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Abstract: Spot blotch (SB) is a fungal disease that threatens wheat yield and quality. Presently, the
molecular mechanism against SB is unclear. In this study, the resistant variety Zhenkang iron shell
wheat (Yunmai 0030) and susceptible variety Lincang iron shell wheat (Yunmai 0608) were selected
by identifying SB of Yunnan iron shell wheat. The metabolome and transcriptome of leaves of
two varieties at different positions were detected using the systemic acquired resistance theory to
investigate the molecular and physiological changes in Yunnan iron shell wheat under SB stress.
We found that the genes and metabolites related to benzoxazinoid biosynthesis and arginine and
proline metabolism were highly enriched after infection with leaf blight. The enriched differential
metabolites mainly included phenolic acids, alkaloids, and flavonoids. We further observed that
DIBOA- and DIMBOA-glucoside positively affected iron shell wheat resistance to leaf blight and
proline and its derivatives were important for plant self-defense. Furthermore, we confirmed that the
related metabolites in benzoxazinoid biosynthesis and arginine and proline metabolism positively
affected Triticum aestivum ssp. resistance to SB. This study provides new insights into the dynamic
physiological changes of wheat in response to SB, helps us better understand the mechanism of
resistance to SB, and contributes to the breeding and utilization of resistant varieties.

Keywords: Triticum aestivum ssp.; spot blotch; metabolome; transcriptome; benzoxazinoid biosynthesis

1. Introduction

Triticum aestivum ssp. yunnanense King is a unique hexaploid wheat germplasm
resource in Yunnan, China and is one of the three common wheat subspecies unique to
China [1–3]. It is mainly planted in the Lincang, Baoshan, and Simao areas [4,5]. With
excellent agronomic traits, rich genetic variation, and good disease resistance, T. aestivum
ssp. is an important genetic resource for breeding new wheat disease-resistant varieties
and a bridge germplasm resource for exploring the origin and evolution of cultivated
hexaploid wheat.

Spot blotch (SB), caused by Biopolaris sorokiniana, is a devastating disease of wheat [6]
that generally occurs upward from the old leaves at the base of the plant. It is difficult to
control SB effectively, owing to its strong genetic diversity and regular sexual recombination
in the wheat-growing season [7–10]. The disease severity is affected by management, soil,
planting density, and weather [11]. The occurrence of SB seriously affects the normal growth
and development of wheat, leads to early wheat maturity, and seriously affects the quality
of grain [12–14]. Recently, SB occurrence has become increasingly frequent and the coverage
areas and degrees of damage have been expanding [15,16]. The scope of occurrence in
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China has spread from frequent areas in the northeast and northwest to China’s main
wheat-producing areas in the middle and lower reaches of the Yangtze River, Huang Huai
Hai, and the southwest; the highest grain loss can be as high as 50% [17,18]. Globally,
the occurrence of SB covers wheat-growing areas worldwide, such as the Middle East,
Europe, North America, South America, Australia, and Southeast Asian countries [19–22].
SB has evolved resistance to almost all fungicides, including azole fungicides and succinate
dehydrogenase inhibitors [23]; therefore, it is urgent to study the wheat’s relevant resistance
mechanism to SB and cultivate SB-resistant varieties.

Plants possess a defense mechanism that is induced after being infected by pathogens.
This defense is usually not against a single pathogen but a wide range of microorganisms.
Therefore, different plants have evolved the same defense effect and have broad-spectrum
resistance to pathogens [24,25]. In a recent study, Sebold et al., proved for the first time that
systemic immune signals can improve the resistance of plant system tissues to pathogens.
Immune signals from infected sites spread to other sites to resist pathogen infection and
this phenomenon is called systemic induced sensitivity [26]. As the final product of the
cell regulation process, the expression level of metabolites can be regarded as the final
response of the biological system to genetic or environmental changes. They directly
participate in the response of plants to the external environment and affect or regulate
gene transcription, protein expression, and activity [27]. For example, chitinase produced
after plant infection by pathogenic bacteria is an anti-fungal protein that inhibits spore
germination and the mycelial growth of pathogenic fungi to activate the defense genes in
the entire plant, developing plant resistance to biological stress. Flavonoid, a secondary
metabolite, can kill fungal pathogens that invade plants and terpenoids can kill various
human invasive eubacterial and viral pathogens [28].

In addition, Benzoxazinoid class compounds (DIBOA-glucoside and DIMBOA-glucoside),
mainly synthesized by gramineous plants, play an important role in resistance against
biological and abiotic stresses. Therefore, the improvement of the economic importance
of SB is closely related to the improvement of wheat varieties and the promotion of im-
proved varieties. Some studies have found evidence that links genetic resistance to SB
with multiple effector genes [29]. Presently, only four SB resistance genes, namely Sb1 [30],
Sb2 [31], Sb3 [32], and Sb4 [33], have been reported. In this study, we analyzed the corre-
lation between different metabolites and genes among susceptible and resistant strains
and the resistance mechanism of iron shell wheat to leaf blight by evaluating the disease
resistance of Triticum aestivum ssp. yunnanense, a unique wheat resource in Yunnan, and
excavating excellent disease resistance genes. We also analyzed the metabolic pathway or
network of Triticum aestivum infected with SB to reveal the response mechanism of relevant
metabolites and genes and to explore the resistance mechanism of Triticum aestivum to SB,
thereby providing an important reference for broadening the cultivation, development, and
utilization of resistant wheat varieties.

2. Results
2.1. Detection Results and Analysis of Widely Targeted Metabolome
2.1.1. Quality Control of Widely Targeted Metabolome Data

The overlapping display analysis of the total ion flow detected and analyzed by
mass spectrometry of quality control samples (QC) revealed high overlap in positive and
negative ion modes (Figure 1a,b). From the figures, it can be observed that the experimental
technology had high repeatability and overlap, providing a guarantee for the authenticity
and reliability of the data. According to the PCA score Figure 1c) and sample correlation
diagrams (Figure 1d), the Pearson correlation coefficient in the four groups of samples
was r > 0.8, with good overall repeatability and high intragroup correlation. In the PCA
analysis, PC1 and PC2 were 34.67% and 15.23%, respectively, and significant differences
in metabolites were observed among groups, with L-G and N-G being the most apparent.
The metabolome data in this study met the research needs and are true and reliable.
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Figure 1. Tic overlap diagram of quality control (QC) sample mass spectrometry detection: (a) pos-
itive ion mode, (b) negative ion mode, (c) principal component analysis (PCA) score diagram of all 
samples, and (d) correlation diagram between samples. Note: PC1 represents the first principal com-
ponent, PC2 represents the second principal component, and the percentage represents the inter-
pretation rate of the principal component to the data set; each point in the figure represents a sam-
ple, and the samples of the same group are represented by the same color. 
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The metabolites at two positions of the two strains were detected qualitatively and 

quantitatively by the widely targeted metabolome determination method. The results 
showed that (Table 1) 1078 metabolites were detected, including 95 amino acids and their 
derivatives, 178 phenolic acids, 67 nucleotides and their derivatives, 234 flavonoids, 30 
lignans and coumarins, 3 blends, 111 alkaloids, 22 terpenoids, 84 organic acids, 154 lipids, 
and 100 others. Furthermore, from the clustered heat map of sample metabolites Supple-
mentary Figure S1), it was observed that there were significant differences in metabolite 
contents between susceptible and resistant strains and between diseased and normal parts 
of the same plant. Furthermore, before the differential analysis, the orthogonal partial 
least squares discriminant analysis (OPLS−DA) score diagram (Supplementary Figure S2) 
and OPLS−DAs−da verification diagram (Supplementary Figure S3) of samples from each 
group showed significant differences between the groups, especially comparing the same 
part of the susceptible and resistant strains. Q2 was greater than 0.85 and most of the 
p−values of the model were less than 0.05, indicating that the prediction ability of the 
model was better. 
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Figure 1. Tic overlap diagram of quality control (QC) sample mass spectrometry detection: (a) positive
ion mode, (b) negative ion mode, (c) principal component analysis (PCA) score diagram of all samples,
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and (d) correlation diagram between samples. Note: PC1 represents the first principal component,
PC2 represents the second principal component, and the percentage represents the interpretation
rate of the principal component to the data set; each point in the figure represents a sample, and the
samples of the same group are represented by the same color.

2.1.2. Qualitative and Quantitative Analysis of Metabolome

The metabolites at two positions of the two strains were detected qualitatively and
quantitatively by the widely targeted metabolome determination method. The results
showed that (Table 1) 1078 metabolites were detected, including 95 amino acids and their
derivatives, 178 phenolic acids, 67 nucleotides and their derivatives, 234 flavonoids, 30 lig-
nans and coumarins, 3 blends, 111 alkaloids, 22 terpenoids, 84 organic acids, 154 lipids,
and 100 others. Furthermore, from the clustered heat map of sample metabolites Supple-
mentary Figure S1), it was observed that there were significant differences in metabolite
contents between susceptible and resistant strains and between diseased and normal parts
of the same plant. Furthermore, before the differential analysis, the orthogonal partial least
squares discriminant analysis (OPLS-DA) score diagram (Supplementary Figure S2) and
OPLS-DAs-da verification diagram (Supplementary Figure S3) of samples from each group
showed significant differences between the groups, especially comparing the same part of
the susceptible and resistant strains. Q2 was greater than 0.85 and most of the p-values of
the model were less than 0.05, indicating that the prediction ability of the model was better.

Table 1. Types and quantities of metabolites.

Species of Metabolites Number of Metabolites

amino acids and their derivatives 95
phenolic acids 178

nucleotides and their derivatives 67
flavone 234

lignans and coumarins 30
blending quality 3

alkaloid 111
terpenoids 22

organic acid 84
lipid 154
other 100
total: 1078

2.1.3. Differential Analysis of Metabolic Profiles between Resistant and Susceptible Strains

Based on the OPLS-DA results, the variable importance projection (VIP) of the OPLS-DA
model was analyzed using multiple variables, and the metabolites with fold change≥ 2 or≤0.5
and VIP≥ 1 were selected as the metabolites to be compared between groups. Consequently, a
total of 437 differential metabolites were detected. The volcanic maps of differential metabo-
lites among the groups (Figure 2a–d) showed the significance of differential expressions be-
tween groups. The results showed that there were 165 differential metabolites (94 upregu-
lated and 71 downregulated) between L-K and L-G; 283 differential metabolites (144 upregu-
lated, 139 downregulated) between N-G and L-G; 231 differential metabolites (91 upregulated,
140 downregulated) between N-K and L-K; and 18 differential metabolites (8 upregulated,
10 downregulated) between N-K and N-G.

To study Triticale’s resistance to SB, we focused on differential metabolites as they
related to L-K vs. L-G, N-G vs. L-G, and N-K vs. L-K. The top 20 differential metabo-
lites among the groups are shown in Supplementary Figure S4. Among the 165 differ-
ential metabolites between L-K and L-G, the first three were phenolic acids, alkaloids,
and flavonoids. The two most significantly upregulated differential metabolites were L-
cysteine and acetate, with log2fc values of 11.2 and 10.2, respectively; nine of the ten most
significantly downregulated differential metabolites were phenolic acids, including: 1,3-O-
di-p-coumaroylglycerol, 1-O-feruloyl-3-Op-coumaroylglycerol, and 1-feruloyl-sn-glycerol.
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Among the 283 differential metabolites in the N-G vs. L-G combination, flavonoids, al-
kaloids, and phenolic acids showed the most significant differences. The two most sig-
nificantly upregulated metabolites were 3,4-dihydroxy-L-phenylalanine (levodopa) and
7-O-methylnaringenin, and the most significantly downregulated metabolite was Coix
(MBOA). In addition, three terpenoids—27,28-dicarboxyl ursolic acid, asiatic acid, and
geniposide—were detected in L-K vs. L-G and N-G vs. L-G. Among the 231 differential
metabolites of N-K vs. L-K were upregulated substances such as 3-indolepropionic acid
and L-tryptophan and downregulated substances such as acetate (2-oxo-3h-1,3-benzoxazol-
6-y1), L-cysteine, MBOA, and DIMBOA; most of the differential metabolites belonged to
flavonoids, alkaloids, and phenolic acids. Eight of the top ten metabolites downregulated
in N-G vs. L-G and N-K vs. L-K are similar.
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Figure 2. Differential metabolite volcano maps: (a) L-K vs. L-G, (b) N-G vs. L-G, (c) N-K vs. L-K, and
(d) N-K vs. N-G. Each point in the volcano map represents a metabolite, in which the green points
represent downregulated differential metabolites, the red points represent upregulated differential
metabolites, and the gray points represent the detected but insignificant metabolites. The abscissa
represents the logarithm (log2FC) of the quantitative difference multiples of a metabolite in two
samples. The greater the absolute value of the abscissa the greater the differential expression.
(e) Differental metabolite K-means diagram, (f) Venn diagram, wherein each circle represents a
comparison group. The number of circles and overlapping parts represents the number of common
differential metabolites between the comparison groups and the number without overlapping parts
represents the number of unique differential metabolites in the comparison group.
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The Venn diagram (Figure 2f) demonstrates that L-K vs. L-G, N-G vs. L-G, and N-K vs. L-K
had 57, 68, and 67 specific differential metabolites, respectively. Therefore, we speculated
that the metabolites closely related to the resistance of Triticum aestivum to SB exist in 19 dif-
ferential metabolites shared by the three combinations such as 4-acetylaminobutyric acid
and 2,4-dihydroxy-1,4-benzoxazine-3(4H)-ketoglucoside (DIBOA glucoside). The relative
contents of all differential metabolites identified according to the screening criteria in all
grouping comparisons were standardized by the Z-score and, further, the changed trend
results of nine differential metabolites were obtained after K-means cluster analysis. The
classification of metabolites in each cluster is shown in Figure 2e (Supplementary Table S1).
The results showed that the contents of metabolites in clusters one, six, and eight were
higher than those in L-G, indicating that metabolites such as DIMBOA and o-aminobenzoic
acid showed a downward trend in susceptible plants when infected by SB. In contrast,
the content of metabolites in cluster nine L-G was significantly higher than that in other
groups and the content of metabolites showed an upward trend in susceptible plants such
as indole and trans-4-hydroxy-l-proline*.

2.1.4. Enrichment Analysis of Differential Metabolite KEGG Pathway after SB Infection

The enrichment analysis of the KEGG pathway was conducted according to the
metabolic results of poor foreign bodies. If p-value ≤ 0.05, the pathway is enriched and
the annotation results are significant differences. Figure 3 shows the first 20 pathways
enriched in the three combinations. A total of 54 metabolic channels were enriched in
L-K vs. L-G, of which only arginine and proline metabolism were significantly different.
Seven metabolites (three organic acids and four phenolic amines) were enriched in this
pathway. Metabolites such as agmatine, p-coumaroylagmatine and N-feruloylagmatine,
N-acetylputrescine γ- organic acids, and 4-guanidine butyric acid were significantly up-
regulated, while 4-acetylaminobutyric acid was significantly downregulated. N-G vs. L-G
involved a total of 63 metabolic pathways, including 4 metabolic pathways, namely peni-
cillin and cephalosporin biosynthesis, benzoxazinoid biosynthesis, arginine and proline
metabolism, and tryptophan metabolism, with significant differences. The nine metabolites
involved in arginine and proline metabolism were upregulated, except γ- aminobutyric
acid, which had five other upregulated metabolites, similar to those in L-K vs. L-G, and
four metabolites, p-coumaroylputrescine, n-feroylputrescine, 4-acetamidobutyric acid,
and trans-4-hydroxy-l-proline*. The metabolites that changed in this pathway mainly
comprised alkaloids and organic acids. Three different metabolites were enriched in the
biosynthesis of benzoxazocine; indole was upregulated and DIBOA and DIMBOA were
downregulated. N-k vs. L-K co-annotation enriched 71 metabolic pathways, including 2
with p-value ≤ 0.05, namely indole alkaloid biosynthesis and benzoxazinone biosynthesis.

2.2. Transcriptome Test Results and Analysis
2.2.1. Assembly Notes

RNA-seq was performed on four groups of samples. Clean reads (163.17 GB) were
obtained and the clean data of each sample reached 12 GB. The error rate (overall sequencing
error rate), Q20, and Q30 values were <0.03%, >97%, and >93%, respectively. The average
proportion of GC was 53.23%. The overall data show that the sequencing quality is
high, which meets the requirements of the next analysis. The correlation analysis of
gene expression levels between samples shows that the samples have high similarity in
the same group, ensuring the reliability of subsequent differential gene analysis. PCA
analyzed the gene expression differences among 12 samples (Figure 4a), which showed
that the significant difference between susceptible and uninfected plants was obtained
from PC1 (28.48%), while the difference between varieties was primarily obtained from
PC2 (18.43%). According to the correlation heat map between samples (Figure 4b), the
Pearson correlation coefficient among L-K, L-G, and N-G samples was >0.8, indicating that
the repeatability between samples was high and met the research requirements. The genes
detected in this experiment were annotated in GO, KEGG, KOG, NR, Pfam, Swiss port, and
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tremble databases, and 97971, 69484, 102341, 131395, 7370, 81729, and 134881 genes were
annotated, respectively.
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The gene differences among the four comparison groups are shown in Figure 4c. A
total of 2497 (1721 downregulated and 776 upregulated), 15212 (7962 downregulated and
7250 upregulated), 9695 (4430 downregulated and 5265 upregulated), and 1039 (498 down-
regulated and 541 upregulated) differential genes were observed in L-K vs. L-G, N-G
vs. L-G, N-K vs. L-K, and N-K vs. N-G, respectively. The gene expression density map
shows the change trend of gene abundance with the expression amount in 12 samples. The
logarithm value that clearly reflects the gene expression amount (fpkm) in the sample is
concentrated between −2 to 2 (Figure 4c).

The Venn diagram analysis (Figure 4e) shows the number of common differential
and unique genes between different combinations. For example, there were 64 common
differential genes in N-G vs. L-G, L-K vs. L-G, N-K -vs. L-K, and -N-K vs. N-G, of which
7950, 836, 2557, and 268 specific differential genes were observed in N-G vs. L-G, L-K vs.
L-G, N-K vs. L-K, and N-k vs. N-G, respectively.

2.2.2. Differential Genes and GO and KEGG Enrichment Analysis

The GO analysis of transcriptome showed 27 items related to biological processes,
among which cellular process, metabolic process, response to stimulation, and biological
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regulation were the most important items. There were 18 items related to cell composition,
among which GO items are most significantly enriched in cells, cell parts, organelles, and
membranes; thirteen GO items related to molecular function were identified, of which,
the contribution of binding and catalytic activity was the largest. GO enrichment and
hierarchical analysis were carried out on the differential genes of each combination and
50 GO terms with the lowest Q value in the enrichment analysis results were selected to
draw the column diagram of enrichment items (Figure 5a–c). The results showed that
these differential genes were mainly enriched in photosynthesis (i.e., light system I\II,
daylighting and light reaction), the biosynthesis process of phenylpropane, the activity of
oxidoreductase with different functions, chlorophyll-binding, organic acid transport, signal
transduction (i.e., kinase signal, phosphorylation), and plant hormone (jasmonic acid).
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The KEGG enrichment analysis results showed that a total of 149 KEGG pathways
were annotated, including 10, 29, 21, and 11 pathways that showed significant enrichment
of L-K vs. L-G, N-G vs. L-G, N-K vs. L-K, and N-K vs. N-G, respectively. Among the L-K
vs. L-G, N-G vs. L-G, and N-K vs. L-K groups, the pathways with the top 20 enrichment
significances were selected and are shown in Figure 5d–f. The results showed that the
most significant pathways in L-K vs. L-G were plant hormone signal transduction and
monoterpene biosynthesis, MAPK signal pathway-plant, and plant-pathogen interaction
pathways. The three pathways of photosynthetic antenna protein and photosynthesis
and sphingolipid metabolism were the most significant in N-G vs. L-G. Sphingolipid
metabolism and photosynthetic antenna protein were the most significant pathways in N-K
vs. L-K. Six significantly different metabolic pathways—MAPK signaling pathway plant,
plant pathogen interaction, monoterpene biosynthesis, α-linolenic acid metabolism, linoleic
acid metabolism, and benzoxazine biosynthesis—were identified in L-K vs. L-G and N-G
vs. L-G groups. L-K vs. L-G and N-K vs. N-G had the same three significantly different
metabolic pathways: plant pathogen interaction, monoterpene biosynthesis, and MAPK
signaling pathway. N-G vs. L-G and N-K vs. L-K had 15 identical and significantly different
metabolic pathways, including photosynthetic antenna protein and RNA polymerase β-
Alanine metabolism. In conclusion, the key metabolic pathways of T. aestivum ssp against
SB are benzoxazinoid biosynthesis, arginine, and proline metabolism.

2.2.3. Screening of Genes Related to Metabolic Pathway Differences

In Benzoxazine biosynthesis, 12 genes (9 upregulated and 3downregulated) and
37 genes (28 upregulated and 9 downregulated) were annotated in L-K vs. L-G and N-G
vs. L-G groups, respectively. There were three upregulated genes in L-K vs. L-G and
N-G vs. L-G, and among them, the enzyme corresponding to gene: TraesCS6B02G158300
was indole-2-monooxygenase [EC: 1.14.14.153] (BX2). The enzyme corresponding to
gene:TraesCS3A02G06220 and gene:TraesCS5B02G318200 was indole-2-one monooxygenase
[EC: 1.14.14.157] (BX3). In the metabolism of arginine and proline, 8 genes were annotated
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in L-K vs. L-G, and all were downregulated, and 48 genes were annotated in N-G vs. L-G
(19 upregulated and 29 downregulated). There were five similar genes in L-K vs. L-G
and N-G vs. L-G, of which, the corresponding enzymes of gene:TraesCS3A02G363700 and
gene:TraesCS3D02G357200 were glutamate 5-kinase [EC: 2.7.2.11] (proB) and glutamate -5-
semialdehyde dehydrogenase [EC: 1.2.1.41] (proA), respectively. Gene:TraesCS2B02G347800,
gene:TraesCS5B02G220000, and novel.5994 correspond to agmatine deaminase [EC: 3.5.3.12]
(augA), S-adenosylmethionine decarboxylase [EC: 4.1.1.50] (speD/AMD1), and aldehyde
dehydrogenase (NAD +) [EC: 1.2.1.3] (ALDH), respectively.
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2.2.4. RT-qPCR Validation

To determine the authenticity and reliability of transcriptome data and the differ-
ential expression level of candidate genes, several genes were verified using RT-qPCR.
The results showed that the RT-qPCR results of five genes (gene:TraesCS5B02G318200,
gene:TraesCSU02G254000, gene:TraesCS5A02G503900, gene:TraesCS3A02G061500,
and gene:TraesCS3B02G293200) were consistent with RNA SEP data. The specific results are
shown in Figure 6.
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2.3. Combined Analysis of Transcription and Metabolome
2.3.1. Connection between DEGs and Dams

To understand the relevant mechanism of SB resistance of Triticum aestivum, metabolomics
and transcriptomics data were integrated and analyzed. KEGG enrichment analysis p-value
histogram (Supplementary Figure S5) showed that the differential metabolites and genes of
resistant and susceptible strains were significantly enriched only in the “benzoxazinone
biosynthesis pathway” and “arginine and proline metabolism pathway” (p < 0.05). It was
further confirmed that the resistance of Triticale to SB was regulated by DEGs and DAMs
related to these two pathways.

We analyzed the co-expression network of transcriptome and metabolome to further
study the relationship between DEGs and DAMs after being infected with SB. The nine-
quadrant diagram (Supplementary Figure S6) showed the differential multiple of gene
metabolites with a Pearson correlation coefficient > 0.8 in each differential group, and the
genes and metabolites in quadrants three and seven showed the same differential expression
pattern, showing that these metabolites were positively regulated by genes. The differential
expression pattern of genes in quadrants one and nine was opposite to that of metabolites
and these metabolites are negatively regulated by genes. For example, in L-K vs. L-G,
3279 genes positively regulated 173 metabolites and 3382 genes negatively regulated
174 metabolites. N-G vs. L-G consisted of 10902 genes positively regulating 315 metabo-
lites and 13069 genes negatively regulating 768 metabolites. N-K vs. L-K consisted of
15607 genes positively regulating 244 metabolites and 12483 genes negatively regulating
247 metabolites. N-K vs. N-G had 1812 genes that positively regulated 19 metabolites and
1048 genes that negatively regulated 21 metabolites.

2.3.2. Correlation Analysis of Differential Genes and Metabolites in “Benzoxazinoid
Biosynthesis” and “Arginine and Proline Metabolism”

To further explore the correlation between differential genes and metabolites in the two
pathways after SB infection, we compared the difference between N-G and L-G and drew a
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network diagram to show the correlation between metabolites and genes. We then selected
differential genes and metabolites with a correlation > 0.8 for the correlation network dia-
gram (Figure 7a,b) and the mechanism diagram of relevant metabolic pathways (Figure 7c).
Tables S2 and S3 show the Pearson correlation coefficients of related differential metabolites and
genes for Benzoxazinoid biosynthesis and arginine and proline metabolism. In Benzoxazinoid
biosynthesis, three different metabolites were involved: indole, DIBOA, and DIMBOA. The
enzymes involved included indole-2-monooxygenase [EC:1.14.14.153], DIBOA-glucose dioxyge-
nase BX6 [EC:1.14.20.2], peptide-methionine(R)-S-oxide reductase [EC:1.8.4.12], indole-2-one
monooxygenase [EC:1.14.14.157], 3-hydroxyindole-2-one monooxygenase [EC: 1.14.14.109],
DIBOA-glucose dioxygenase BX6 [EC:1.14.11.59], indole-3-glycerophosphate lyase [EC:4.1.2.8],
tryptophan synthase [EC:4.1.2.8], and indole-2-monooxygenase [EC: 1.14.153]. Using correla-
tion analysis, we found that gene:TraesCS2A02G026700, novel.452, gene:TraesCS1A02G435400,
and gene:TraesCSU02G254000 had a high correlation with indole (|PPC| > 0.9), among which,
gene:TraesCSU02G254000 negatively regulated indole. Novel.5872, gene:TraesCS1A02G435400, and
Novel.452 were negatively regulated by DIBOA. The regulation of gene:TraesCSU02G254000 and
gene:TraesCS2B02G038500 on DIBOA was positive. Three genes showed strong correlation with
DIMBOA, namely Novel.5872, gene:TraesCS1A02G435400, and gene:TraesCS6A02G130100, all of
which were negatively regulated. In conclusion, we found that the changes of the three different
metabolites were affected by gene:TraesCS1A02G435400 and novel. 5872 regulation. In addition,
the expression trend of gene:TraesCSU02G254000 and gene:TraesCS2B02G038500 was consistent
with that of DIBOA, which increased significantly in N-G and N-K.

In arginine and proline metabolism, six metabolites showed a strong correlation with
27 genes. The specific correlation coefficients are shown in Supplementary Table S2. The
metabolites included trans-4-hydroxy-l-proline*, 4-acetylaminobutyric acid, p-coumarinyl
agmatine, ferulic putrescine, N-ferulic agmatine, and 4-guanylbutyric acid. Fourteen related
enzymes, such as acetaldehyde dehydrogenase [EC:1.2.1.31 1.2.1.8 1.2.1.3], δ-1-pyrroline-5-
carboxylic acid synthase [EC:2.7.2.11 1.2.1.41], specific protease 1 [EC: 3.4.22.68], pyrroline-5-
carboxylic acid reductase [EC:1.5.1.2], polyamine oxidase [EC: 1.5.3.14 1.5.3.16 1.5.3.], and ni-
tric oxide synthase, were identified. Among them, trans-4-hydroxy-l-proline* had a high cor-
relation with gene:TraesCS2D02G027200, gene:TraesCS5B02G22000, gene:TraesCS6B02G020800,
gene:TraesCS3B02G395900, and Novel.14486. Through action and δ- 1-pyrroline-5-carboxylic
acid synthetase [EC: 2.7.2.11 1.2.1.41] and acetaldehyde dehydrogenase [EC: 1.2.1.31 1.2.1.8
1.2.1.3], we realized the negative regulation of three metabolites of ferulic putrescine, p-
coumarinyl agmatine, and N-ferulic agmatine. 4-Guanylbutyric acid is only negatively
regulated by gene:TraesCS3A02G363700.
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3. Discussion

In this study, we aimed to explore the differences between T. aestivum ssp and nor-
mal plants after infection with SB and different parts of the same susceptible plant. We
also explored the response mechanism of T. aestivum ssp against SB by widely targeting
metabolome and transcriptome. Resistance to SB is a complex quantitative trait. We
found that the main metabolites of susceptible and resistant varieties are alkaloids, phe-
nolic acids, flavonoids, organic acids, amino acids and their derivatives, and terpenes.
The same was true in the susceptible varieties’ diseased and non-diseased parts. When
the SB pathogen invades, the relevant metabolites and genes will change significantly
in the crop to resist pathogen attack and start the defense response. Flavonoids such as
gallicatechin, kaempferol, and rhamnose are mainly accumulated in resistant varieties
and are considered antibacterial agents and antioxidants [34–37]. 7-Methylnaringin and
apigenin-7,4’- dimethyl ether inhibit fungal growth and are significantly upregulated at
the susceptible site, caused by the activation of self-defense response in plants. Alkaloids
mainly include indole, DIBOA, DIMBOA, and phenolic amines, such as N-acetylputrescine,
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ferulic putrescine, N-ferulic agmatine, and N-ferulic agmatine, and organic acids such as
4-acetylaminobutyric and 4-guanidine butyric acids. These secondary metabolites play an
important role in plant growth and development and resist the threat of SB. The erosion
of pathogenic bacteria leads to the leaves showing a patchy wilting state and the photo-
synthetic system is seriously damaged, severely affecting plant photosynthesis, which is
significantly different from that of normal leaves. In the rich concentration of GO, the genes
related to photosynthesis are significantly enriched, indicating differences in photosyn-
thesis between susceptible and resistant strains, consistent with the results of phenotypic
differences. More accurately, it reflects the accuracy and reliability of our data.

SB is considered to be a fungal disease. It is easy to breed pathogenic bacteria under
high temperature and humidity conditions. In the fungal infection process, Benzoxazinoid
biosynthesis is considered the second important manner to activate many gramineous
crops [38]. BXs are released from the premise of constitutive storage after the micro-
bial invasion. The antibacterial effect of BXs such as DIMBOA has been confirmed in
corn, wheat, and other crops. As an important metabolite in the metabolic pathway of
arginine and proline, proline can resist plant pathogens and abiotic factors [39–42]. It is
considered to be a multifunctional amino acid and proline accumulates in the pathogen in-
fection process [43]. Among differential metabolic pathways, penicillin and cephalosporin
biosynthesis pathways were found to be most significant in our study. Penicillin is an
antibacterial substance. The degradation of lysine leads to the increase of L-2 aminoadipic
acid expression. L-cysteine and L-valine are highly expressed in susceptible strains caused
by the self-defense effect in the early stage of infection, which lays the foundation for
penicillin synthesis. L-2 aminoadipic acid—the degradation product of lysine—can be
transformed into glutamate to produce proline and induce tryptophan metabolism. Trypto-
phan biosynthesis promotes indole synthesis and changes the expression of Benzoxazinoid
biosynthesis-related metabolites. The connection of each channel is shown in Figure 8. We
speculate that this is a metabolic pathway of Triticale infected with leaf blight, which first
affects the metabolic activities of lysine, the degradation and metabolism of lysine, and
then causes the changes in L-2 aminoadipic acid, resulting in the changes in the penicillin
and cephalosporin biosynthesis, tryptophan metabolism, arginine and proline metabolism,
and Benzoxazinoid biosynthesis.
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We speculated that the biosynthesis of Benzoxazinoid is the key pathway of resistance
to SB in iron husk wheat. In the study results, we found that indole, a metabolite related to
the biosynthesis of Benzoxazinoid, was highly expressed in susceptible varieties. Concur-
rently, DIBOA and DIMBOA significantly accumulated in resistant varieties, consistent with
the results of previous studies. Among them, gene: TraesCS1A02G435400 and Novel.5872,
which were strongly correlated with the three differential metabolites, had zero expression
of FPKM in the resistant varieties, which might be caused by pathogens. We speculated that
these two genes were only expressed when SB infected plants. Gene:TraesCSU02G254000
and gene:TraesCS2B02G038500 are highly correlated with DIBOA and are positively regu-
lated. We speculated that gene:TraesCSU02G254000 and gene:TraesCS2B02G038500 are two
key genes essential for resistance to SB.

In addition, arginine and proline metabolism were significantly enriched in the sus-
ceptible and normal positions of the same variety and the susceptible and resistant strains.
This might be due to the self-defense effect of iron shell wheat in response to the inva-
sion of pathogens. Trans-4-hydroxy-l-proline*, a proline derivative, is a rare sub amino
acid known as an osmotic protector and antioxidant. It contributes to anti-tumor and
synthetic antibiotics and accumulates significantly in the early stage of infection [44]. Phe-
nolic amine is a special metabolite and plays an important role in plant biological disease
resistance [45]. In arginine and proline metabolism, arginine can synthesize putrescine
through two mechanisms, from ornithine to putrescine under ODC1 (ornithine decarboxy-
lase [EC:4.1.1.17]) and from guanidine butylamine. Studies have shown that the high
expression of odc1 is conducive to improving the resistance of rice-to-rice blast [46]. In
our study, the annotated phenolic amine differential metabolites related to arginine and
proline generation are derivatives of putrescine and agmatine, mainly n-acetylputrescine,
p-coumarinyl putrescine, ferulic putrescine, p-coumarinyl agmatine, and n-ferulic agma-
tine. Through the correlation analysis of differential metabolites and genes, we found that
gene: TraesCS3B02G395900 and novel.14486 are highly correlated with n-ferulic agmatine
butylamine, p-coumaric agmatine butylamine, and ferulic putrescine, and are all negatively
correlated. We speculate that arginine and proline metabolism changes are part of the plant
defense mechanism and metabolite changes can be attributed to the resistance of plants to
the invasion of pathogens.

Through this study we aim to evaluate the characteristic of iron shell wheat resource
disease resistance and excellent resistance genes, for the wheat SB resistance provides
new insight into some of the related mechanism, and the biological control of wheat leaf
blight research provides materials and basis and broadens the SB resistant wheat varieties
breeding, development, and utilization of the direction.

4. Materials and Methods
4.1. Materials

Fifty Triticum aestivum ssp. yunnanense were planted in a greenhouse in the XunDian
Daheqiao experimental base of Yunnan Agricultural University (25◦31′3′′ N, 103◦16′42′′ E).
At the booting stage, the plants were infected with SB in the greenhouse. As a result,
Yunmai 0608, a susceptible variety, was identified as L, and Zhenkang iron shell wheat
(Yunmai 0030), a resistant variety, was identified as N. In Lincang iron shell wheat (Yunmai
0608), a serious infection was observed in the second leaf of the plant, with no infection in
the flag leaf. Therefore, the second leaf was marked as G and the flag leaf was marked as K.
There were four groups of samples with three repetitions, namely L-G, L-K, N-G, and N-K
(as shown in Figure 9). The cut samples were immediately placed in liquid nitrogen and
in the refrigerator at −80 ◦C for standby. Then, the samples were sent to Wuhan Maiwei
metabolism company for metabolome and transcriptome sequencing.

4.2. Widely Targeted Metabolome Detection and Analysis

The sample was placed in a freeze dryer (scientz-100f) for vacuum freeze drying
and ground (30 Hz, 1.5 min) to powder using a zirconia bead grinder (mm 400, Retsch).
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Subsequently, 100 mg of powder was weighed and dissolved in 1.2 mL of 70% methanol
extract, vortexed once every 30 min for 30 s for a total of 6 times and placed in a refrigerator
at 4 ◦C overnight. Following centrifugation at 12,000 rpm for 10 min, the supernatant
was absorbed using a microporous filter membrane (scaa-104, 0.22 µM aperture; Shanghai,
China, http://www.anpel.com.cn/, accessed on 30 May 2021). The sample was filtered for
analysis by ultra-performance liquid chromatography (UPLC) (Shimadzu nexera X2 https:
//www.shimadzu.com.cn/, accessed on 2 June 2021) Qtrap and tandem mass spectrometry
(MS/MS) (Applied Biosystems 4500).
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The chromatographic column for the liquid phase was an Agilent sb-c18, 1.8 µm,
2.1 mm * 100 mm. In the mobile phase, phase A was ultrapure water to which 0.1% formic
acid was added and phase B was acetonitrile to which 0.1% formic acid was added. The
proportion of phase B in the elution gradient was 5% at 0.00 min and the proportion
of phase B increased linearly to 95% within 9.00 min and was maintained at 95% for
1 min. Subsequently, the composition of 95% A and 5.0% B was adjusted within 1.10 min
and maintained for 2.9 min. The injection volume was 4 µL, with the flow rate set to
0.35 mL/min, and the temperature of the column oven set to 40 ◦C. The effluent was
alternately connected to an ESI triple quadrupole linear ion trap (Qtrap). After the mass
spectrum analysis data of metabolites in different samples were obtained through multiple
reaction monitoring (MRM) analysis of triple quadrupole mass spectrometry, the mass
spectrum peaks of all substances were integrated and the mass spectrum peaks of the
same metabolite present in different samples were calibrated. The data were then analyzed
qualitatively and quantitatively. Unsupervised principal component analysis (PCA) was
performed using the statistical function prcomp in R (www.r-project.org, accessed on
5 June 2021). The correlation between the cluster coefficients of PCA and Pearson function
were analyzed using the hierarchical correlation diagram of HCC. VIP values were extracted
from OPLS-DA results, which also contained score plots and permutation plots, and
generated using R package MetaboAnalystR. The data was log transformed (log2) and mean
centered prior to OPLS-DA. To avoid overfitting, a permutation test (200 permutations)
was performed. The subsequently identified metabolites were annotated using the KEGG
Compound database (http://www.kegg.jp/kegg/compound/, accessed on 15 June 2021).
Annotated metabolites were then mapped to the KEGG Pathway database (http://www.
kegg.jp/kegg/pathway.html, accessed on 20 June 2021). Pathways with significantly
regulated metabolites mapped were then fed into MSEA (metabolite sets enrichment
analysis) and their significance was determined using hypergeometric test’s p-values.

4.3. Transcriptome Sequencing and Analysis

RNA of biological samples was extracted and detected and a library of qualified RNA
was constructed to sequence high-quality data. Original data filtering, adapter removal,

http://www.anpel.com.cn/
https://www.shimadzu.com.cn/
https://www.shimadzu.com.cn/
www.r-project.org
http://www.kegg.jp/kegg/compound/
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http://www.kegg.jp/kegg/pathway.html
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and quality trimming were performed using fastp v 0.19.3 (Haplox, Shenzheng, China).
When the content of N in any sequenced reads exceeded 10% of the base number of the
reads, paired reads were removed. When the base number of low-quality (Q ≤ 20) in any
sequencing read exceeded 50% of the base number of the read, paired reads were removed
to obtain clean reads for all subsequent analysis. The reference genome and its annotation
file were downloaded from the designated website and HISAT v2 1.0 (Johns Hopkins
University, Baltimore, MD, USA) was used to construct the index and compare the clean
reads to the reference genome. StringTie v 1.3.4d (Johns Hopkins University, Baltimore, MD,
USA), which uses a network flow algorithm and optional de novo to splice transcripts, was
used for new gene prediction. FeatureCounts v 1.6.2 calculated the gene comparison and
the FPKM value of each gene according to the gene length. Differential expression analysis
between the two groups was performed using DESeq 2 v1.22.1 (The European Molecular
Biology Laboratory) and the p-value was corrected using the Benjamini–Hochberg method.
The corrected p-value and |log2foldchange| were used as the threshold for significant
difference expression. Enrichment analysis was conducted based on the hypergeometric
test. For KEGG, the hypergeometric distribution test was carried out in the pathway unit,
and for GO, it is based on the GO term.

4.4. Combined Analysis of Transcriptome and Metabolome

By analyzing the metabolome and transcriptome results, the differential metabolites
and genes in the same group were mapped to the KEGG pathway map simultaneously
and then the histogram was drawn according to the enrichment analysis results to show
the enrichment degree of pathways. Correlation analysis was conducted on the genes
and metabolites detected in each different group. The cor program in the R package was
used to calculate the Pearson correlation coefficient of genes and metabolites. The gene
metabolites with a Pearson correlation coefficient >0.8 in each group were selected as a
network diagram to demonstrate the correlation between metabolites and genes. Then, the
overall correlation between the two groups of indicators was reflected by the canonical
correlation coefficient. All differential genes and metabolites were selected for this study
to establish the O2PLS model. The variables with high correlation and weight in different
data were preliminarily judged through a load map and the important variables affecting
other omics were selected.

4.5. RT-qPCR

Design7.9 design-specific primers were used for selecting genes. RT-qPCR was per-
formed on a 96-well StepOnePlus instrument (Applied Biosystems, Foster City, CA, USA)
according to the instructions of PerfectStartTM SYBR Green qPCR SuperMix (TransGen Biotech,
Beijing, China). The volume of the reaction system 20 µL, including 10 µL 2 × PerfectStartTM

SYBR Green qPCR Supermix, 0.4 µL calibration solution, 5.8 µL nuclease-free water, 0.4 µL
of each primer (10 mm), and 3 µL cDNA (200 µg/µL). The thermal cycle was set for initial
heat denaturation at 94 ◦C for 30 s, 94 ◦C for 5 s, and 40 cycles at 60 ◦C for 30 s. 26S rRNA
was used as the internal control and the relative transcription levels were calculated using
the was 2−∆∆CT method.

5. Conclusions

The resistance of Triticale to SB is an extremely complex quantitative trait, which is
affected by various metabolic pathways. However, after excluding the inherent differences
between varieties and the differences between different parts of the same plant, we conclude
that the resistance of Triticale to SB is closely related to the Benzoxazinoid biosynthesis.
Arginine and proline metabolism is essential for Triticale resistance to SB. The expression
levels of gene:TraesCSU02G254000 and gene:TraesCS2B02G038500 contributed to the SB
resistance of Triticale.
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