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The transcription factor Snail1, a key inducer of epithelial-mesenchymal transition (EMT),
plays a critical role in tumor metastasis. Its stability is strictly controlled by multiple
intracellular signal transduction pathways and the ubiquitin-proteasome system (UPS).
Increasing evidence indicates that methylation and acetylation of Snail1 also affects tumor
metastasis. More importantly, Snail1 is involved in tumor immunosuppression by inducing
chemokines and immunosuppressive cells into the tumor microenvironment (TME). In
addition, some immune checkpoints potentiate Snail1 expression, such as programmed
death ligand 1 (PD-L1) and T cell immunoglobulin 3 (TIM-3). This mini review highlights the
pathways and molecules involved in maintenance of Snail1 level and the significance of
Snail1 in tumor immune evasion. Due to the crucial role of EMT in tumor metastasis and
tumor immunosuppression, comprehensive understanding of Snail1 function may
contribute to the development of novel therapeutics for cancer.
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INTRODUCTION

Metastasis is one of the most prominent features of malignant tumors and is the leading cause of
death in tumor patients (1). Tumor metastasis is a multi-step process in which EMT has a crucial
regulatory role. During the process of EMT, epithelial cells lose their cell polarity and cell–cell
adhesion, and transit to quasi-mesenchymal cell states, thus increasing their migration and invasion
properties (2). Recent studies indicated that tumor progression and metastasis are closely related to
epigenetic modifications and the immune system. It was reported that immune checkpoint
molecules such as PD-L1 are involved in EMT regulation, while EMT can also induce
immunosuppression and immune evasion in tumors (3).

The Snail family of zinc finger transcription factors comprises three members in vertebrates,
Snail1 (Snail), Snail2 (Slug), Snail3 (Smuc) (4, 5). Snail1 and Snail2 down-regulate the expression of
many target proteins associated with EMT. Among them, the most significant one is E-cadherin (6).
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Due to the critical role of Snail1 in EMT, this mini review focuses
on how appropriate Snail1 levels are maintained in cells, with
emphasis on the role of epigenetic and UPS in the regulation of
Snail1. Furthermore, we also discuss the involvement of Snail1 in
tumor immune evasion, a role which has made it a promising
therapeutics target in tumor treatment.
STRUCTURAL AND FUNCTIONAL
CHARACTERISTICS OF SNAIL1

In all Snail family members, the amino terminal end contains a
highly conserved SNAG domain, which functions as a
transcriptional repressor domain (7). The fingers correspond to
the C2H2 type and bind to the upstream regulatory region of
target genes for gene specific transcriptional inhibition (8). The
central region of Snail2 includes the Slug domain, while Snail1
has two defined functional domains in this region: a regulatory
domain containing an Xpo1/CRM1 mediated nuclear export
signal (NES) (9) and a serine-rich domain involved in the
regulation of its stability (10) (Figure 1A).

Snail1, as a transcriptional repressor, is implicated in the
regulation of other tumor metastasis suppressors, such as the
epithelial marker E-cadherin (11). Previous studies reported that
SNAG domain of Snail1 couples on the CDH1 (which encodes E-
cadherin) promoter (12), and recruits histone deacetylase
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(HDAC). Subsequently, Snail1, HDAC1, HDAC2 and mSin3A
conjointly form a multi-molecular complex that further inhibits
the expression of E-cadherin (13). Furthermore, Snail1 interacts
with the H3K9 methyltransferase G9A or SUV39H1 and recruits
it to the CDH1 promoter for transcriptional inhibition in breast
cancer (14, 15), collectively resulting in the occurrence of EMT.
THE SIGNALING PATHWAYS INVOLVED
IN SNAIL1 EXPRESSION

The expression of Snail1 is regulated by many signaling pathways
both at the transcriptional and protein level (16, 17) (Figure 1B).
Physiologically, these signaling pathways control normal cell
morphology, proliferation, differentiation, and apoptosis.
However, abnormal activation of these signaling pathways
contribute to the initiation and progression of tumors activated
(18, 19).

TGF-b Pathway
The transforming growth factor-b (TGF-b) was described as an
inducer of EMT during the development of tumor (20).
Mechanistically, TGF-b binds to its receptor TbRII and TbRI,
which subsequently phosphorylates its downstream targets,
including members of the SMAD family of signal transducers,
SMAD2 and SMAD3 (21), forming a heterooligomeric complex
A

B

FIGURE 1 | Structure and signaling pathways of SNAIL1. (A)Architecture of SNAIL1 in human. Composite of the overall structure of Snail1 and Snail2, which shows
the relative positions of the SNAG domain, the zinc fingers (I–V), and the Slug-specific boxes, NES domain and serine-rich domain. (B)The molecular signaling
pathways of SNAIL1. Snail1 is regulated by several signaling pathways that promote its expression. From left to right: MAPK, Shh, Notch, Wnt, TGF-b, PI3K-AKT,
and NF-kB signaling pathway.
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with SMAD4 (22). Then this SMAD complex translocates to the
nucleus and functions as a transcription factor to regulate the
transcription of target genes such as Snail1 in human tumors (16,
21, 23–25).

PI3K-Akt Pathway
The phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway
is hyperactivated or altered in many cancer types (26–28) and
regulates a broad range of cellular processes (29, 30). It is well
known that Akt can phosphorylate and inhibit GSK-3b activity,
subsequently suppressing the GSK-3b-mediated phosphorylation
of Snail1 and facilitating its stabilization and nuclear localization,
which ultimately promotes EMT widely presenting in a variety of
tumors (31–36). In addition to GSK-3b, PI3K-Akt also activates
mTOR, thereby potentiating Snail1 expression in gastric, breast,
pancreatic and ovarian cancer (37–40). Furthermore, some
studies also indicate TGF-b regulates Snail1 expression via the
Akt/GSK-3b signaling pathway in osteosarcoma and ovarian
clear cell carcinoma (41, 42).

Wnt Pathway
In the presence of Wnt signaling, the destruction complex (APC,
Dvl, Axin, GSK-3b, CK1) reduces the phosphorylation and
ubiquitination of b-catenin (43).Thus, levels of cytoplasmic
b-catenin rise, which translocates to the nucleus and induces
transcription of pro-invasive factors (44–46). Moreover,
b-catenin/T-cell factor (TCF) transcriptional complex regulates
Snail1 via Axin2-mediated nuclear export of GSK-3b in breast
cancer (47).

Notch Pathway
Notch signaling is generated through the interaction between Notch
receptors and ligands such as Jagged-2 (JAG2) (48). Notch is
released into the cytoplasm by intracellular segment (NICD) after
being sheared three times (49), and then enters the nucleus to bind
to the Snail1 promoter, directly stimulating transcription (50).

Shh Pathway
Sonic Hedgehog (Shh) is a lipid-modified secreted protein that
couples to Patched receptor (51). In the presence of Hedgehog
signaling, Smoothened is relieved from Patched-mediated
suppression due to the Hedgehog-dependent internalization of
Patched, which leads to inactivation of SUFU for the stabilization
and nuclear accumulation of Gli family members (51, 52). So far,
Shh-mediatedGli1 activationwas reported to induce the expression
of Snail1 in a variety of cancers, such as breast, skin, ovarian,
pancreatic, neuroendocrine cancer and basal cell carcinoma (45,
53–57).

MAPK Pathway
The Ras/Raf/MEK/ERK pathway is the most important signaling
cascade among all MAPK signal (58). Once activated, ERK
translocates to the nucleus, binds to and regulates the activity
of the transcription factor Elk-1 through phosphorylation (58).
Of note, activation of Elk1 facilitates recruitment of
phosphorylated mitogen and stress activated protein kinase 1
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(MSK1), which in turn enhances histone H3 acetylation and
phosphorylation (serine 10) of Snail1 promoter, ultimately
promoting the transcription of Snail1 (59). Furthermore
hepatocyte growth factor (HGF) could induce transcription of
Snail1 by activating MAPK signaling pathway in liver
cancer (60).

NF-kB Pathway
The over-activation of nuclear factor-kB (NF-kB) with a role in
the inflammatory response, immune response and cell apoptosis,
is associated with multifarious tumors (61). Previous studies have
demonstrated that the activation of the NF-kB pathway blocked
the degradation and promoted the transcription of Snail1 (62),
subsequently facilitating the migration and invasion in breast,
colorectal, gastric cancers, cholangiocarcinoma and malignant
human keratinocyte (63–66).
REGULATION OF SNAIL1 EXPRESSION
BY UBIQUITIN-PROTEASOME STSTEM

Ubiquitin mediates protein degradation via binding to lysine
residues of the substrate proteins (67). It is highly conserved in
eukaryotic cells and can also function as a signaling molecule to
modulate protein function (68). Its eight residues includingM1,K6,
K11, K27, K29, K33, K48, and K63 are used as attachment sites to
form polyubiquitin chains (69). Themost abundant chain types are
K48, which are usually degraded by the 26S proteasome (68).
Degradation of SNAIL1 by UPS
Snail1 is an extremely unstable protein, b-TrCP1 was first
reported to be involved in Snail1 ubiquitination via GSK-3b
mediated phosphorylation of S96 and S100 residues on Snail1
(10). In contrast, Snail1 is ubiquitinated independently of GSK-
3b phosphorylation by FBXL14 through K98, 137, and 146
residues (70). Interestingly, miR-27a can directly down-
regulate the expression of FBXO45, resulting in reduced Snail1
degradation (71). In breast cancer, the S11 residue of Snail1 is
phosphorylated by PKD1, which promotes the ubiquitination
and degradation of Snail1 by FBXO11 (72, 73), while FBXO22
depends on GSK-3b (74). In addition, it has been reported that
PPIL2, SPSB3 and TRIM21 are involved in ubiquitination and
degradation of Snail1 (75–77). In gastric cancer, phosphorylation
of Snail1 is required for the F-box domain of FBXO31 to
function (78), FBXW7 inhibits metastasis in part by binding to
Snail1 (79) and FBXL5 promotes poly-ubiquitination of Snail1 at
K85, K146 and K234 residues (80, 81). In Non-small cell lung
cancer, both b-TrCP2 and FBXW7 are absolutely implicated in
ubiquitination and degradation of Snail1 (82, 83). In cervical
cancer, HECTD1-mediated degradation of Snail1 occurs in the
cytoplasm rather than in the nucleus (84). Finally, other E3
ligases such as TRIM50 and CHIP, are also involved in regulation
of Snail1 in hepatocarcinoma and ovarian cancer, respectively
(85, 86).

So far, some molecular targets have been found based on the
above E3 ligases, which are potential therapeutic targets.
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LINC00511 and EBV-miR-Bart10-3p both inhibit b-TrCP1 and
prevent Snail1 degradation in triple negative breast cancer and
nasopharyngeal carcinoma, respectively (87, 88). In non-small
cell lung cancer, the expression of the b-TrCP2 is inhibited by
miR-106b-25 (83), while FBXW7 agonist (Oridonin) contributes
to the degradation of Snail1 (89). In hepatocellular carcinoma,
miR-1306-3p directly targets FBXL5 to suppress Snail1
degradation (90). Likewise, miR-27a immediately down-regulate
the expression of FBXO45 (91). Particularly, BRD4 identifies
acetylated K146 and K187 on Snail1 in an acetylation-dependent
manner to prevent its degradation by FBXL14 and b-TrCP1 in
gastric cancer (92). Inversely, Metformin is beneficial to the
expression of LKB1, thereby strengthening the capacity of
FBXL14 in pancreatic cancer (93) (Figure 2A).

Stabilizing the Expression of
SNAIL1 by DUBs
Ubiquitination is a reversible process and ubiquitin moieties are
removed from polypeptides by deubiquitinases (DUBs) (94).
Currently, plentiful DUBs are involved in the occurrence,
progression, and drug resistance of cancer (95–97). In
esophageal squamous cell carcinoma, OTUB1 inhibits the
ubiquitination and degradation of SMAD2/3, leading to
strengthen TGF-b signaling and stabilization of Snail1
expression (98, 99). Interestingly, USP26 is a specific
deubiquitinase of Snail1 and significantly increases its stability
by combining with the zinc finger domain at the Snail1, an
essential region for its stability and nuclear localization (100,
101). In addition, EIF3H and PSMD14 have also been found to
be involved in Snail1 deubiquitination (102, 103). In breast
cancer, DUB3 couples on SNAG domain of Snail1 and inhibits
ubiquitination of Snail1 mediated by FBXL14 and b-TrCP1
(104). Analogously, CSN2 removes the ubiquitination of Snail1
via disrupting its binding to GSK-3b and b-TrCP (62). In lung
cancer, CSN5 and USP37 significantly stabilize the expression of
Snail1. More importantly, USP37 is closely associated with
increased mortality and metastasis rates (105, 106). In
glioblastoma, USP3 also hydrolyzes FBXO11 or FBXW1-
induced polyubiquitination chain on Snail1, resulting in
increased aggressiveness and tumorigenicity (107). Similarly,
high expression of OTUB1 in gliomas is associated with poor
prognosis (108). In colorectal cancer, up-regulation of USP47 is
mediated by SOX9, leading to an increase in Snail1
deubiquitination under hypoxia condition (109). In gastric
cancer, USP29 enhanced the interaction between Snail1 and
SCP1, causing both dephosphorylation and deubiquitination of
Snail1 (110).
EPIGENETIC MODIFICATION IN
SNAIL1 REGULATION

Epigenetic abnormalities have been linked to many human
diseases, including cancer (111, 112). Particularly, methylation
and acetylation are involved in Snail1-mediated tumor
metastasis (Figure 2A).
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Methylation of SNAIL1
DNA methylation is an important mechanism of epigenetic gene
regulation, which primarily occurs at CpG dinucleotide within
gene promoters by a covalent modification of cytosine residues
via DNA methyltransferase (DNMT) enzymes (113). It was
previously reported that DNA methylation in the first intron
region of Snail1 was negatively correlated with its transcription
level, but its expression was increased when treated with DNMT
inhibitor 5-Aza-2 ‘-deoxycytidine in trophoblast cells (114).
Uniformly, the chromatin remodeling factor ARID2 represses
EMT of hepatocellular carcinoma by recruiting DNMT1 to Snail1
promoter, which increases promoter methylation and inhibits its
transcription (115). Recently, m6A RNA methylation is an
emerging epigenetic modification, which has been associated
with the progression of several cancers (116, 117). Interestingly,
m6A is methylated by Methyltransferase-like 3 (METTL3) to
accelerate Snail1 expression in HeLa cells (118), which is
equivalent to indirect regulation of Snail1 by methylation.

Acetylation of SNAIL1
Protein acetylation was originally discovered on histones in the
nucleus and involved in gene transcription (119). Subsequently,
non-histone proteins were increasingly found to also undergo
acetylation (120). In nasopharyngeal carcinoma, the glucose
metabolizing enzyme PDHE1a facilitates H3K9 acetylation on
the Snail1 promoter to enhance cell motility and thereby drive
cancer metastasis (121). Inversely, HOPX mediates epigenetic
silencing of Snail1 transcription through the enhancement of
histone H3K9 deacetylation in the Snail1 promoter (122). In lung
cancer cells, p300 acetylates Snail1 at K187 (123), and CREB-
binding protein (CBP) interacts with and acetylates Snail1 at
K146 and K187, which prevents formation of the repressor
complex (124). As mentioned above, BRD4 recognizes
acetylated K146 and K187 on Snail1 to prevent it from being
degraded by E3 ligases in gastric cancer (92).

At present, histone deacetylase inhibitors (HDACIs) are now
emerging as a new class of anticancer agents (125, 126). However,
HDACIs stabilize surprisingly Snail1 expression through several
mechanisms in hepatocellular carcinoma: HDACIs up-regulate
Snail1 at the transcriptional level by promoting SMAD2/3
phosphorylation and nuclear translocation (127). Posteriorly,
HDACIs regulate the stabilization of Snail1 via up-regulating the
expression of CSN2, which interacts with Snail1 to expose its
acetylation site, leading to inhibit degradation of Snail1 via
preventing its phosphorylation and ubiquitination (127).
Coincidentally, this phenomenon was also observed in CNE2
cells (128). Accordingly, more cautions should be exercised in the
usage ofmedicines such asHDACIs, as theymay increase the risk of
tumor metastasis.

BIDIRECTIONAL REGULATION OF SNAIL1
AND TUMOR IMMUNE ENVIRONMENT IN
TUMOR PROGRESSION

Tumorigenesis and progression are influenced by tumor
microenvironment and controlled by the host immune system
November 2021 | Volume 12 | Article 724200
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(129). In addition to malignant cells, adipocytes, fibroblasts, tumor
vasculature, lymphocytes, dendritic cells, and cancer-associated
fibroblasts are present in the tumor microenvironment (130). The
last decade has witnessed dramatic advances in cancer treatment
through immunotherapy such as immune checkpoints inhibitors,
which are the most popular and promising treatment at present
(131). Recently, the bidirectional regulation of immune
checkpoints and EMT was uncovered via Snail1 (Figure 2B).

Immunosuppressive Checkpoints Regulate
SNAIL1 Expression
So far, two immune checkpoint proteins PD-L1 and TIM-3 have
been found to regulate Snail1 expression. PD-L1, which
accumulates to high level on the surface of some tumor cells,
Frontiers in Immunology | www.frontiersin.org 5
can bind to PD-1 and induce T cells exhaustion, thereby mediating
tumor immune escape and potentiating tumor progression (132,
133). Histochemical staining of 477 lung adenocarcinoma
specimens showed a positive correlation between the expression
of PD-L1 and Snail1 (134). Two studies showed that PD-L1 can
inhibit GSK3b activity via binding to tyrosine phosphatase PTP1B
or integrin b4 to activate p38-MAPK or Akt activity, respectively.
Through this mechanism, PD-L1 can inhibit GSK3b-mediated
phosphorylation, ubiquitination, and degradation of Snail1,
thereby promoting EMT and the metastatic potential of breast
cancer and cervical cancer (135, 136).

TIM-3 contains an immunoglobulin and a mucin-like
domain and was originally identified as a receptor expressed
on Th1 cells (137). The silencing of TIM-3 was accompanied by a
A

B

FIGURE 2 | Multifaceted regulation of SNAIL1. (A) Ubiquitination, methylation, and acetylation regulate the expression of SNAIL1. The ubiquitin E3 ligases in the blue
circle negatively regulate the expression of Snail1. Small molecule compounds or drugs directly or indirectly act on E3 ligase to promote or inhibit the expression of
Snail1. Molecules in the green and pink circles participate in methylation and acetylation of Snail1, respectively. (B) Bidirectional regulation of SNAIL1 and tumor
immune environment. Snail1 recruits immunosuppressive cells (including Treg, MDSCs, M2 macrophages, neutrophils, and Treg-like CD4+CD25- cells) to participate
in the formation of tumor microenvironment via cytokines, chemokines and their receptors. In addition, immunosuppressive checkpoints PD-L1 and TIM-3 can
regulate the expression of Snail1 through different molecular pathways.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tang et al. Snail1 in EMT and Tumor Immunity
decrease in Snail1 expression, indicating that TIM-3 may be
involved in metastasis of osteosarcoma and hepatocellular
carcinoma (138–140). Due to the lack of research in this
aspect, it is only known that TIM-3 induces EMT to stimulate
the metastasis of esophageal squamous cell carcinoma at least
partly through the Akt/GSK-3b/Snail1 signaling pathway (141).

The role of SNAIL1 in Tumor
Immune Evasion
Increasing evidence suggests that Snail1 is also involved in immune
escape from tumors, which can accelerate cancer metastasis.
Previous research has reported the quantity of tumor-specific
infiltrating lymphocytes and the systemic immune response
increased via silencing Snail1 in melanoma (142), suggesting that
Snail1 is visibly involved in tumor immunity. Firstly, Snail1 recruits
CD4+FOXP3+Treg cells into the tumor microenvironment
through C-C motif chemokine ligand 2 (CCL2) (143). In a
mouse model of lung cancer, Snail1 was also found to increase
intratumoral C-X-C chemokine ligand 2 (CXCL2) secretion and
neutrophil infiltration (144). In ovarian cancer, Snail1 accelerates
cancer progression via up-regulation of CXCL1 and CXCL2 as well
as recruitment of myeloid-derived suppressor cells (MDSCs) (145),
which plays a vital role in cancer immunosuppression, tumor
angiogenesis, drug resistance and promotion of tumor metastasis
(146, 147). In cholangiocarcinoma, Snail1 appears to produce
immunosuppressive natural T-regulatory like CD4+CD25- cells,
in part by mediating the T regulatory-inducible cytokines such as
TGF-b1 and IL-2 (148). In addition, Snail1 induces M2
polarization of tumor-associated macrophages and facilitates
tumor growth in head and neck cancer (149). A recent study
showed that the high expression of Snail1 in mesenchymal tumor
cell induces the expression of several cytokines (CD73, CSF1,
SPP1), which collectively expedites the assembly of tumor
immunosuppressive microenvironments (2). All these lines of
evidence strongly confirm that Snail1 effectively promotes tumor
cells to secrete chemokines or cytokines, which recruits various
immunosuppressive cells to the tumor microenvironment and
provides an appropriate environment for tumor metastasis.

SUMMARY AND FUTURE PERSPECTIVES

Physiologically, Snail1 participates in embryo implantation and
initiation,woundhealing, andcell survival (8, 150, 151). Inaddition,
as we discussed above, Snail1 is a crucial target involved in tumor
metastasis and immune escape, and can endow tumor cells with the
characteristics of stemcells (5).What’smore, Snail1 overexpression
was found to be a potential risk factor of neoplasm recurrence in
Frontiers in Immunology | www.frontiersin.org 6
various cancers, such as cutaneous squamous cell carcinoma, clear
cell renal cell carcinoma, ameloblastic carcinoma, non-muscle-
invasive bladder, colon and non-small-cell lung cancer (152–157).
Consistent with tumor relapse, Snail1 overexpression also indicates
poor prognosis in several types of cancers (158–161). Taken
together, Snail1 can function as a biomarker to predict tumor
relapse and patient prognosis.

Snail1 also hold critical role in cancer treatment, increasing
evidence suggested that Snail1 is implicated in chemotherapy and
radiotherapy resistance. For instance, silencing Snail1 was found
to be beneficial in enhancing the sensitivity of gemcitabine
therapy in pancreatic ductal carcinoma (162, 163) and
increasing radiosensitivity in hypopharyngeal carcinoma (164).
Furthermore, Snail1 contributes to the resistance of glioblastoma
cells to temozolomide via the IL-6-STAT3-Snail1 pathway (165)
and colorectal cancer cells to 5-fluorouracil by facilitating the
expression of the ABCB1 resistance gene (166). In addition,
Snail1 overexpression could induce tumor stem cell-like
phenotype and generate chemotherapy resistance to oxaliplatin
in colorectal cancer (167). Collectively, chemotherapy or
radiotherapy combined with Snail1 inhibitors such as CYD19
(168), GN-25 (169) and Co (III)-Ebox (170) may be a promising
therapeutic approach to combat tumors. At present, it has not yet
been reported whether Snail1 is involved in immune checkpoint
blockade. Due to knockdown of Snail1 decreases the infiltration
of immunosuppressive cells in the tumor microenvironment, it is
possible targeting Snail1 could enhance the anti-tumor effect.
Accordingly, further development of novel Snail1 inhibitors and
investigation of the safety of these compounds is urgently need for
conquering cancer in future.
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