the evolution-
ary process. At present, there is no good method to 
solve the nonlinear partial differential HJI either ana-
lytically or numerically.33,39,40 In this case, the global 
linearization technique34,40 is used, to transform the 
nonlinear stochastic gene network (34) into an inter-
polation of a set of locally linearized gene networks, 
in order to simplify the analysis of the evolvability 
and network robustness of a stochastic gene network 
in evolution.

Using the global linearization method, if all the 
global linearizations are bounded by a polytope, con-
sisting of M vertices, as34,40
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� (38)

where Co denotes the convex hull of the polytope 
with M vertices, defined in (38), ie, if the linearized 
systems at all 

x t( ) are inside the convex hull Co, then 
the state trajectories 

x t( ) of the nonlinear shifted gene 
network in (34) will belong to the convex combination 
of the stable trajectories of the following M linearized 

gene networks, derived from the vertices of the 
polytope:34

dx t A x t Bv t dt

A x t dw t i M

i

li l
l

L

 



( ) ( ) ( )

( ) ( ), ,

= +( )
+ =

=
∑

1

1 … 	 (39)

Based on the global linearization theory,34 if (38) 
holds, then every trajectory of the nonlinear stochastic 
gene network in (31) can be represented by a convex 
combination of the M linearized gene networks 
in (39). Therefore, if we can prove that the convex 
combination of the M linearized gene networks in 
(39) has the evolvability r0 to respond to environ-
mental stimuli and the network robustness to tolerate 
stochastic parametric fluctuations, due to genetic 
variations, then the original nonlinear stochastic gene 
network in (34) will also have the same evolvabil-
ity and network robustness. The convex combina-
tion of the M linearized gene networks in (39) can be 
represented by34,40

dx t x A x t Bv t dt A x t dw ti i li l
l

L

i
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where the interpolation function α i x( )  satisfies 
0 1 11 α αi i

M
ix x( ) ( ) and ∑ = = , ie, the trajectory of 

the nonlinear gene network in (34) can be represented 
by the interpolated gene network in (40), which is the 
convex combination of the M linearized gene net-
works in (39).

In the case of free of environmental stimuli, the 
global linearization approach in (40) is reduced to

dx t x A x t dt A x t dw ti i li l
l

L

i

M

   ( ) ( ) ( ) ( ) ( )= +








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==
∑∑α

11

	� (41)

which is the global linearization system for a non-
linear stochastic system (28). For the global linear-
ization stochastic system in (41) with only stochastic 
parametric fluctuations, due to genetic variations in 
evolution, we get the following result.

Proposition 7: If the following linear matrix 
inequalities (LMIs) have a positive symmetrical solu-
tion P . 0.
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A P PA A PA i Mi

T
i li

T
li

l

L

+ + =
=

∑
1

0 1 , , 	 (42)

then the stochastic parametric fluctuations in (41) or 
(28) can be tolerated by the stochastic gene network 
in the evolution process, ie, the nonlinear stochastic 
gene network is robustly stable for the phenotype 
(ie, with phenotype robustness) at xe (the equilibrium 
point of interest) under the influence of parametric 
fluctuations in evolution.

Proof: See Appendix G in Supplementary data.
Actually, the LMIs in (42) can be considered as a 

set of linearizations of the HJI in (30), ie, we could 
replace a nonlinear HJI by a set of LMIs, using the 
global linearization technique. If the stochastic gene 
network in (40) is free of genetic parametric fluctua-
tions and is subject to only environmental stimuli in 
evolutionary process, then we get

	
dx t x A x t Bv t dti i

i

M

  ( ) ( ) ( ) ( )= +( )
=
∑α

1

	 (43)

which is the global linearization system of the nonlin-
ear gene network in (31).

In this case, the evolutionary inequality in 
Proposition 2 can be extended to the case of a non-
linear gene network.

Proposition 8: If the following evolutionary 
inequality holds with P . 0 for a nonlinear gene net-
work (31) or (43)

A P PA I PBB P i Mi
T

i
T+ + + =1

0 1
ρ

 , ,  	
�

(44)

then the evolutionary inequality in (13) or (14) holds, 
ie, the nonlinear stochastic gene network in (31) or 
(43) has an evolution level ρ.

Proof: See Appendix H in Supplementary data.
Since ρ in (13) or (14) is the upper bound of the 

evolvability for the nonlinear gene network in (31) or 
(43), the evolvability of a nonlinear gene network is 
obtained as follows

	
r

P
0

0
=

>
min ρ 	 (45)

subject to (44).
The constrained optimization problem in (45), to 

solve the evolvability of nonlinear gene network in 

(31) or (43) can be achieved by decreasing ρ until no 
solution P . 0 exists for the quadratic inequalities in 
(44). By Schur complement,34 the quadratic inequali-
ties in (44) can be transformed to the following equiv-
alent LMIs
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, ,

ρ
 0 1 

	 (46)

Therefore, the evolvability measure in (45) is 
equivalent to solving the following constrained opti-
mization problem

	
r

P
0

0
=

>
min ρ 	 (47)

subject to (46).
Remark 5: (i) The LMIs in (46) or the LMI-

constrained optimization problem in (47) can be 
efficiently solved, using the LMI toolbox in Matlab. 
(ii) r0 is obtained by decreasing ρ until no solution 
P .  0 exists for LMIs in (46) with the help of the 
LMI toolbox in Matlab. (iii) Based on the global lin-
earization, the measure of the evolvability, from the 
HJI-constrained optimization in (33), can be replaced 
by the LMI-constrained optimization in (47).52 After 
solving the evolvability r0 from (47), the inequalities 
in (44) can be modified as.

I
r

PBB P I f PBB P A P PAT T
i
T

i+ = + − +1

0
0  ( ),  

1,  i M= … 	(48)

From (48), it is seen that if the eigenvlaues of Ai 
for all linearized gene networks are more negative (ie, 
more robust),23 r0 can be smaller to better resist the 
environmental stimuli, ie, there is a larger environ-
mental robustness f0. In this case, the gene network 
tends toward stasis, under the influence of extreme 
environments, a phenomenon that is observed in “liv-
ing fossils”.50 Conversely, if network robustness is 
smaller, the evolvability r0 of a gene regulatory net-
work must be larger, to ensure a response to environ-
mental stimuli, in order to guarantee the inequality in 
(48), ie, there will be a smaller environmental robust-
ness. This leads to the rapid evolutionary change of 
the gene regulatory network. Therefore, the interplay 
between the evolvability and network robustness of 
a nonlinear stochastic gene regulatory network in 
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evolution, can be also investigated using the linear 
theory method. The phenotype robustness in (48) 
shows that if the network robustness of every local 
linearized gene network is larger than the environ-
mental robustness, then the phenotype of a nonlinear 
gene network is robust, under the influence of envi-
ronmental stimuli, in the evolutionary process.

If a nonlinear regulatory gene network is subject 
to genetic parametric fluctuations and environmental 
stimuli simultaneously, as in (34) or (40), then the fol-
lowing result. is obtained.

Proposition 9: If the following quadratic inequali-
ties have a solution P . 0,

A P PA A PA I PBB P i Mi
T

i li
T

li
l

L
T+ + + + =

=
∑

1

1
0 1

ρ
 , , 

	

� (49)

then the nonlinear stochastic gene network in (34) or 
(40) has sufficient network robustness to tolerate ran-
dom genetic parametric fluctuations and with an evo-
lution level ρ sufficient to respond to environmental 
stimuli in the evolutionary process.

Proof: See Appendix I in Supplementary data.
Based on Proposition 9, the evolvability of the 

stochastic gene network in (34) or (40) can be mea-
sured by solving the following LMI-constrained opti-
mization problem

	
r
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After solving the evolvability r0 from (50), then 
the phenotype robustness inequality in (49) can be 
modified as.
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In (51), − +( ) =A P PA A PAi
T

i l
L

li
T

li, ∑ 1  and 
I r PBB P I f PBB PT T+ = +1 0 0/  represent the net-
work robustness, genetic robustness and environ-

mental robustness of the ith linearized gene network, 
respectively. This is the extended result of (21), from 
the linear gene network (20) to the nonlinear gene net-
work (34). Therefore, if “genetic robustness + envi-
ronmental robustness  network robustness” for all 
linearized gene networks, then the phenotype xe of the 
nonlinear stochastic system in (34) is robust, in the 
evolutionary process.

From (51), it can be seen that the tradeoff between 
the environmental robustness to resist the envi-
ronmental stimuli, and genetic robustness to resist 
the stochastic parametric fluctuations in evolution.  
A more detailed discussion of the interplay between 
the evolvability and network robustness of the non-
linear stochastic gene network in (34) or (40) is 
undertaken in the following. Firstly, the phenotype 
robustness inequalities in (51) can be changed to the 
following equivalent inequalities.

I
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Compared with (48), the term ∑l
L

li
T

liA PA=1
 in (52), 

which is due to accumulated random genetic para-
metric fluctuations, decreases the network robustness 
of each linearized gene network (ie, − +( )A P PAi

T
i

 
becomes less positive by − =∑l

L
li
T

liA PA1  in (52), or the 
basin in Figure 3 becomes shallow) so that the right 
hand side of (52) becomes smaller and the evolvabil-
ity r0 becomes greater, ie, due to the shared ability of 
the environmental robustness f0 to tolerate these accu-
mulated genetic variations ∑l

L
li
T

liA PA=1  in evolution, 
the network robustness of a gene network can not suf-
ficiently attenuate more environmental disturbances 
simultaneously, so that it becomes more adaptive to 
them. Similarly, (49) is equivalent to.

A PA A P PA I
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(53)

Due to adaptation to environmental stimuli, the 
network robustness of each linearized gene network 
is diminished, on the right hand side of (53), so that 
its tolerance of genetic parametric fluctuations is 
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decreased, in the evolutionary process, ie, the tolerance 
to ∑l

L
li
T

liA PA=1 , due to genetic variations, or the genetic 
robustness, in the evolutionary process, becomes 
smaller when adaptation to environmental stimuli 
shallows the basin of the gene network at the equi-
librium point xe in Figure 3. Obviously, the tradeoff 
between the environmental robustness, which attenu-
ates the environmental stimuli, and the genetic robust-
ness, which tolerates parametric fluctuations due to 
genetic variations, of a nonlinear gene network in evo-
lution can be discussed from the systematic perspec-
tive, using the global linearization technique. Greater 
network robustness facilitates the subsequent molecu-
lar evolution of local evolutionary mechanisms, by 
enabling a greater accumulation of genetic variations 
in the gene regulatory network. This increases genetic 
robustness and decreases the environmental robust-
ness, so that the gene network is more evolvable to 
environmental stresses, in the evolutionary process.50 
According to (26), the phenotype robustness in (51) 
can be also interpreted as “genetic robustness + envi-
ronmental robustness  network robustness”, for each 
linearized gene network, ie, if the genetic robustness 
plus environmental robustness is less than the net-
work robustness of every linearized gene network in 
(40), then the phenotype of the nonlinear stochastic 
gene network in (34) is still robust, under the influ-
ence of genetic variations and environmental stimuli 
in evolution. The correlated evolution of the genetic 
robustness and environmental robustness of the gene 
networks in (51) can be also discussed in terms of the 
phenotype robustness of the congruent mechanisms of 
gene networks. Because environmental perturbations 
often have a higher frequency and impact on fitness, 
they serve as the driving force for network robustness, 
whereas genetic robustness, to tolerate genetic varia-
tions, evolves as a by-product of environmental per-
turbation in the evolutionary process.

On the Interplay between the 
Evolvability and Robustness of 
Biochemical Networks in Evolution
Since the biochemical network plays the central 
role in cellular function, there is strong motivation 
to study for the underlying principles of the adap-
tive evolution of biochemical networks. As seen 
in Figure  1, the favored physiological systems 
will lead to the exertion of a selection force on 

biochemical networks, in the evolutionary process. 
Since the biochemical networks are the backbone of 
physiological systems, they have less evolvability to 
allow them to respond to external stimuli and enough 
network robustness to resist parametric fluctuations, 
so that the favored physiological functions can be 
preserved, in the evolutionary process.36,37 In order 
to test whether a physiological function would pre-
vails, in a new environment, the network robustness 
and the sensitivity measure the ability to tolerate 
the variations in the metabolite concentrations of a 
biochemical network, in the face of environmental 
changes.6 The mechanisms of the selection forces in 
biochemical networks, in the evolutionary process, 
were also discussed in.49

In this study, the interplay between the evolv-
ability and network robustness of a biochemical 
network will be discussed, based on the S-system 
model.36 Actually, it can be extended to other 
dynamic models of biochemical networks. Using 
the S-system model, the dynamic system of a bio-
chemical network, in the evolutionary process, can 
be represented by36

	


x t x t x t i ni i j
g

j

n m

i j
h

j

n m
ij ij( ) ( ) ( ), ,= − =

=

+

=

+

∏ ∏α β
1 1

1 	
�

(54)
where x1(t), … xn+m(t) are metabolites, such as sub-
strates, enzymes, factors or products of a biochemical 
network in which x1(t), … xn(t) denote the n-dependent 
variables (intermediate metabolites and products), 
and xn+1(t), … xn+m(t) denote the m-independent 
variables (initial reactants and enzymes), αi and βi 
denote the rate constants, and gij and hij represent the 
kinetic parameters of the biochemical network. These 
parameters can be estimated using experimental data 
or microarray data.53,54 Suppose that transient time is 
neglected, in the evolutionary process and, for sim-
plicity, we focus on the evolvability and network 
robustness of a biochemical network in the steady 
state near the equilibrium point of interest (ie, the 
phenotype of the biochemical network). Consider 
the steady state of the biochemical network in (54), 
we get

	
α βi j
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i j
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http://www.la-press.com


Interplay between the evolvability and network robustness

Evolutionary Bioinformatics 2011:7	 219

Taking the logarithm of both sides of (55), and 
introducing new variables y t x tj j( ) ln[ ( )]= , aij = gij - hij 
and bi = ln(βi/αi), after some rearrangement, we get36
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(56)

The above equations can be represented by the fol-
lowing steady state equation,55

	 A Y t b A Y tD D I I( ) ( )= − 	 (57)

where YD(t)  =  [y1(t) … yn(t)]
T, b  =  [b1 … bn]

T, 
YI(t) = [yn+1(t) … ym+1(t)]
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In which AD denotes the system matrix of the cata-
lytic interactions between the dependent variables y1(t) 
… yn(t) in YD(t) and AI indicates the catalytic interac-
tions between dependent variables y1(t) … yn(t) in YD(t) 
and the independent variables Yn+1(t) … Yn+m(t) in YI(t) 
(ie, the environmental medium of the metabolic sys-
tem). From the simple algebraic steady state equation in 
(57), obviously, the S-system in (54) is a useful model 
to describe the phenotype of the biochemical network.36 
If the inverse of AD exists, the steady state (or pheno-
type) of the biochemical network is solved by.36

	 Y t A b A Y tD D I I( ) ( )= −( )−1 	 (58)

The steady state (phenotype) YD(t) in (58) is one of 
the equilibrium points of the nonlinear biochemical 
network in (54). Actually, there are many equilibrium 
points for (54), which represent different phenotypes. 
Only the equilibrium point (or phenotype) in (58) is 
favored by natural selection in evolution.

Suppose that there exist some random parametric 
variations ∆αi(t), ∆βi(t), ∆gij(t), ∆hij(t), due to random 
genetic mutations in protein sequences, structure and 
function, and ∆YI(t), due to environmental random 
disturbances, in the evolutionary process, ie,

α α α β β βi i i i i i ij ij

ij ij ij ij

t t g g
g t h h h

→ + ∆ → + ∆ →
+ ∆ → + ∆

( ), ( ),
( ), (

  
 tt Y t Y t Y tI I I), ( ) ( ) ( ) → + ∆ 	

� (59)

These random parametric variations, due to pheno-
typic noise and genetic variations, can be considered 
as the design parameters of the biochemical network, 
in the evolutionary process. Then the corresponding 
heterogeneous steady state (phenotypic heterogeneity) 
of the biochemical network in evolution is given by

A A t Y t Y t
b b t A A t Y t Y t

D D D D

I I I I

+ ∆( ) + ∆( )
= + ∆( ) − + ∆( ) + ∆

( ) ( ) ( )
( ) ( ) ( ) ( ))( ) 	 (60)

Because biochemical networks are the backbone of 
the physiological systems of organisms, a biochemi-
cal network must be sufficiently robust to tolerate 
the random parametric variations and environmental 
changes, due to phenotypic variation and noise, in 
order to maintain its functional properties, in the evo-
lutionary process (see Fig. 1). We can find the follow-
ing phenotype robustness of biochemical network, in 
the evolutionary process.6,56

Proposition 10: If the following phenotype robust-
ness condition holds

E A A t E A t A t A AD D D D
T

D D
T− ∆ ∆ ∆( )1

2
1( ) ( ) ( ) or 	 (61)

then the phenotype of a stochastically perturbed bio-
chemical network exists, in the evolutionary process, 
as follows:

Y t Y t A A t

b b t A A t Y t Y
D D D D

I I I I

( ) ( ) ( )

( ) ( ) ( )

+ ∆( ) = + ∆( )
+ ∆( ) − + ∆( ) + ∆

−1

(( )t( )  	 (62)

ie, if the covariance E A t A tD D
T∆ ∆( )( ) ( )  of random 

parametric fluctuation ∆AD(t), in the evolutionary pro-
cess, is less than A AD D

T , which can be considered as a 
network robustness measure for the biochemical net-
work in (54), then the random parametric fluctuations 
in evolution are tolerated and the phenotype of the 
biochemical network experiences only a small pertur-
bation ∆YD(t) as (62), in the evolutionary process.

Proof: Similar to ref. 66 except the consideration 
of random variations.

If the phenotype robustness condition in (61) 
is violated, in the evolutionary process, the matrix 
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inverse on the right hand side of (62) may cease to 
exist or move to another equilibrium point with a 
change of phenotype. The random variations, ∆b(t) 
and ∆AI(t), due to the mutations of protein sequences, 
and ∆YI(t), due to the environmental change of the 
biochemical network, will influence the phenotypic 
variations ∆YD(t) in (62), in the evolutionary process. 
Their effects on the phenotype can be measured from 
(62) by the following evolutionary analysis of the 
biochemical network.36

∆
∆

=
∆
∆

= −
∆
∆

= −− −Y t

b t
A

Y t

A t
A Y t

Y t

Y t
D

D
D

I

D I
D

I

( )

( )
,

( )

( )
( ),

( )

( )
1 1   AA AD I

−1 ,

	
	

(63)
In order to tolerate random variations, 

∆ ∆ ∆b t Y t A tI I( ), ( ) ( ) and  , in the evolutionary process, 
to preserve the phenotype of a biochemical network, 
the evolvabilities in (63) must remain below some 
values as follows

E
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or equivalently, from (63) and (64), we get
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 22I 	 (65)

where a1, a2 and a3 are some small evolvability val-
ues, such that the disturbed phenotype ∆YD + ∆YD(t) 
of the stochastic biochemical networks in (62) can-
not change too much, in comparison with the nominal 
phenotype in (58), ie, ∆YD(t) in (62) must still be in the 
basin of the phenotype in evolution. The evolvability 
criteria in (64) or (65) determine the ranges of the 
sensitivities of the phenotypic changes ∆YD(t), due to 
random parametric and environmental fluctuations.

Based on the above analysis of the evolvability 
and network robustness of biochemical networks, 
the perturbed biochemical networks should satisfy 
the phenotype robustness criterion in (61), in order to 
prevent them being perturbed too far from their equi-
librium points (phenotypes), in the evolutionary pro-
cess. Because the violation of (61) generally implies a 
lethal phenotype mutation, the phenotype robustness 

criterion in (61) is the necessary condition for the 
survival of a phenotype of a biochemical networks, 
in the evolutionary process.49 From the phenotype 
robustness criterion in (61), natural selection favors 
the perturbed biochemical networks with small-vari-
ance random phenotypic mutations, ie, with small 
E A t A tD D

T∆ ∆ ( ) ( ) , so that the phenotype robustness 
criterion in (61) is not violated. A biochemical network 
with redundancy and self-regulation can attenuate ran-
dom fluctuation ∆AD(t), due to genetic and phenotypic 
mutations, in the evolutionary process. Furthermore, 
a biochemical network with adequate negative feed-
back loops can increase its network robustnessA AD D

T 
in (61), to tolerate large random parametric fluctua-
tion, due to genetic and phenotypic mutations with 
large variance E A t A tD D

T∆ ∆ ( ) ( ) , in the evolutionary 
process. These robust adaptive designs with adequate 
feedback loops are also favored by natural selection, 
in the evolutionary process of biochemical networks. 
This is why there are so many redundancies, hubs, 
modularities and self-regulation and feedback path-
ways in the biochemical networks of organisms.34,57–59 
A scale-free structure can also reduce the effect of 
E A t A tD D

T∆ ∆ ( ) ( )  on the phenotype robustness of 
biochemical networks and is also favored by natural 
selection in evolution.60

On the other hand, the evolvability criteria in (64) or 
(65) determine the range of the adaptability of the phe-
notypic change ∆YD(t) to random parametric variations, 
due to genetic and phenotypic mutations and random 
environmental changes, in the evolutionary process. For 
a functional biochemical network, the evolvability cri-
teria should prevent the metabolic concentration from 
being changed, too much, by random genetic and phe-
notypic mutations and environmental changes. Hence, 
the steady state (phenotype) of a biochemical network 
can be preserved, while exposing the random genetic 
and phenotypic mutations and environmental changes 
to natural selection, in the evolutionary process.

When the network robustness in (61) is compared 
with the evolvability in (65), the interplay between 
evolvability and network robustness in biochemical 
networks is obvious in evolution. From (61), it is 
seen that a large A AD D

T increases the network robustness, 
to allow tolerance of large parameter variations, due 
to genetic and phenotypic mutations, in the evolution-
ary process. However, the evolvability criteria in (65) 
shows that a large network robustness A AD D

T decreases 
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the evolvabilities ai, i = 1, 2, 3, and vice versa. The 
interplay between the evolvability and network robust-
ness in biochemical networks will be discussed in the 
following. The assumption that the three evolvability 
criteria in (64) or (65) all hold for natural selection is 
derived from the fact that biochemical networks are 
the backbone of physiological systems and can not be 
too evolvable to random genetic and phenotypic muta-
tions and environmental changes. This is especially so, 
for some core (conserved) biochemical networks.37,42 
Actually, the evolvabilities, ai in (64) or (65) are 
inversely dependent on the network robustness A AD D

T 
of biochemical networks. If some evolvability criteria 
in (64) or (65) become larger, due to a smaller network 
robustness A AD D

T, ie, some of the inequalities in (64) 
or (65) have larger ai

, the biochemical network has 
more phenotypic heterogeneity, thanks to some ran-
dom genetic and phenotypic mutations and environ-
mental changes, and will provide more raw material 
for evolutionary novelty, in the evolutionary process. 
In this situation, the phenotypes of these biochemical 
networks are heavily influenced by random genetic 
and phenotypic mutations and environmental varia-
tions and can more easily move from their equilibrium 
points (phenotypes) toward other equilibrium points 
(other phenotypes), so that they may be more adaptive 
to environmental changes through random genetic and 
phenotypic mutations in the evolutionary process. In 
this case, new phenotypes are more easily generated, 
in order to be more adaptive to the natural selection 
force on biochemical networks under random genetic 
and phenotypic mutations and environmental varia-
tions in the evolutionary process.9,25–28 The phenotype 
robustness criterion in (61) and the evolvability cri-
teria in (64) or (65) consist of evolutionary rules for 
natural selection in biochemical networks via genetic 
and phenotypic mutations of the germ cell, in the evo-
lutionary process. Most genetic and phenotypic muta-
tions or perturbations of biochemical networks are 
harmful, because they violate the evolution rules of 
natural selection in (61) and (65), since biochemical 
networks are the backbone of the physiological sys-
tems of organisms and they should be robust enough, 
or less adaptive, to resist these effects of genetic and 
phenotypic variations. Evolution is possible only for 
very few genetic and phenotypic variations. If they are 
selected by natural selection, there will be some dif-
ferences in phenotype among the selected biochemi-

cal networks with random genetic and phenotypic 
mutations. After several generations of the evolutionary 
process, due to the co-option of existing biochemical 
networks, diversities or heterogeneities will develop 
in biochemical networks with conserved physiologi-
cal function but with different structure.5,8 This is the 
origin of the diversity of biochemical networks within 
organisms in evolution. However, if the requirements 
of the phenotype robustness in (61) and the evolv-
ability in (64) are stricter (or more conservative), ie, 
small ai, only a very few solutions (or structures) can 
be selected by natural selection to meet these strict 
requirements. This is the reason why a conserved core 
biochemical network has less diversity.36,37

On the Interplay between the 
Evolvability and Network Robustness 
of High-Level Biological Networks  
in Evolution
In this section, the interplay between the evolvability 
and network robustness of high-level bio-networks, 
such as physiological systems and ecological net-
works (see Fig. 1) will be discussed in a similar vein. 
In the evolutionary process, we assume a high-level 
biological network can be represented by the follow-
ing nonlinear stochastic system

	
dx t f x dt f x dw tl l

l

L

( ) ( ) ( ) ( )= +
=

∑
1

	 (66)

where x(t) = [x1(t), …, xn(t)]
T denote n components 

of the high-level biological network such as organs 
or species, f(x) denotes the interactions between the 
components in the high-level biological network, 
the term ∑l

L
l lf x dw t=1 ( ) ( )  denotes the accumulated 

intrinsic random fluctuations, in the evolutionary 
process, due to the random variations of low-level 
networks, ie, gene variations or phenotype varia-
tions. The nonlinear stochastic system in (66) shows 
that the behavioral heterogeneity of the biological 
network, in terms of population, differential survival 
rates and reproductive success from natural selec-
tion favors certain heritable variations and results in 
an increase in the number of those variants in the 
population.

Suppose we only discuss the biological phenom-
enon near an equilibrium point xe, in which we are 
interested, ie, x t x t xe( ) ( )= + . For the convenience, 
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the origin of the high-level biological network in (66) 
is shifted to the equilibrium point, as follows

	
dx t f x x dt f x x dw te l e l

l

L

  ( ) ( ) ( ) ( )= + + +
=

∑
1

	 (67)

Then we get the following result.
Proposition 11: For the high-level biological net-

work with intrinsic random fluctuations in (66), if the 
following HJI has a positive solution V x( )  0 ,
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∂
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
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+ + +
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∑V x
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e
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(




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





1

2 1
2

2× xx xe+ )  0 	 (68)

then the nonlinear stochastic biological network is 
robustly stable around the equilibrium point in evolu-
tion, ie, the system’s random fluctuation can be toler-
ated by the biological network, in the evolutionary 
process.

Proof: Similar to that for Proposition 4.
If the stochastic high-level biological network in 

(67) is also subject to environmental disturbance, in 
the evolutionary process, as follows

dx t f x x dt Bv t f x x dw te l e l
l

L

  ( ) ( ) ( ) ( ) ( )= + + + +
=

∑
1

	
�

(69)

where v(t) denotes the environmental disturbances 
to the high-level biological network, such as impacts 
from environmental hormones or climatic anomalies, 
then we get the following result.

Proposition 12: For the nonlinear stochastic 
biological network in (69), under the influence of 
random parametric fluctuations and environmental 
disturbances in evolution, if the following HJI has a 
positive solution, V x( )  0 , and
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then the nonlinear stochastic biological network can 
tolerate the intrinsic random fluctuations and also has 
a sufficient evolution level ρ to respond to environ-
mental disturbances, in the evolutionary process.

Proof: Similar to Proposition 6.
The evolvability of the nonlinear stochastic high-

level biological network in (69) can also be measured, 
using the following constrained optimization method

	
r

V x
0

0
=

>
min
( )

ρ 	 (71)

subject to HJI in (70).
Since it is very difficult to solve the HJI in (70), 

or to solve the HJI-constrained optimization in (71), 
for the evolvability and network robustness problem 
of the nonlinear stochastic high-level biological net-
works in (69), global linearization techniques can be 
also employed as with Proposition 7∼Proposition 9 
in Section III. Therefore, they are neglected in this 
study. Similarly, the high-level biological network 
can also be modeled using the S-system model36,37 
of Section IV. Therefore, the interplay between the 
evolvability and network robustness of these high-
level biological networks can be also discussed in a 
similar fashion to Proposition 10 and eq. (65), and 
are also neglected here too.

The interplay between the evolvability and net-
work robustness of a biological network is related to 
the evolutionary antagonistic pleiotropy,38 which can 
extend the antagonistic pleiotropy from the gene level 
to the biological network level, so that the antago-
nistic pleiotropy can be explained from a systematic 
perspective. For example, based on the evolutionary 
theory of aging,35,38 a biological network can more 
robustly attenuate the effect of genetic variations and 
extrinsic pathogens to efficiently depress cancer, at 
an early stage, but the biological network must be 
less adaptive in its response to other environmental 
stresses, in old age, so that senescence occurs.38

Discussion and Conclusion
In the evolutionary process of stochastic biological 
systems, phenotypic, environmental and genetic vari-
ations are systematically correlated, which accounts 
for their evolvability and network robustness. The 
robustness of phenotypes evolves in response to the 
need to cope with stochastic genetic and environmen-
tal variations. Native functions or phenotypes that play 
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a permanent physiological role and have therefore 
been constantly under natural selection, must become 
more robust with respect to genetic, phenotypic and 
environmental variations. In contrast, latent, promis-
cuous, or coincidental phenotypes are easily perturbed 
by stochastic genetic, phenotypic and environmental 
variations, in evolution, and thereby provide the raw 
material for evolutionary novelty.61

Here, the living organism was considered as a 
robustness system under stochastic perturbations dur-
ing the evolution. Therefore, the interplay of robust-
ness and evolvability can be analyzed by using the 
well-developed system theories. From the system 
perspective, the phenotype robustness of the organ-
ism’s system in evolution can be seen as the network 
robustness needs to obey a phenotype robustness 
criterion (23) or (26), ie, “genetic robustness + envi-
ronmental robustness  network robustness”, which 
means the network robustness needs to be strong 
enough to tolerate either heritable perturbations (ie, 
intrinsic parameter fluctuations) or non-heritable per-
turbations (ie, external environmental disturbances) 
between generations so that phenotype of the network 
can be maintained in the evolutionary process. For 
the reason that the phenotype robustness of a stochas-
tic gene regulatory network is completely consistent 
with the idea of Waddington.11 Based on the criterion, 
the correlation among genetic robustness, environ-
mental robustness and the phenotype robustness by 
recent genomic experiments in yeast, ie, genes con-
fer similar robustness to genetic, environmental and 
phenotypic robustness,22 can be rationally explained. 
That is if the network robustness of a gene network is 
large enough then the genetic perturbations or envi-
ronmental disturbances can be took over respectively 
or simultaneously to maintain the functional pheno-
type during the evolutionary process. The environ-
mental robustness indicator f0 reversely proportioned 
to the evolvability r0 can also largely illustrate the 
antagonistic relationship between the robustness and 
evolvability found in the RNA secondary structure 
phenotypes.10,14 Further, due to the hierarchical struc-
ture in biological networks, these results may not only 
suit for genetic network but also suit for high-level 
biological network in metabolic pathway or ecologi-
cal system during evolution.62–64

The dynamics of evolutionary change at molecu-
lar level, ie, the various molecular mechanisms in 

the long-term evolution of genomes, genes and their 
products, have been studied extensively.61,65 In this 
study, based on the nonlinear stochastic model, the 
interplay between the evolvability and network 
robustness of biological networks is discussed from 
the perspective of system robustness and sensitivity 
theory. Using the global linearization technique, the 
evolvability and network robustness of biological 
network can be measured, from the locations of the 
eigenvalues of linearized systems and by solving a 
LMI-constrained optimization method.

Genetic, phenotypic and environmental random 
variations are inevitable in evolution, rather than 
desirable features of biological networks.56,66 These 
random variations arise from the complexity and 
evolutionary history of biological systems. How-
ever, there is numerous evidence for the evolution of 
high fidelity and minimal noise, including the proof 
editing of DNA replication and protein translation. 
Enzymes have evolved toward high specificity. Gene 
expression is regulated by elaborate mechanisms, and 
stochastic variations seem to have been minimized, 
in the evolutionary process. For example, gene net-
works within bacterial operons may have evolved 
to minimize genetic and phenotypic noise and infi-
delity. However, chemophysical constraints regulate 
the specificity of biological networks and fidelity in 
biological networks is costly, so there is a tradeoff 
between the benefits of fidelity and its costs. There-
fore, if biological networks want to retain enough 
network robustness and reduce their evolvability 
(small r0) to genetic, phenotypic and environmental 
variations, in order to keep their functional accuracy 
(ie, phenotype robustness), much effort is needed and 
a high cost must be paid. In general, random genetic 
and phenotypic variation and heterogeneity are nei-
ther a desired nor a deliberate outcome of evolution.66 
Heterogeneity and diversity form the very basis of 
evolution, not only within genetically diverse popu-
lations but also within the same allele or genome.55,65 
Thus, random genetic, phenotypic and environmental 
fluctuations are inherent features of biological com-
ponents and networks. Random perturbative biologi-
cal networks may contain more widely connected 
and more interconnected components and may pro-
vide multifunctionality of the biological network. 
This multifunctionality results in an increased robust-
ness and a capacity to cope with diverse challenges, 
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including those that have never been encountered 
in evolution.41,67 However, multi-functionality also 
increases the complexity and the variations in the 
biological network, which might increase adaptive 
potential. Thus, behind the façade of perfection and 
optimality, lies the messy biology that originates from 
evolution. The balance of the evolvability and net-
work robustness, in stochastic biological networks, 
sheds light on the mechanisms that govern the exploi-
tation and toleration of the messiness of the euolu-
tionary process, from the systematic perspective. In 
the evolutionary scenario, network robustness is an 
intrinsic property of the evolvability and might in the 
long term, improve the evolution of all levels of bio-
logical networks.5,35

In this study, a tradeoff between genetic robustness 
and environmental robustness in evolution is derived 
from the interplay between the evolvability and net-
work robustness. Based on this tradeoff between the 
genetic robustness and environmental robustness of 
a biological network in evolution,35 the evolutionary 
antagonistic pleiotropy is extended from gene level 
to biological level and can be discussed from the sys-
tematic perspective. In terms of gene networks, based 
on the evolutionary theory of aging35,38 antagonistic 
pleiotropy holds that what is good for an organism 
when it is young can be bad for it when it is old.38 
Conventionally, this discussed from the point of view 
of individual genes. Based on the tradeoff between 
the genetic robustness and environmental robustness, 
the antagonistic pleiotropic actions of a gene network, 
in the evolutionary process, can be investigated from 
a nonlinear stochastic system perspective. Obviously, 
the tradeoff between the genetic robustness and envi-
ronmental robustness in the evolutionary gene net-
work is also inherent in an evolutionary antagonistic 
pleiotropy.

For different levels of biological networks, two 
favored strategies improve the phenotype robustness 
in evolution. One is to improve the network robust-
ness, to resist the genetic variations and to filter the 
effect of environmental stimuli. Negative feedback 
is the mechanism that improves network robust-
ness and is favored by natural selection at different 
levels of biological networks, in the evolutionary 
process. Another strategy is to reduce the effect of 
genetic variations and external stimuli on different 
biological networks. Redundancies and repairs are 

the mechanisms of this strategy and are favored by 
natural selection in evolution. This is the reason why 
there are so many different redundancies from dupli-
cated genes in gene networks, redundant pathways 
in biochemical networks and species redundancy in 
ecological systems.35

Recently, synthetic biology has spawned the engi-
neering of artificial biological systems that fulfill 
a particular purpose, from off-the-shelf chemical 
ingredients, to allow a better understanding of 
biological design, using synthetic circuits.41,67–73 
High-throughput measurements are necessary, to 
determine what is evolved and how engineering 
genetic networks, in vivo, mimic the evolutionary pro-
cess of genetic networks.74–78 An approach involving 
directed evolution has been used to rationally design 
a synthetic network, in vivo.61,66,79,80 Unfortunately, 
synthetic biologists are faced with the uncertainties 
of modeling and biochemical parametric variations, 
in vivo.55,65,71–73,81–85 To overcome this problem, the 
interplay between the evolvability and network robust-
ness should be considered in the design procedure, so 
that the synthetic gene network can evolve to robustly 
track some desired behavior by evolution algorithm 
or genetic algorithm via the maximization fitness, at 
full speed to mimic the evolutionary process of a gene 
network, and then can function properly in the host 
cell, under the influence of parametric fluctuations 
and environmental disturbances.43,46,81,82,86–89 Here we 
provide some insights, from a stochastic system per-
spective, into how evolutionary biological networks 
sustain functions robustly, which might be useful in 
the design of in vivo gene networks.

In summary, this study proposes that: (i) The idea 
that genetic, phenotypic and environment variances 
pave the road for the evolvability of biological net-
works is an attractive one. However, their dynamic 
mechanisms are unclear. The proposed nonlinear 
stochastic systems can represent messy biological 
networks with intrinsic genetic and phenotypic muta-
tions and environmental disturbances in evolution. 
(ii) Measures of the evolvability and the network 
robustness of a biological network in evolution can be 
obtained from the stochastical robustness theory and 
the H∞ filtering method. (iii) The interplay between 
the evolvability and network robustness of a biologi-
cal network can also be discussed from a nonlinear 
stochastic system perspective.52 (iv) The criterion 
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of phenotype robustness of a biological network in 
evolution is found as follows: The genetic robustness 
plus environmental robustness have to be covered by 
the network robustness in (26). This is also discussed 
for a stochastic biological network with genetic varia-
tions and environmental stimuli, in the evolutionary 
process. Based on the phenotype robustness of a gene 
network, the evolutionary cause of genetic robustness 
can also be discussed with reference to the congruent 
mechanism in.15,35 (v) Based on the tradeoff between 
the genetic robustness and environmental robustness 
of evolutionary biological networks, the evolutionary 
antagonistic pleiotropy can be investigated, from the 
individual gene level7,10 to biological network level, 
from the systems biology perspective. In order to 
avoid solving the nonlinear HJI for the evolvability 
and network robustness of biological networks in 
evolution, the global linearization technique is pro-
posed to simplify the analysis, so that the measures 
of the evolvability and network robustness in a bio-
logical network only need to solve a set of LMIs and 
a LMI-constrained optimization, which can be eas-
ily achieved by the help of LMI toolbox in Matlab. 
Furthermore, the interplay between the evolvability 
and network robustness can be easily discussed with 
reference to the stability robustness and filtering abil-
ity of a biological network, from the linear system 
theory point of view.

The tradeoff between the genetic robustness and 
environmental robustness of a stochastic evolutionary 
biological network is most relevant to the well-known 
statistical tradeoff between bias and variance.51,90 
This bias/variance dilemma has been solved by some 
regularization method via selecting adequate regula-
tion parameters.51 These regularization methods may 
provide other insights into the tradeoff between the 
genetic robustness and environmental robustness of 
a stochastic evolutionary biological network, which 
will be our future works.
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Supplementary Data
Appendix: Equation section (next)
Before the proof of Propositions, the following lemma is useful for the proof of them.

Lemma 1: for any two vectors a ≠ 0 and b ≠ 0 and any scale ρ . 0.
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Appendix A: Proof of proposition 1
By choosing a Lyapunov function V(x) = xT (t)Px(t) for the stochastic system in (4) or (5) and Ito formula,33,39 we 
get the following

E
dV x

dt
E

V x

x

dx t

dt
x t A

V x

x
A x tT

l
T

l
l

L( ) ( ) ( )
( )

( )
( )= ∂

∂
+ ∂

∂

 =

∑1

2

2

2
1




= +




=

∑              E x t P Ax t A x t
dw t

dt
T

l
l

l

L

2
1

( ) ( ) ( )
( )

++ ∂
∂





=

∑1

2

2

2
1

x t A
V x

x
A x tT

l
T

l
l

L

( )
( )

( )
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If the inequality (6) holds, then E dV x dt( ) /  0 , ie, the stochastic gene network in (5) is stochastically stable.
Q.E.D.

Appendix B: Proof of proposition 2 equation section (next)
Consider the following equality.
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where V x x t Px tT( ) ( ) ( )  =  is the Lyapunov function for stochastic gene regulatory network (9).
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By the inequality (15), we get

(A1)
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This is the inequality in (14). When 
x( ) ,0 0= V x( ( )) 0 0= . Then (B1) is reduced to the evolution 

level in (13).
Q.E.D.

Appendix C: Proof of proposition 3
For the stochastic gene regulatory network in (20), consider the following equality,
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for Lyapunov function V x x t Px tT( ) ( ) ( ).  = By Ito formula33,39 and the fact EV x tp( ( ))  0 , we get
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By the inequality in (21), we get
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which is the HJI in (14). If x( )0 0= , then V x( ( )) 0 0=  and the inequality (13) also holds.

Appendix D: Proof of proposition 4
For the nonlinear stochastic gene network in (29), let us choose the Lyapunov function V x t( ( ))  0  for all 

x t( ) ≠ 0  
and V(0) . 0. Then, by Ito formula and E dw t dt En tl l( )/ ( )= = 0, we get
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By the inequality in (30), we get
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ie, �the nonlinear stochastic system in (28) is stochastically stable.
Q.E.D.

Appendix E: Proof of proposition 5
For nonlinear gene network in (31), with Lyapunov function V x t( ( ))  0  for x t( ) ≠ 0  and V(0) = 0, consider the 
following equality
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This is the inequality in (14). If 
x( )0 0=  and V x( ( )) 0 0= , then we get the evolution level in (13).

Q.E.D.

Appendix F: Proof of proposition 6
For the nonlinear stochastic gene network in (34) with Lyapunov function V x t( ( ))  0  for 

x t( ) ≠ 0  and V(0) = 0, 
we get the following inequality
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By Ito formula,33,39 and the fact E dw t dt En tl l( )/ ( )= = 0 , we get
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(by HJI in (35))
This is the inequality in (14). If x( )0 0=  and V x( ( )) 0 0= , then we get the evolution level in (13).
Q.E.D.

Appendix G: Proof of proposition 7
Since we replace the nonlinear stochastic gene network in (28) by the interpolation of globally linearized sys-
tem in (41), then the HJI of the stochastic stability condition (30) of nonlinear stochastic gene network can be 
replaced by
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or
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ie, if the LMIs in (42) hold, then the stochastic stability is guaranteed for the nonlinear stochastic gene network 
in (41).

Q.E.D.

Appendix H: Proof of proposition 8
Since we use the globally linearized system in (43) to replace the nonlinear gene network in (31), the HJI in (32) 
for solving the evolution level ρ could be replaced by the following inequality
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The above inequality holds if the inequalities in (44) hold.
Q.E.D.

Appendix I: Proof of proposition 9
Since we use the globally linearized gene network in (40) to replace the nonlinear gene network in (34), the HJI 
in (35) for evolutionary evolution level ρ and network robustness in Proposition 6 could be replaced by
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If we choose the Lyapunov function as V x x t Px tT( ) ( ) ( )  = , then ∂ ∂ =V x x Px( )/  2  and ∂ ∂ =2 2 2V x x P( )/ , then 
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Therefore, if the quadratic inequalities in (49) hold, then the evolution level ρ and network robustness hold for 
nonlinear stochastic gene network in (34) or (40).

Q.E.D.
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