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ABSTRACT

Objective: To demonstrate enabling multi-institutional training without centralizing or sharing the underlying

physical data via federated learning (FL).

Materials and Methods: Deep learning models were trained at each participating institution using local clinical

data, and an additional model was trained using FL across all of the institutions.

Results: We found that the FL model exhibited superior performance and generalizability to the models trained

at single institutions, with an overall performance level that was significantly better than that of any of the insti-

tutional models alone when evaluated on held-out test sets from each institution and an outside challenge data-

set.

Discussion: The power of FL was successfully demonstrated across 3 academic institutions while avoiding the

privacy risk associated with the transfer and pooling of patient data.

Conclusion: Federated learning is an effective methodology that merits further study to enable accelerated de-

velopment of models across institutions, enabling greater generalizability in clinical use.
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INTRODUCTION

The disposition of healthcare data has generated significant interest

in recent years. With the rapid expansion of the use of software-

enhanced medical diagnostics, devices, and other interventions, ac-

cess to clinical data has become critical to innovation. Clinicians

and healthcare researchers facing this new data climate are forced to

balance their profession’s ethical directives to “protect patient pri-

vacy in all settings to the greatest extent possible” and to

“contribute to the advancement of knowledge and the welfare of

society and future patients.”1 When the sharing of data is
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contemplated, ethics committees must evaluate the relative risks of

unauthorized protected health information disclosure against the ben-

efits of performing research and innovation using healthcare data.

An important contributor to the demand for healthcare data is

the rapid advent of artificial intelligence (AI)-enhanced applications.

For example, the field of medical image analysis has been driven for-

ward in recent years by the advent of deep learning (DL). DL has en-

abled a wave of innovation in imaging decision support, with recent

major results in the fields of ophthalmology,2–4 dermatology,5–7 pa-

thology,8–10 and radiology.11,12

A major limitation of the DL approach is the need for a large

volume of training data that captures the full breadth of inputs on

which the model is likely to be subsequently used. In the field of nat-

ural image processing, large-scale pooled datasets with over a mil-

lion images captured by a variety of different cameras are commonly

used.13 This large volume is required because deep learning models

are primarily interpolators, not extrapolators—that is, they perform

best when presented with inputs that are similar to the data that

those models were trained on. This creates the need to ensure that

models intended for widespread clinical use are exposed to heteroge-

neous data sources that capture the full breadth of the patient popu-

lations, clinical protocols, and data acquisition devices (ie, scanners)

that they will be used on.

However, medical imaging data in most cases is siloed within

provider institutions, and, as a result, assembling large-scale datasets

traditionally requires the transfer of data between these silos. Such

transfers present ethical and legal challenges around preserving pa-

tient privacy. As a result, very few public large-scale pooled medical

image datasets exist. This has led to a challenge of generalizability

for DL models in medical imaging research, which are often trained

on single-institution datasets. Such models often suffer from poor

performance when transferred to other institutions with differing

protocols, equipment, or patient populations.14,15 As a result, there

is a need for methods to enable the development of general models

for clinical use, without requiring the creation of pooled datasets.

An alternative methodology to centralizing multicenter datasets

is known as “distributed” learning.16 In this paradigm, data are not

combined into a single, pooled dataset. Instead, data at a variety of

institutions are used to train the DL model by distributing the com-

putational training operations across all sites. One such approach is

federated learning (FL).17–21 In FL, models are trained simulta-

neously at each site and then periodically aggregated and redistrib-

uted. This approach requires only the transfer of learned model

weights between institutions, thus eliminating the requirement to di-

rectly share data. However, a limitation of this approach is that no

single model ever “sees” a complete picture of the universe of poten-

tial inputs during the training phase, thus placing pressure on the

federated aggregation function to adequately distribute knowledge

from each site into the model. Previous work has demonstrated the

potential utility of FL for model training, generally using publicly

available data to simulate multi-institutional training. However,

works that examine the practical application of FL in radiological

applications are still limited.20,21 Our work shows that FL can be re-

duced to practice using real-world private clinical data across multi-

ple institutions, and that this approach creates a model that

demonstrates improved generalizability both within the participat-

ing institutions and with outside data.

In this work, we demonstrate the application of FL at 3 institu-

tions: University of California, Los Angeles (UCLA); the State Uni-

versity of New York (SUNY) Upstate Medical University; and the

National Cancer Institute (NCI). For this demonstration, we used

the medical image analysis task of whole prostate segmentation, an

initial step for MRI diagnosis of cancer and fusion-guided interven-

tions. We demonstrate that FL training and aggregation is able to

produce a model that learns general predictive weights applicable to

each institution dataset and demonstrates improved generalizability

when applied to an external validation dataset.

MATERIALS AND METHODS

Study overview
In this study, we use data collected retrospectively from each of our

institutions to train and validate DL models to perform whole pros-

tate segmentation on MRI. At no point during this study were pri-

vate data transferred or shared across institutions. Instead, training

on private data was done at the data’s respective institution, and

model weights were iteratively aggregated by a federated server and

redistributed (Figure 1). After training, we evaluated the generaliz-

ability of each of the models using held-out testing sets from each in-

stitution as well as an external challenge dataset.

Data governance
One of the major challenges in multicenter DL studies is data gover-

nance. Our collaboration included 1 industry partner (nVIDIA,

Inc.), 2 public universities (UCLA and SUNY Upstate), and 1 federal

institution (NCI). For this study, UCLA, SUNY Upstate, and the

NCI established a 2-way agreement with nVIDIA to collaborate and

share model weights, but no material transfer agreement to ex-

change protected or private data was required. All 3 academic insti-

tutions had IRB approval for review and image analysis, with

written informed patient consent or waiver of patient consent.

Datasets and preprocessing
Each institution retrospectively collected 1 prostate MRI from each

of a cohort of 100 patients enrolled in an IRB-approved protocol

studying the use of MRI for prostate cancer diagnosis (the “private

datasets”). Axial T2 weighted (T2W) images of the prostate ac-

quired at 3T were obtained for each patient. A ground truth whole

prostate segmentation was produced for each patient by an expert

clinician at each institution (radiologist or urologist ranging from 9

to 27 years of experience). Segmentations were performed under the

standard manual and semi-automatic clinical methodologies in place

at the individual institutions. In order to demonstrate broad general-

izability, participating institutions intentionally made no effort to

harmonize either the T2W acquisition protocol or segmentation

methodologies. In addition, 343 axial T2W images of the prostate

were obtained from the public SPIE-AAPM-NCI PROSTATEx data-

set22 (the “challenge dataset”). These images were annotated with

ground truth whole prostate segmentations by an expert clinician.

Each T2W image and annotation included in the study was

resampled to an isotropic 1mm x 1mm x 1mm voxel size. The

images were then converted to the NIFTI format23 for training, and

the intensity values within each image were normalized to zero

mean and unit variance. Each of the private datasets was divided

into a training set of 80 images and a held-out test set of 20 images.

Model architecture and data augmentation
The 3D Anisotropic Hybrid Network24 (3D AH-Net) was used as

the DL model for this study. The training metric was the soft Dice

loss, and the Adam optimizer with validation metric-based learning

rate decay was used for training. Real-time data augmentation was
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performed using the Deep Stacked Transformation25 methodology

with random cropping based on the background/foreground ratio.

Training strategy and federated model aggregation
Each private training set of 80 images was split into 5 sets of 16

images each. Then, for each experiment, 5 submodels were trained,

each using 1 of the sets of 16 images as validation data, and the re-

mainder as training data. The resulting submodels were then com-

bined into a single ensemble model outputting the mean of all 5

submodels. The same cross-validation training sets were used for all

experiments. A total of 4 training experiments were performed: 1

training run to develop a private model at each institution and an ad-

ditional training run to develop an FL model across all institutions.

All models were trained for 300 epochs. For the FL training, a

cloud-based federated weight aggregation server (“federated server”)

was deployed by UCLA on a secure Amazon Web Services instance

using the Clara application framework (nVIDIA, Inc.). Bilateral web-

socket connections (over Secure Sockets Layer/Transport Layer Secu-

rity encryption) were established during training between each

institution’s training server and the cloud-based aggregation server.

After each training epoch, model weights and validation metrics from

each institution for that epoch were sent to the server, where an aggre-

gation function26 was used to combine them into a single set of model

weights which were then sent back to each institution. These weights

were then used as the basis for the next training epoch, and the pro-

cess was repeated until all epochs had elapsed. The aggregation func-

tion used a weighted average of input models to produce the

combined model. Each institution’s input was weighted based on the

validation metric (mean Dice coefficient) from the most recent train-

ing epoch reported by the corresponding institution on the validation

set for that fold. The FL training framework was implemented using

the nVIDIA Clara Train SDK,27 and training at each site was per-

formed using single nVIDIA GPUs.

Statistical analysis
Each of the ensemble models was evaluated at each institution using

its held-out test set, producing an evaluation for each model at each

institution. In addition, each of the models was also evaluated on

the challenge dataset. The evaluation metric used to compare seg-

mented volumes was the Dice coefficient function as denoted in

Equation 1, where SDL is the segmentation of a deep learning model

and Sm is the manual segmentation. The value of the coefficient can

range between 0 (no overlap) and 1 (perfect overlap).

Dice SDL; Smð Þ ¼ 2jSDL \ Smj
jSDLj þ jSmj

(1)

The mean Dice coefficient was then compared for each model on

each of the individual private test sets as well as the overall mean

Dice coefficient for each model (across all of the test set data). The

mean Dice coefficient was also separately computed for each model

on the challenge dataset. Finally, 2-sided paired t-tests were used to

compare the mean Dice coefficients from each private model to the

FL model, for both the “combined” private test set and the held-out

challenge dataset.

All data was used for this work under the approval of the appro-

priate institutional review board (UCLA IRB# 16-001087, SUNY

IRB# 1519142-1, NCI IRB# NCI-18-C-0017).

RESULTS

Patient and imaging characteristics of the 3 private datasets are

shown in Tables 1 and 2. Tables 3 and 4 show all experimental

Figure 1. Federated learning architecture overview.
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results. The private models performed well on their own private test

sets (Dice coefficient range: 0.883–0.925) but had diminished per-

formance on the other private test sets (Dice coefficient range:

0.575–0.887). This led to overall mean Dice coefficients between

0.745 and 0.833 for the private models.

In comparison, the FL model performed well on all 3 test sets.

The FL model exhibited private test set mean Dice coefficients be-

tween 0.880 and 0.920, yielding an overall result of 0.895. The sta-

tistical analysis using 2-sided paired t-tests demonstrated that the FL

model was significantly superior to any of the private models

(P< .001 for all comparisons).

The private models exhibited varied performance on the chal-

lenge dataset (Dice coefficient range: 0.812–0.872). The generic FL

model outperformed each of the private models, with an overall

mean Dice coefficient of 0.889. The statistical analysis again demon-

strated that the FL model was significantly superior to any of the

private models (P< .001).

DISCUSSION

We sought to demonstrate that data-distributed learning can be suc-

cessfully operationalized across multiple institutions with real pa-

tient data using federated learning, and that the resulting model

would gain the benefit of having learned from each of the private

datasets without ever needing to transfer or pool data at a single lo-

cation.

Since no transfer of protected health information (or even dei-

dentified health information) was required, we were able to address

the privacy and data governance limitations inherent to multicenter

studies through the use of simplified 2-way collaboration agree-

ments, rather than requiring the negotiation of a complex 4-way col-

laboration and material transfer agreement that would have been

required if data were shared across institutions. This allowed for ex-

pedited ethics and compliance reviews because of the minimal risk

posed by the FL paradigm and enabled us to be assured that our

patients’ privacy was maintained.

The FL model that we trained performed well across all of the

private datasets, yielding an overall performance level that was

Table 1. Patient demographics

Private Test Set Institution

NCI SUNY UCLA

Patient demographics Age (years) 66 (47–83) 66 (49–81) 65 (50–83)

Prostate size (cc) 65.5 (21.7–231) 72.9 (26.8–210) 52.1 (15.8–147)

Table 2. Image acquisition parameters

Private Test Set Institution

NCI

with endorectal coil (n¼ 50) without endorectal coil

(n¼ 50) SUNY UCLA

Vendor(s) Philips Medical Systems Siemens Siemens

Field strength 3T 3T 3T

In-plane resolution (mm) 0.273mm 0.352mm 0.625mm 0.664mm

Slice thickness (mm) 3mm 3mm 3mm 1.5mm

Repetition Time (TR, ms) 4775 3686 5500 2230

Echo Time (TE, ms) 120 120 136 204

Table 3. Model evaluation results—private test sets

Private Test Set Institution

NCI (n¼ 20) SUNY (n¼ 20) UCLA (n¼ 20) Overall (n¼ 60)

Private models NCI 0.925 6 0.016 0.854 6 0.050 0.720 6 0.165 0.833 6 0.131*

SUNY 0.887 6 0.027 0.906 6 0.018 0.768 6 0.064 0.854 6 0.074*

UCLA 0.777 6 0.102 0.575 6 0.177 0.883 6 0.069 0.745 6 0.178*

FL Model 0.920 6 0.029 0.880 6 0.034 0.885 6 0.032 0.895 6 0.036

*Significantly lower than FL model (P< .001).

Table 4. Model evaluation results—ProstateX challenge dataset

ProstateX (n¼ 343)

Private

models

NCI 0.872 6 0.062*

SUNY 0.838 6 0.043*

UCLA 0.812 6 0.136*

FL Model 0.889 6 0.036

*Significantly lower than FL model (P< .001).
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significantly better than that of any of the private models alone.

This suggests that the FL model was able to benefit from the advan-

tage of learning important institution-specific knowledge through

the FL aggregation paradigm, without requiring any individual

training site to “see” the full breadth of inputs.

Additionally, our results showed that the FL model performed

significantly better than any of the individual private models on the

held-out challenge dataset, suggesting that the model also attained

the expected advantages inherent in training with more data through

the FL aggregation method, even though the full dataset was not

seen at any single training site.

Our work does have limitations. In this work, we did not at-

tempt to address the potential for an inside actor (ie, 1 of the partici-

pating institutions) to attempt to recover the underlying patient data

through a model inversion attack on the trained weights shared dur-

ing federated learning. Future enhancements to the federated ap-

proach could include the addition of calibrated distortion to shared

model weights in order to suppress the potential for inversion. How-

ever, we believe the method we demonstrate in this paper signifi-

cantly better protects the privacy of patients than the current

standard of direct sharing of data. In addition, though model inver-

sion is a technical risk that cannot be ruled out, we empirically be-

lieve that the practical risk of inversion outside of crafted malintent

on the part of study designers to be low due to the weight averaging

scheme in place. Finally, we note that the sharing of trained model

weights is an accepted practice within healthcare,28,29 and, in the

worst case, our method is no less secure as only model weights are

ever transmitted.

Secondly, the task we used (prostate segmentation on T2-

weighted MRI) is relatively simple and all private models achieved

high performance on their own institutional datasets. Thus, we were

unable to demonstrate the expected benefit that an FL-trained model

would significantly outperform a single-site-trained model on that

single site’s data. In addition, because we used similarly sized private

datasets at each institution, we did not explore the potential in vary-

ing the federated model aggregation methodology, which could be

extended to differentially weight model weights from institutions

based on data quantity, quality, or other metrics. Thirdly, adding

additional institutions to the federation may present new challenges

in heterogeneity of imaging data quality, governance, intellectual

property, and model generalizability. In order to ensure that the FL

model performs well at each institution in a large federation, it may

be necessary in future work to explore adding an additional private

fine-tuning step at each institution, though care must be taken to

avoid losing generalizability through overfitting. This may require

the use of additional techniques, such as the Learning without For-

getting method.30

CONCLUSION

The power of federated learning was successfully demonstrated

across 3 academic institutions using real clinical prostate imaging

data. The federated model demonstrated improved performance

across both held-out test sets from each institution and an external

test set, validating the FL paradigm. This methodology could be ap-

plied to a wide variety of DL applications in medical image analysis

and merits further study to enable accelerated development of DL

models across institutions, enabling greater generalizability in clini-

cal use.
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