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DNA methylation plays an important role in the maintenance of genomic stability.
Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG
-dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-
methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine
(5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive
demethylation upon DNA replication, or active DNA demethylation, by triggering base
excision repair and replacement of 5fC and 5caC with an unmethylated cytosine.
Several studies over the last decade have shown that loss of TET function leads to
DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET
enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that
this essential vitamin, in addition to its antioxidant properties, can also directly influence
genomic stability. This review will highlight the functional role of DNA methylation, TET
activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
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INTRODUCTION

The protective role of vitamin C in cancer progression has historically been attributed to its
antioxidant activity and the prevention of DNA damage induced by oxidative stress (Padayatty
and Levine, 2016). Vitamin C also enhances the activity of a large family of iron (Fe2+) and
α-ketoglutarate-dependent dioxygenases (α-KGDDs), which include epigenetic regulators of DNA
methylation known to play important roles in the maintenance of genomic stability. Ten-Eleven
Translocation proteins (TETs) are a subfamily of α-KGDDs that promote DNA demethylation in
the genome (Tahiliani et al., 2009). Loss of function in TET proteins and altered levels of DNA
methylation are hallmarks of cancer (Figueroa et al., 2010a,b; Akalin et al., 2012) that drive genomic
instability and malignant transformation (An et al., 2015; Ko et al., 2015). Recent studies have
shown that vitamin C, by enhancing TET activity, can directly influence DNA methylation levels
that in turn alter chromatin structure, and the expression of tumor suppressors and DNA repair
enzymes. Vitamin C deficiency has been widely reported in cancer patients (Mayland et al., 2005;
Huijskens et al., 2016) and accelerates cancer progression in disease models (Agathocleous et al.,
2017). In addition to its potential role in the prevention of cancer, vitamin C added to cell culture
media can improve the quality of stem cells and reprogrammed cells for use in stem cell therapies
and regenerative medicine by maintaining genomic integrity (Li et al., 2009; Wang et al., 2011;
Chen J. et al., 2013; Gustafson et al., 2015; Hore et al., 2016). Through its ability to promote
DNA demethylation, vitamin C has clinical application in the treatment of cancer and especially
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hematological malignancies where mutation in TET enzymes
and aberrant DNA methylation are frequently observed. While
several recent reviews have underscored the role of vitamin C
as an anticancer agent (Das et al., 2021), modulator of immune
responses (Yue and Rao, 2020), and in the reprogramming of
stem cells (Lee Chong et al., 2019), herein we highlight these
activities within a context of DNA damage, repair, and genomic
stability. Understanding how DNA methylation levels and TET
activity influence genomic stability provides the context in which
vitamin C, as a co-factor of TET enzymes, can play a pivotal role
as an epigenetic regulator of DNA damage and repair.

THE ROLE OF DNA METHYLATION IN
THE MAINTENANCE OF GENOMIC
STABILITY

DNA methylation directly regulates essential biological
functions such as gene expression, chromatin organization,
DNA imprinting and X-chromosome inactivation that in
combination instruct embryonic development and cellular
differentiation (Guo et al., 2014). DNA methylation also plays
direct and indirect roles in maintaining genomic stability. Both
hypomethylation and hypermethylation of DNA is associated
with increased genomic instability that can lead to malignant
transformation. Under normal, steady-state conditions, up
to 80% of cytosines, in the context of CpG dinucleotides, are
methylated in the mammalian genome, reviewed in Law and
Jacobsen (2010). DNA methylation is conventionally known as
a repressive epigenetic mark, and the majority of methylated
cytosines are concentrated in heterochromatic regions, ensuring
that chromatin remains closed and genes silenced when not
required to be actively transcribed by the cell. DNA methylation
also directly silences gene expression by hypermethylation of
CpG-rich regions known as CpG islands (CGIs) in promoter
regions that alter the ability to recruit transcription factors
(Curradi et al., 2002). This is a key mechanism by which DNA
methylation regulates gene expression, as approximately 70%
of human gene promoters have associated CGIs (Saxonov
et al., 2006; Deaton and Bird, 2011). Furthermore, almost
50% of the human genome consists of long terminal repeats
(LTRs), short or long interspersed nuclear elements (SINES or
LINES), and other endogenous retroviruses that are enriched
for CpGs and silenced into heterochromatic regions by both
DNA methylation and repressive histone modifications (Kondo
and Issa, 2003; Pehrsson et al., 2019). DNA hypomethylation
at repetitive regions in the genome can reduce the formation
of heterochromatin, leading to transposition of DNA and the
aberrant expression of oncogenes that can drive tumorigenesis
(Lopez-Moyado et al., 2019). DNA hypermethylation can also
promote genomic instability, by silencing the expression of
DNA repair genes, or by inhibiting the recruitment of DNA
repair proteins (Toffolatti et al., 2014; Tsuboi et al., 2020).
Methylated cytosines are also intrinsically more mutagenic than
unmethylated cytosines (Poulos et al., 2017; Kusmartsev et al.,
2020). Balancing the activity of writers and erasers of DNA
methylation ensures that epigenetic information is interpreted

and inherited correctly, but also protects cells from acquiring
permanent changes to the genetic code.

WRITERS AND ERASERS OF DNA
METHYLATION

DNA methyltransferases (DNMT1, 3A and 3B) catalyze the
transfer of a methyl group from S-adenosyl-L-methionine
(SAM) to the 5′ position of cytosine residues generating 5-
methylcytosine (5mC) in the genome. DNMT1 is essential for
the maintenance of methylation marks during DNA replication,
whereas DNMT3A/B are responsible for de novo synthesis
and their activity is independent of the cell cycle (Bestor
et al., 1988; Okano et al., 1999). DNMT1 preferentially
recognizes hemi-methylated DNA so that DNA methylation
patterns are inherited upon DNA replication (Bashtrykov
et al., 2012), whereas DNMT3A and B show an equivalent
affinity for both hemimethylated and unmethylated DNA
(Kareta et al., 2006).

TET proteins (TET1-3) are a sub-family of α-KGDDs
that promote DNA demethylation by catalyzing the iterative
oxidation of 5mC to generate 5-hydroxymethylcytosine (5hmC),
5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) (Tahiliani
et al., 2009; He et al., 2011; Ito et al., 2011). 5hmC is a
stable modification that constitutes 5–10% of the total level of
5mC in embryonic stem cells (ESCs) (Tahiliani et al., 2009)
but this frequency can vary widely in different adult tissues,
with 5hmC present at 40% the level of 5mC in Purkinje cells
of the brain (Kriaucionis and Heintz, 2009) compared to 1%
in immune cells (Ko et al., 2010). The presence of 5hmC
in the genome causes the passive loss of DNA methylation
upon DNA replication, given that DNMT1 is unable to
recognize hemi-methylated 5hmC sites (Otani et al., 2013).
5fC and 5caC levels are rare modifications in the genome
and constitute approximately 2 or 0.5% of the total level of
5hmC in wild-type mouse ESCs, respectively (He et al., 2011;
Ito et al., 2011).

The low abundance of 5fC and 5caC in DNA is attributed to
their removal and replacement with an unmethylated cytosine
by active DNA demethylation via base excision repair (BER).
The conversion of 5hmC to 5-hydroxymethyluracil (5hmU)
by cytidine deaminase (AID or APOBEC) is one proposed
mechanism by which thymine or uracil DNA glycosylases
(TDG or SMUG1, respectively) excise oxidized mCs (Cortellino
et al., 2011). Subsequently it was shown that TDG most likely
targets 5fC:G and 5caC:G mismatches for removal, given that
TDG-deficient ESCs accumulate up to 10-fold higher levels
of 5fC and 5caC in their genome (He et al., 2011; Shen
et al., 2013; Song et al., 2013), and TDG targets 5caC:G and
5fC:G with higher affinity than T:G with no activity toward
5hmC:G (Maiti and Drohat, 2011; Zhang et al., 2012). Other
components of the DNA damage and BER machinery have
been identified as specific readers of 5fC or 5caC, including
p53, TDG, PARP, GADD45 and NEIL1/2 (Spruijt et al., 2013),
and depletion studies of these factors in cells have shown that
their activity is required to prevent DNA hypermethylation
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(Cortellino et al., 2011; Ciccarone et al., 2012; Li et al., 2015;
Schomacher et al., 2016; Tovy et al., 2017). TET enzymes have
also been shown to oxidize thymine to generate 5hmU directly,
leading to 5hmU:A mismatches (Pfaffeneder et al., 2014; Olinski
et al., 2016). Protein readers of 5hmU:G and 5hmU:A also include
chromatin regulators and DNA repair enzymes involved in BER
(Pfaffeneder et al., 2014), and the repair of 5hmU:A by long-
patch BER or non-canonical mismatch repair could lead to
the indirect removal of adjacent 5mC in the genome (Metivier
et al., 2008; Santos et al., 2013; Grin and Ishchenko, 2016; Spada
et al., 2020). In primed embryonic murine pluripotent stems
cells (PSCs) and the developing zygote, other non-oxidative and
cell-cycle independent mechanisms of DNA demethylation have
also been reported that may utilize deamination of mC by AID
and DNA repair processes (Santos et al., 2013; Amouroux et al.,
2016; Spada et al., 2020), however, the majority of active DNA
demethylation in mPSCs was shown to be driven by oxidation
of 5mC (Spada et al., 2020). These studies provide further
evidence that TET-oxidized bases and DNA repair mechanisms
can work together, directly or indirectly, to mediate DNA
demethylation in the genome.

Studies into the genomic distribution of 5hmC, 5fC, and
5caC revealed their enrichment in correlation with active
gene expression at transcriptional start sites and gene bodies
(Ficz et al., 2011; Williams et al., 2011; Wu H. et al.,
2011; Raiber et al., 2012; Song et al., 2013; Neri et al.,
2015), enhancers (Lu et al., 2014; Rasmussen et al., 2015),
the edges of large “canyons” of low DNA methylation in
the genome (Jeong et al., 2014), and at the boundaries
of topologically associated domains (TADs) marked by the
insulator protein CCCTF binding factor (CTCF) (Song et al.,
2013; Nanan et al., 2019). Several laboratories have developed
methods to sequence the genomic distribution of 5hmU
at base resolution (Yu et al., 2015; Bullard et al., 2017;
Kawasaki et al., 2017), however, the patterning of this
modification in the genome of mammalian cells has not
yet been described.

ABERRANT DNA METHYLATION DRIVES
GENOMIC INSTABILITY AND CANCER
PROGRESSION

Differences in the level of DNA methylation and oxidized
5mC, or their aberrant distribution across the genome, can
influence how cells interpret these epigenetic cues. Both
hypomethylation and hypermethylation of the DNA is associated
with increased genomic instability that can lead to malignant
transformation (Figure 1). Dysregulation of DNA methylation
patterning can occur by several mechanisms including defective
or decreased activity of DNMT or TET DNA demethylases
that leads to hypomethylation and/or hypermethylation. DNA
methylation changes, in combination with altered expression
or activity of cytosine deaminases, and other readers or
repair enzymes recruited at 5mC, 5hmC, 5fC, or 5caC
modified cytosines, can accelerate mutational processes that drive
cancer progression.

DNA HYPOMETHYLATION AND
GENOMIC INSTABILITY

Upregulation of Oncogene Expression
Defects in DNMT expression and function can cause global
hypomethylation that correlates with genomic instability and
tumor progression due to loss of silencing at the loci of
oncogenes (Soes et al., 2014; Kushwaha et al., 2016; Sheaffer
et al., 2016). One of the most frequently observed upregulated
oncogenes in cancer that exhibits a hypomethylated gene locus
and is known to cause genomic instability is the transcription
factor c-Myc. Large genomic amplifications induced by c-Myc
overexpression are attributed to replicative stress caused by
unscheduled DNA replication and increased oxidative stress
leading to DNA breaks (Dominguez-Sola et al., 2007; Kuzyk
and Mai, 2014). While c-Myc DNA hypomethylation is observed
in many different cancers, other examples of hypomethylated
oncogenic loci are cancer-specific, such as the melanoma-
associated antigens (MAGE) gene that is hypomethylated
specifically in gastric cancer and colorectal cancer (Honda
et al., 2004; Kim et al., 2006) or synuclein γ (SNCG) in breast
and ovarian cancers and solid tumors of the liver, gastric
and (Gupta et al., 2003; Liu et al., 2005). Overexpression of
these oncogenes promote, proliferation, metastasis, disruption
of mitotic checkpoints, enhanced transcriptional activity and
accelerated rates of chromosomal instability.

Increased Insertional Mutagenesis and
Chromosomal Anomalies
Hypomethylated repetitive DNA sequences, including CG
repeats in CGIs and in transposable elements (TEs), are
commonly found in cancers that could be caused by loss
of function in DNA methyltransferase activity. Hypomorphic
activity of Dnmt1 in mice induces thymic lymphomas with
recurring insertions of a transposable element within the Notch
gene leading to its oncogenic activation (Howard et al., 2008).
LINE-1 and Alu elements are retrotransposons that constitute
over 30% of the human genome and are normally inhibited
by DNA methylation yet become frequently hypomethylated in
cancer (Daskalos et al., 2009; Pehrsson et al., 2019). Increased
LINE-1 and Alu activity causes genomic instability by promoting
deletions, chromosome breaks, and translocations (Mandal et al.,
2013; Bakshi et al., 2016).

DNA hypomethylation is also observed at microsatellite
and pericentromeric heterochromatic regions in chromosomes
of DNMT3B-mutant disease. DNMT3B loss of function
mutations have been described in ∼60% of patients with an
autosomal recessive disorder known as immunodeficiency,
centromeric instability and facial anomaly (ICF) syndrome
(Hansen et al., 1999; Okano et al., 1999; Xu et al., 1999).
ICF is a rare disease showing symptoms in early childhood
of recurrent gastrointestinal and pulmonary infections as a
result of agammaglobulinemia (Ehrlich et al., 2008; Hagleitner
et al., 2008). ICF patients display evident decondensation
of heterochromatin caused by DNA hypomethylation at
pericentromeric regions in chromosomes 1, 9, and 16, causing
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FIGURE 1 | The role of DNMTs and TETs in DNA methylation maintenance and genomic stability. (A) DNA methyltransferases (DMNTs) regulate the methylation of
cytosine residues (white) in CpG islands typically found in the promoter region of target genes, while Ten-Eleven Translocation (TET) enzymes promote the
demethylation of 5-methylcytosines (5mC) (black). Together, these enzymes regulate normal DNA methylation patterns and genomic stability by ensuring: proper
silencing and activation of gene expression; cytosine deamination by AID or APOBEC (not shown) that preferentially target 5mC over C/5hmC (gray) for C > T
transition; CTCF/cohesin-guided boundaries between enhancers and promoters of genes; and maintenance of telomeres. (B) DNA hypomethylation, caused by a
loss of function of DNMTs, can lead to: aberrant oncogene activation by removal of promoter silencing; upregulated activity of transposable elements (TE) that drive
insertional mutagenesis; gains in CTCF binding that exacerbate oncogene expression; and loss of heterochromatin at peri-centromeric regions causing defective
chromosome segregation and multi-radial configurations (specifically seen in ICF patients with DNMT3B mutation). (C) DNA hypermethylation is associated with:
aberrant silencing of tumor suppressors from increased DNMT activity or loss of TET function; an increased frequency of C > T transitions due to enhanced
mutagenicity and deamination of 5mC; loss of CTCF/cohesin binding leading to gene mis-regulation; and telomere shortening and altered sister chromatid cohesion.
Figure created with BioRender.com.

upregulated gene expression at these loci, chromosome
breaks, and rearrangements in radial structures that are
detectable in stimulated lymphocytes and increase the risk of
hematological malignancies (Brown et al., 1995; Kaya et al., 2011;
Gossling et al., 2017).

Loss of Chromatin Organization
Cancer cells on average display up to 30% genome-wide
losses in DNA methylation (Ehrlich and Lacey, 2013; Baylin
and Jones, 2016) which could significantly impact three-
dimensional chromatin architecture and genomic stability
by altering oncogene activity and activation of TEs. CTCF,
in cooperation with cohesin proteins, regulates long-range
looping interactions between enhancers and promoters (Dixon
et al., 2012) and preferentially binds at hypomethylated
CpGs of cis-regulatory insulator regions of the genome
(Nanavaty et al., 2020). DNA hypomethylation could allow for
aberrant gains in CTCF binding, creating stronger insulation

at oncogenic super-enhancers and an increased frequency of
tandem duplications (Gong et al., 2018). Mis-regulated gene
expression via stronger TAD boundaries could also cooperate
with oncogenic transcription factors to exacerbate genomic
instability (Fang et al., 2020). Thus, hypomethylated states
may confer an advantage of cancer cells by the increase and
maintenance of elevated oncogenic expression during tumor
development (Kang et al., 2015).

DNA HYPERMETHYLATION (OR LOSS
OF HYDROXYMETHYLATION) AND
GENOMIC STABILITY

Silencing of Tumor Suppressors
Hypermethylation of the genome is associated with aberrant
silencing of many tumor suppressors that could drive or
accelerate carcinogenesis. DNA hypermethylation can be caused
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by a decrease in the activity of DNA demethylases such as
the TET proteins leading to the silencing of DNA repair
enzymes and tumor suppressors. Silencing due to aberrant DNA
hypermethylation at imprinted loci (Rainier et al., 1993; Moulton
et al., 1994; Steenman et al., 1994; Plass and Soloway, 2002),
senescence genes (Kamb et al., 1994; Zhao et al., 2016; Xie et al.,
2019) and lineage specific transcription factors, that normally
slow proliferation and drive differentiation, reviewed in (Suelves
et al., 2016; Pfeifer, 2018), may cause a buildup in unchecked
DNA damage and DNA replication errors.

Increased Methyl-Cytosine Mutagenicity
Methylated cytosines are approximately fivefold more likely
to undergo mutagenesis than unmethylated cytosines (Poulos
et al., 2017). This could be due to a greater tendency for
5mC to spontaneously deaminate compared to unmethylated
cytosines (Supek et al., 2014; Blokzijl et al., 2016). Furthermore,
C > T and G > A mutations disproportionally affect CpG
dinucleotides. In one study, approximately 18% of C > T
and G > A missense and nonsense mutations in genes of
inherited human diseases occurred within CpGs, a frequency
10-fold higher would have been expected by chance alone
(Cooper et al., 2010). Cytosine deaminases (AID and APOBEC1-
3) also exhibit greater activity toward 5mC than 5hmC (Nabel
et al., 2012; Rangam et al., 2012), and 5mC deamination
generates T:G mismatches that can potentially recruit error-
prone mismatch repair (MMR) complexes (Cortellino et al.,
2011). Importantly, C > T mutation rates are 50% lower for
C or 5hmC compared to 5mC (Tomkova et al., 2016). Given
that C > T transition mutations are the most frequent, age-
associated mutation signature in cancer (Alexandrov et al.,
2013; Kandoth et al., 2013) loss of TET activity could mimic
a premature aging phenotype with regard to the frequency
at which C > T mutations accumulate. Distinct mutational
signatures are also caused by aberrant deaminase activity, with
AID/APOBEC-driven signatures dominated by high levels of
C > T transitions in specific cancers (Alexandrov et al., 2020).
Upregulated oncogenic activity of AID/APOBEC deaminases, in
combination with elevated levels of 5mC in the genome, could
synergistically accelerate malignant transformation.

Loss of Telomere Maintenance, Altered
Chromatin Boundaries and
Chromosomal Instability
Studies in ESCs have shown that loss of TET function causes
decreased 5hmC and DNA hypermethylation in telomeric
regions, that leads to telomere shortening, reduced telomere
recombination and chromosome segregation defects (Lu et al.,
2014; Kafer et al., 2016; Yang et al., 2016). Sub-telomeres are
also hypermethylated in TET depleted ESCs, which may further
impede telomere elongation by recombination (Yang et al., 2016).
DNA hypermethylation caused by loss of TET activity increases
nucleosome occupancy, and subsequently, loss of CTCF binding
and a block in the downstream recruitment of the cohesin
complex, reducing the formation of CTCF/cohesion-mediated
chromatin loops thereby downregulating the expression of

neighboring genes (Wiehle et al., 2019; Nanavaty et al., 2020).
Loss of CTCF itself can also induce DNA hypermethylation at
CTCF binding sites and the fusion of TAD boundaries that
establish oncogenic expression patterns and increased cancer
progression (Akdemir et al., 2020; Damaschke et al., 2020).
TETs also regulate chromosomal architecture by protecting large
undermethylated genomic regions known as DNA methylation
“canyons” from becoming hypermethylated (Wiehle et al.,
2016; Zhang X. et al., 2016). Loss of Dnmt3a or Tet2
causes canyon edges to collapse and become hypermethylated,
suggesting that de novo methyltransferase activity and Tet2-
mediated hydroxylation of 5mC work together to maintain
5hmC and hypomethylation at these loci (Jeong et al., 2014;
Zhang X. et al., 2016).

Studies using ESCs with a triple knockout of all three
TET enzymes revealed an increase of 5mC signal across all
chromosomes by whole-genome bisulfite sequencing (Lu
et al., 2014) and an increased frequency in telomere loss and
chromosomal fusion (Yang et al., 2016). Genomic instability has
also been observed in Tet2/3 double knockout hematopoietic
stem and progenitor cells (HSPCs) and immature myeloid
cells, which show impairment of DNA repair responses,
lower homologous recombination (HR) or non-homologous
end-joining (NHEJ) gene expression and spontaneously
accumulate DNA double strand breaks (DSBs) marked
by increased phosphorylated histone H2A.X (γH2AX) in
comparison to WT cells (An et al., 2015). These studies, in
combination with numerous reports of TET deficiency in other
solid tumors (Haffner et al., 2011; Kudo et al., 2012; Yang et al.,
2013; Munari et al., 2016) demonstrate the loss of 5hmC by
defective TET enzymatic activity as a hallmark of cancer that
may drive genomic instability.

DNA DAMAGE INDUCES CHANGES IN
DNA METHYLATION AND 5hmC
FORMATION

DNA methylation and oxidized mCs regulate the susceptibility
of cells to genomic instability by also actively participating
in sensing and repair processes upon DNA damage. C > T
transition mutations could lead to losses in methylation
at otherwise silenced gene loci that accumulate over our
lifetime due to spontaneous deamination and exposure
to ionizing radiation or chemical carcinogens (Baylin and
Jones, 2016). UV irradiation primarily induces C > T
transitions in the epidermis, with cells exposed to UVA
biased toward mutations of CC > TT dipyrimidines more
frequently than by UVB, and with a greater propensity
for 5mC than C (Martinez-Fernandez et al., 2017; Ikehata,
2018). UV irradiation can also induce the expression of
DNMT1 in human dermal fibroblasts leading to DNA
hypermethylation at specific gene loci, such as TIMP2
(Kim et al., 2018).

Reactive oxygen species (ROS) are estimated to create
up to 50,000 DNA lesions in a single human cell, which
can lead to potentially oncogenic mutations if not repaired
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(Rossi et al., 2007). ROS can influence DNA methylation levels
by the oxidation of guanosine to 8-oxo-2′-deoxyguanosine (8-
oxo-dG) or by hydroxyl radicals that via abstraction of a
hydrogen from the methyl group of mC leads to the formation
of 5hmC (Madugundu et al., 2014). The presence of 8-oxo-dG
can lead to DNA hypomethylation, by preventing the adjacent
cytosine in a Cp8-oxo-dG dinucleotide from being recognized
by DNMTs, thereby promoting passive DNA demethylation.
Furthermore, 8-oxo-dG DNA glycosylase (OGG1) recruited to
these lesions interacts with TET1 that can trigger active DNA
demethylation by BER (Zhou et al., 2016). ROS can also induce
G quadruplex formation as well as R-loops (DNA-RNA hybrids
that are enriched at CpG islands), which can cause genomic
instability at active transcriptional sites and delay the removal and
repair of these ROS-induced damaged bases (Tan et al., 2020).
Further direct evidence of the involvement of TET enzymes in
DNA repair come from studies in ESCs, where genotoxic insults
such as aphidicolin treatment to induce double strand breaks
(DSBs) were shown to induce 5hmC, but not 5mC, foci that
co-localized with γH2AX marks, and the repair proteins 53BP1
and RAD51 (Kafer et al., 2016). Together these studies illustrate
how TETs can act as the bridge between DNA methylation
regulation and DNA repair. The ability of TET proteins to
influence transcription and DNA repair at oxidized mCs implies
a dual role in the regulation of gene expression and DNA
damage responses.

DNMT AND TET LOSS OF FUNCTION IN
CANCER

The strong association between aberrant DNA methylation
and tumorigenesis is evidenced by the frequent occurrence
of mutations, and altered expression levels, of DNMT and
TET enzymes in solid tumors and hematological malignancies.
DNMT1 and DNMT3B mutations or amplifications are more
common in cancers of epithelial tissues of the breast, ovaries,
skin, bladder, lung and colon (reviewed in Zhang et al., 2020),
whereas loss-of-function DNMT3A mutations are the most
frequent lesions identified in acute myeloid leukemia (AML)
where they are found on average in 30% of patients (Ley et al.,
2010; Cancer Genome Atlas Research, 2013; Brunetti et al., 2017).
The mutation hotspot encoding arginine 882 (R882) accounts for
∼65% of all DNTM3A variants and blocks its methyltransferase
activity (Russler-Germain et al., 2014; Nguyen et al., 2019; Gao
et al., 2020) leading to genome-wide DNA hypomethylation
with focal increases in promoter CGI DNA methylation that are
hallmarks of AML (Figueroa et al., 2010b; Spencer et al., 2017).
DNMT3A mutations also predispose patients with pre-malignant
clonal hematopoiesis to transformation and drive relapse in
AML patients (Jaiswal et al., 2014; Buscarlet et al., 2017). The
inability of DNMT3A R882 mutants to sense and repair DNA
torsional stress results in increased mutagenesis and resistance
to anthracycline (Guryanova et al., 2016) and demonstrates how
the role of these epigenetic regulators in DNA damage-sensing,
in combination with altered genomic methylation, can drive
cancer progression.

Unopposed DNA methyltransferase activity due to loss of TET
function can cause DNA hypermethylation, and decreased TET1-
3 expression or reduced 5hmC levels in the genome are common
across multiple solid tumors (Haffner et al., 2011; Kudo et al.,
2012; Yang et al., 2013, 2015) and blood cell malignancies (Ko
et al., 2010; Lemonnier et al., 2018; Zhang et al., 2018). Similar
to the lineage bias observed for mutation of DNMTs, TET1 and
TET3 are more frequently mutated in carcinomas (Li L. et al.,
2016; Lee et al., 2020), whereas TET2 deletions and missense
mutations induce loss of its catalytic function and are observed at
much higher frequency, in∼10-30% of patients with either clonal
hematopoiesis ((Busque et al., 2012; Jaiswal et al., 2014; Bowman
et al., 2018), myeloid (Abdel-Wahab et al., 2009; Delhommeau
et al., 2009; Langemeijer et al., 2009), or lymphoid (Quivoron
et al., 2011; Lemonnier et al., 2012) malignancies.

DNMT3A and TET2 mutation are independently associated
with an adverse outcome and poor prognosis in intermediate risk
AML (Kosmider et al., 2009; Ribeiro et al., 2012). Furthermore,
the prevalence of DNMT3A and TET2 mutation in hematological
malignancies, and their early emergence from within the HSPC
compartment to drive transformation (Delhommeau et al.,
2009; Quivoron et al., 2011; Welch et al., 2012; Papaemmanuil
et al., 2013), emphasizes the importance of DNA methylation
in the pre-malignant regulation of stem cell self-renewal and
blood cell lineage differentiation. Hypermethylated CpGs that
should normally be targeted by TET2 for demethylation could
suffer increased C > T transition rates, based on the higher
mutagenicity of 5mC compared to unmethylated cytosines or
5hmC (Poulos et al., 2017). Cells from myelodysplastic (MDS)
and AML patients with TET2 mutation harbor more non-
synonymous somatic mutations than TET2 wild-type patients,
and HSPCs of Tet2 knockout mice also exhibit increased
mutation rates (Pan et al., 2017). Whether CGI hypermethylation
in clonal hematopoiesis patients increases susceptibility to
additional mutations that drive transformation is not yet known.
Both DNMT3A and TET2 have been shown to prevent DNA
hypermethylation of canyons and promoter CGIs, suggesting
that de novo methylation and 5hmC formation by DNMT3A
and TET2 work simultaneously in HSPCs to prevent specific
tumor suppressor gene loci from becoming dysregulated, and
their potential cooperation at these sites requires further study.

VITAMIN C IS A CO-FACTOR OF TET
ENZYMES AND PROMOTES DNA
DEMETHYLATION

The recent discovery that vitamin C can act as an epigenetic
regulator by enhancing the activity of α-KGDDs such as the
TET proteins has transformed our understanding of the role
of vitamin C in biology (Figure 2A). Removal of histone
and DNA methylation is essential for the efficient epigenetic
reprogramming and generation of induced pluripotent stem
cells (iPSCs) from somatic cells. Studies using ESCs and
reprogramming fibroblasts were the first to show that vitamin
C, in a TET-dependent manner, could increase 5hmC, 5fC,
and 5caC production, triggering a global DNA hypomethylation
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FIGURE 2 | Vitamin C maintains genomic stability through interactions with epigenetic regulators, tumor suppressor upregulation and telomere maintenance.
(A) Vitamin C serves as a cofactor for members of the α-ketoglutarate-dependent dioxygenases (α-KGDD) family such as TETs, KDMs, HIF PHDs, and ALKBHs,
which can work to maintain genomic stability through the demethylation of 5mC residues, histone demethylation, HIF-1α degradation, and RNA demethylation,
respectively. (B) Vitamin C supplementation has been shown to promote DNA demethylation in the promotor regions of tumor suppressor loci encoding p16, p21,
and p53. Vitamin C promotes DNA demethylation and 5hmC formation at transposable elements (TEs) in the genome, leading to upregulated expression of
endogenous retroviral genes (ERVs) in combination with DNA methyltransferase inhibitors (DNMTis). In cancer cells, ERV upregulation initiates an innate immune
response and apoptotic cell death which is enhanced by vitamin C. Vitamin C treatment has also been shown to increase telomerase activity and the expression of
genes that protect telomere integrity and decrease the rate of telomere loss. Figure created with BioRender.com.

that improved the quality of cells in culture and enhance the
formation of iPSCs (Blaschke et al., 2013; Chen Q. et al., 2013;
Minor et al., 2013; Yin et al., 2013). ESCs express high levels
of TET1 and TET2 (Koh et al., 2011; Dawlaty et al., 2013), and
100 µM vitamin C is sufficient to increase 5hmC by up to ∼4-
fold above basal levels in ESCs within 24hrs of treatment, with
even larger effects on the levels of 5fC (10-fold increase) and
5caC (20-fold increase) (Yin et al., 2013). A study using human
colorectal cancer cells also reported significantly elevated levels of
5hmU (up 18.5-fold increase) in response to vitamin C treatment
(Modrzejewska et al., 2016). In HSPCs and human leukemia cell
lines, treatment with low or high doses of vitamin C also cause
2–4 fold increases in 5hmC formation and genome-wide DNA
hypomethylation (Liu et al., 2016; Cimmino et al., 2017; Mingay
et al., 2018) similar to what has been observed in ESCs (Chung
et al., 2010). Subsequent studies of vitamin C treatment in other
tissue specific stem cells (He et al., 2015; Wulansari et al., 2017)
and carcinoma cells of the kidney, bladder, lung, colon and breast,
amongst others (Ge et al., 2018; Peng et al., 2018; Sant et al., 2018)
all reported similar increases in 5hmC formation and/or DNA
hypomethylation.

Effects of Vitamin C-Mediated 5hmC
Formation and DNA Demethylation
The effect of vitamin C treatment on cell viability and
genomic stability under steady-state conditions or in response

to DNA damage can vary depending on developmental
stage or normal versus malignant cell context. Vitamin C
treatment can promote survival and maintain proliferation
while protecting stem cells from DNA damage and senescence,
whereas in cancer cells, the reactivation of tumor suppressors
can reduce cell viability and alter sensitivity to therapeutic
agents. Given that TET enzymes play a primary role as tumor
suppressors, the ability to enhance 5hmC formation and DNA
hypomethylation by vitamin C is of great interest in the
maintenance of genomic stability, and cancer prevention and
treatment (Figure 2B).

Activation of Tumor Suppressors and
DNA Repair Enzymes by Vitamin C
CpG islands in the promoters of DNA damage response
genes, such as the tumor suppressor p16INK4a and p21, are
frequently hypermethylated in cancer (Roman-Gomez et al.,
2002; Zhao et al., 2016; Ocker et al., 2019). The p16 and
p21 proteins belong to a family of cyclin–dependent kinase
(CDK) inhibitors, also known as CDKN2A and CDKN1A,
respectively, that bind and inactivate CDKs to block cell cycle
progression. Reactivation of their expression by vitamin C
has been shown to induce senescence, apoptosis and halt
proliferation of cancer cells. Vitamin C treatment of human
skin and colon cancer cells increases 5hmC formation and
reduces 5mC in the promoter CGIs of p16INK4a and p21 that
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correlates with upregulated expression (Lin et al., 2014; Gerecke
et al., 2018). Vitamin C also upregulates p53 and p21 protein
expression in other cancer cells, such as oral squamous cell
(Zhou et al., 2020) and hepatocellular carcinoma (Lv et al.,
2018) causing growth arrest and apoptosis, however, in these
studies the effect on 5hmC/5mC levels at these gene loci
was not measured.

The studies in cancer cells on the effect of vitamin C in
regulating p16INK4a and p21 expression seem at odds with the
observation in ESCs, iPSCs and tissue specific stem cell cultures
in which vitamin C treatment silences the p16INK4a/p19ARF
locus and is associated with reduced expression of p53 and
p21 (He et al., 2008; Li et al., 2009; Esteban et al., 2010;
Li Y. et al., 2016; Zhang P. et al., 2016). Furthermore, TET
activity at promoter CGIs in stem cells may be counteracted
by vitamin C-mediated co-activation of the H3K36 demethylase
JHDM1b (KDM2B), which removes gene body H3K36me2/3
marks leading to p16INK4a/p19ARF gene silencing (He et al.,
2008; Tzatsos et al., 2009). These different responses highlight
the context specific effect of vitamin C in the regulation of
senescence in normal stem cells compared to cancer cells.
Overexpression of the reprogramming factors such as OCT4,
SOX2, KLF4, and MYC increase ROS production by up to
threefold compared to controls which could induce oxidative
damage and trigger the premature senescence of non-cancerous
stem cells (Krishnamurthy et al., 2004; Li et al., 2009). Vitamin C
antioxidant effects can mitigate the high levels of ROS induced
during reprogramming to prevent oxidative damage, thereby
blocking ROS-induced senescence mechanisms (Krishnamurthy
et al., 2004; Li et al., 2009).

Vitamin C treatment also induces the expression of a TET2-
dependent gene expression signature in human leukemia cell
lines and primary murine HSPCs involved in BER such as
GADD45, PARP, and DNA glycosylases (Cimmino et al., 2017).
The ability of vitamin C to drive increased BER activity
could be a direct consequence of the increased need to
actively remove and replace TET catalyzed oxidation products
of mC in the DNA.

Up-Regulation of Endogenous Retroviral
Elements by Vitamin C
DNA methyltransferase inhibitors (DNMTis), such as 5-
azacytidine and decitabine, are cytidine analogs used for the
treatment of hematological malignancies by inducing global
DNA hypomethylation (Hackanson et al., 2005; Shadduck
et al., 2007; Santos et al., 2010). Restoring TET function by
vitamin C administration, in combination with DNMTi therapy,
may help erase DNA hypermethylation at tumor suppressor
loci to promote differentiation and cell death. In addition,
studies in a variety of cancers cells have shown that DNA
hypomethylation by DNMTis causes the increased expression
of endogenous retroviruses (ERVs) that mimic a viral infection
and trigger an innate immune response leading to apoptosis
(Chiappinelli et al., 2015; Roulois et al., 2015; Liu et al., 2016).
Vitamin C was shown to synergize with DNMTi treatment
in a TET2-dependent manner to increase 5hmC, and drive

DNA hypomethylation to further increase ERV expression and
enhance apoptosis of leukemia and solid tumor cell lines (Liu
et al., 2016). Interestingly, ERVs in ESCs treated with vitamin
C have been shown to acquire and retain high levels of 5hmC
that do not become demethylated for several days, in contrast to
the rapid and dynamic hydroxymethylation and demethylation
induced at CGIs in promoters and TSS sites of hypermethylated
pluripotency and blastocyst-like genes (Blaschke et al., 2013).
This distinction may be a key factor in how vitamin C treatment,
by promoting TET activity, can induce the expression of ERVs
while preventing genomic instability that would be caused by
a lack of 5mC or 5hmC at these retrotransposable elements
(REs). REs are one of the two classes of TEs, which unlike
the cut and paste mechanisms of DNA transposons, insert
themselves by duplicating elements into a new genomic location
via an RNA intermediate (Friedli and Trono, 2015; Chuong
et al., 2016). In ESCs, TET2 has been shown to be recruited
to ERV loci by an ERV RNA-binding protein Paraspeckle
Component -1 (PSPC1) to regulate the expression of adjacent
genes during embryonic development (Guallar et al., 2018).
Maintenance of 5hmC levels at ERVs by vitamin C may therefore
reduce the risk of insertional mutagenesis while exploiting
these cis-regulatory sequences for transcriptional control of
neighboring genes.

Vitamin C-Mediated Effects on Telomere
and Chromosomal Stability
Human telomeres shorten by 20–200 bp per cell division
(Harley et al., 1990) and telomere length in circulating blood
cells has been used as a biomarker of human aging (von
Zglinicki and Martin-Ruiz, 2005). Higher intake of antioxidants
by multivitamin supplementation or high vegetable intake is
associated with increased telomere length in human studies
(Xu et al., 2009; Marcon et al., 2012; Tsoukalas et al., 2019),
however, direct evidence that vitamin C supplementation alone
can suppress telomere attrition in vivo requires further study.
Using in vitro cellular models derived from human iPSCs,
vitamin C treatment has been shown to increase telomerase
activity and the expression of genes encoding telomerase-related
RNA and protein components that protect telomere stability
(Wei et al., 2012; Kim et al., 2013). Patients with Werner
Syndrome (WS) harbor a mutation in the WRN gene that
leads to loss of telomere maintenance, premature aging and
increased cancer rates (Burtner and Kennedy, 2010; Zhang et al.,
2015). Vitamin C treatment of a human WS mesenchymal
stem cell model was shown to slow down telomere loss and
downregulate the senescence-inducing p16Ink4a protein (Zhang
et al., 2013, 2015). In ESCs, the protection and maintenance
of telomere length by vitamin C has not yet been correlated
directly to its role as a TET coactivator; however, given that
mouse ESCs with TET deficiency exhibit shorter telomeres,
chromosomal instability, sub-telomere DNA hypermethylation
and reduced telomere recombination (Lu et al., 2014; Kafer
et al., 2016; Lazzerini-Denchi and Sfeir, 2016; Yang et al., 2016),
vitamin C most likely plays a direct role in TET-mediated
telomere maintenance.
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POTENTIAL ROLES FOR VITAMIN C IN
GENOMIC STABILITY VIA MODULATION
OF ADDITIONAL α-KGDDs

Vitamin C can participate as a cofactor to enhance and maintain
the activity of numerous other α-KGDD family members, such
as histone lysine demethylases (KDMs), hypoxia inducible factor
(HIF) prolyl hydroxylases, and AlkB homologs (ALKBHs), in
addition to TET proteins, that in combination can influence
genomic stability.

Histone Lysine Demethylases (KDMs)
Vitamin C is required for the optimal activity and demethylation
capacity of multiple KDMs that hydroxylate and remove
mono-, di-, or trimethyl-lysines in histones (Klose et al., 2006;
Tsukada et al., 2006). During somatic cell reprogramming,
vitamin C-mediated removal of histone modifications such
as H3K4me3 and H3K36me3, potentially by KDM5 and
KDM2, respectively, can turn off the expression of genes,
while demethylation of H3K9me2/me3 by members of the
KDM3/4/7 family can remodel heterochromatin regions that
can facilitate DNA hypomethylation at these otherwise silenced
loci (Li et al., 2009; Tzatsos et al., 2009; Esteban et al., 2010;
Huang et al., 2019). Histone modifications and KDMs have
a wide variety of roles in regulating genomic stability that
could potentially be influenced by vitamin C with different
biological outcomes in either stem cells or cancer cells.
Suppression of H3K9me2/me3 demethylase activity such as
KDM3A (JMJD1A), KDM4C (JMJD2C), and KDM7C (PHF2)
in tissue specific stem cell cultures and cancer cells can
lead to premature senescence, increased DNA damage and
genomic instability (Huang et al., 2019; Pappa et al., 2019;
Fan et al., 2020). Vitamin C can coactivate KDM5B/C to
demethylate H3K4me3, and KDM5B (JARID1B) has been
shown to increase DNA DSB repair by recruiting factors Ku70
and BRCA1 in osteosarcoma (U2OS) cells (Li et al., 2014).
A deficiency in KDM5B was shown to disengage the DNA
repair process, promote spontaneous DNA damage, activate
p53 signaling, and sensitize cells to genotoxic insults (Li et al.,
2014). Demethylation of H3K4me3 by KDM5C (JARID1C)
leads to heterochromatin formation, and renal cell carcinoma
patients with JARID1C mutations exhibit genome-wide DNA
hypomethylation, increased genomic rearrangements, and an
overall worse prognosis (Rondinelli et al., 2015). In these
settings, vitamin C could enhance KDM activity to prevent
genomic instability. However, other KDM activity, such as
overexpression of KDM2B (JHDM1B) and KDM4A (JHDM3A)
that target H3K36 for demethylation could promote increased
DNA damage through decreased HR repair (Pfister et al., 2014;
Staberg et al., 2018).

HIF Prolyl Hydroxylases
HIF-1 and HIF-2 are transcription factors induced in low
oxygen (hypoxic) environments typical of tumor niches, and
are repressed in normoxic conditions by prolyl hydroxylases
(PHDs) (Rankin and Giaccia, 2016). Vitamin C has been shown

to function as a direct cofactor of HIF PHDs (Osipyants et al.,
2018) that catalyze the hydroxylation of HIF-1α (Appelhoff
et al., 2004). HIF-1α is involved in microsatellite instability
and mismatch repair deficiency in a colon cancer model
(Koshiji et al., 2005) and induces transcriptional changes
leading to the downregulation of several DNA damage repair
genes in an oral squamous cell carcinoma model (Nakamura
et al., 2018). Treatment with vitamin C could promote the
degradation of HIF-1α by stimulating HIF prolyl hydroxylases
that would restore DNA repair activity and remove HIF-
1 α mediated protection from genomic instability (Knowles
et al., 2003; Zhao et al., 2015). HIF stabilization is also
associated with therapeutic resistance to DNA damage. Hypoxic
mouse stromal cells are shown to be more resistant to
irradiation than the same cells under normoxic conditions
in a HIF-1 dependent manner (Calvo-Asensio et al., 2018),
and a lung cancer model expressing a HIF-1-stabilizing
micro RNA exhibits a hypoxic phenotype and increased
radioresistance (Grosso et al., 2013). Inhibition of leukemia
cell growth by vitamin C treatment also correlates with the
downregulation of HIF-1α mRNA expression (Kawada et al.,
2013). Vitamin C could therefore target the PHD family
of α-KGDDs to maintain genomic stability and counteract
hypoxic tumor conditions to influence disease progression or
sensitivity to DNA damage.

AlkB Homologs
In mammalian cells, homologues of the E. coli DNA dealkylation
enzyme AlkB act as RNA demethylases, catalyzing the oxidative
demethylation of N6-methyladenosine (m6A) (Fedeles et al.,
2015). Nine mammalian homologues have been identified,
ALKBH1-8 and the fat mass and obesity associated protein
(FTO), with each displaying unique roles in genomic stability
(Fedeles et al., 2015). ALKBH5 and FTO are the most well
characterized of the AlkB homologs and their silencing or
deletion reduces the expression of a number of HR and other
repair genes in glioblastoma stem cells (Kowalski-Chauvel et al.,
2020) and osteoblasts (Zhang et al., 2019), increasing their
susceptibility to genotoxic damage. Interestingly, ALKBH2 and
ALKBH3 have been shown biochemically to act as DNA repair
enzymes that oxidize 5mC to generate 5hmC, 5fC, and 5caC,
similarly to TET enzymes (Bian et al., 2019). However, in certain
cancer cell models, ALKBH activity may promote survival or
resistance to chemotherapy. ALKBH2 knockdown sensitize lung
cancer cells to cisplatin (Wu S.S. et al., 2011) and glioblastoma
cells to temozolomide (Johannessen et al., 2013) and ALKBH8-
knockout in mouse embryonic fibroblasts elevates ROS levels
that could promote DNA damage (Endres et al., 2015). While
vitamin C was shown to stimulate oxoglutarate turnover in
E. coli AlkB (Welford et al., 2003), studies on the role of
vitamin C in the regulation of mammalian ALKBH proteins
are lacking. Given the recent confirmation that vitamin C binds
directly to FTO (Wang et al., 2020) and the diverse roles of
m6A in the regulation of gene expression in cancer (He et al.,
2019) the role of vitamin C in m6A demethylation and the
implication on genomic stability and cancer therapy requires
further investigation.
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METABOLIC REGULATION OF α-KGDDs,
GENOMIC INSTABILITY, AND VITAMIN C

Isocitrate dehydrogenases (IDHs) are citric acid cycle enzymes
responsible for making α-KG, and as such are inextricably linked
with α-KGDD functional activity. Mutually exclusive IDH1 or
IDH2 mutations are common in myeloid malignancies and
gliomas, and cause the production of 2-hydroxyglutarate (2HG),
an oncometabolite that impairs α-KGDD function by acting as
a competitive inhibitor of α-KG binding (Dang et al., 2010;
Han et al., 2020). 2HG inhibition in IDH-mutant AML patients
impairs TET2 function that leads to loss of 5hmC and DNA
hypermethylation (Figueroa et al., 2010a; Lu et al., 2012; Sasaki
et al., 2012). 2HG can also cause H3K9 hypermethylation due
to decreased KDM4B activity, which can block the recruitment
of repair factors at DSB sites in the genome and reduce HR
repair efficiency (Sulkowski et al., 2020). Vitamin C treatment,
however, has been shown to reduce proliferation in an IDH-
mutant leukemia model that was associated with demethylation
at the loci of myeloid differentiating factors (Mingay et al., 2018),
suggesting that it could potentially override the effect of 2-HG to
activate α-KGDDs such as the TET demethylases.

VITAMIN C DEFICIENCY AND EFFECTS
ON CANCER PROGRESSION

Vitamin C is an essential dietary micronutrient for humans,
whereas other mammals, including mice, can synthesize vitamin
C from glucose via the liver enzyme L-gulonolactone oxidase
(GULO). GULO catalyzes the last step of ascorbate biosynthesis
but is mutated and non-functional in humans (Linster and Van
Schaftingen, 2007). Vitamin C is water soluble and optimal
physiological plasma concentrations of approximately ∼70–
80 µM can be sustained by the daily intake of 200 mg in the diet
(Lindblad et al., 2013; Padayatty and Levine, 2016). Vitamin C is
most well-known for its role in the prevention of scurvy, a disease
caused by prolonged periods of low dietary vitamin C intake
(<10 mg/day) that reduces plasma levels to below 11.4 µM,
leading to insufficient collagen production that manifests with
symptoms ranging from fever, confusion and depression, to
internal bleeding (Prinzo, 1999; Schleicher et al., 2009; Padayatty
and Levine, 2016).

While scurvy is now seen as a rare modern-day disease,
patients with cancer are often markedly vitamin C-deficient
(Mayland et al., 2005; Huijskens et al., 2016; Liu et al., 2016), and
restoring or maintaining physiological levels has been shown to
slow malignant cell growth (Campbell et al., 2015; Liu et al., 2016;
Agathocleous et al., 2017). Plasma concentrations of ascorbate
can differ up to ten-fold from person to person (Khaw et al., 2001)
and in the United States, it is estimated that more than 7% of
the population (>20 million people) are deficient in vitamin C
(Schleicher et al., 2009). A study in the United Kingdom found
that 25–46% of low income population and smokers exhibit
deficient or depleted vitamin C plasma levels (Mosdol et al.,
2008). Mild vitamin C deficiency may be underreported owing
to its non-specific symptoms such as fatigue, irritability, dull

aching pains, and weight loss (Prinzo, 1999; Schleicher et al.,
2009). All-cause mortality decreases when vitamin C serum levels
rise above 60 µM (Goyal et al., 2013; Wang et al., 2018), while
in cancer patients, low serum vitamin C levels of <20–30 µM
are frequently observed (Waldo and Zipf, 1955; Anthony and
Schorah, 1982; Mayland et al., 2005; Carr et al., 2020). A study of
leukocytes isolated from colon cancer patients showed decreased
levels of 5mC and 5hmC that correlated with blood plasma
ascorbate below 20 µM, while expression of TET genes was not
significantly changed (Starczak et al., 2018). 5hmC/5mC ratios
in the DNA of peripheral blood cells could potentially act as a
biomarker of vitamin C status or bioavailability.

Vitamin C is water soluble and transported across cellular
membranes by sodium-dependent vitamin C transporters
(SVCTs) and facilitative glucose transporters (GLUTs). SVCTs
transport vitamin C directly, whereas GLUTs transport the
oxidized form of vitamin C, dehydroascorbate (DHA), which
is reduced to vitamin C inside cells by glutathione (GSH)
(Figure 3A). Plasma levels of vitamin C are tightly controlled
by two sodium-dependent vitamin C transporters (SVCTs), with
SVCT1 being responsible for gastrointestinal absorption and
renal reabsorption, and SVCT2, playing a primary role in whole
body cellular uptake (Lindblad et al., 2013). Mouse models with
genetic inactivation of the Gulo locus or Svct1/2 knockout have
been used to model cell-intrinsic or systemic dietary deficiency
in vitamin C (Maeda et al., 2000; Sotiriou et al., 2002; Corpe
et al., 2010). Supplementation of ascorbate in the drinking water
at 3.3 g/L is sufficient to maintain normal 80 µM concentrations
in the plasma of Gulo knockout mice; however, 0.33 g/L will
reduce plasma concentrations to 30 µM (Schleicher et al., 2009;
Kim et al., 2012). This model of dietary deficiency in mice causes
hematopoietic defects that mimic the effect of TET2 deficiency,
including pre-leukemic HSPC expansion and loss of 5hmC in the
genome (Beamer et al., 2000; Sotiriou et al., 2002). Importantly,
these effects could be reversed upon increased dietary vitamin
C administration (Agathocleous et al., 2017). Svct2 knockout in
bone marrow cells expressing the AML oncogene Flt3ITD has
also been shown to accelerate leukemia progression in mice and
exacerbate 5hmC loss in Tet2 deficient HSCs, suggesting that
vitamin C depletion could further impair the activity of other
TET proteins in pre-leukemic cells (Agathocleous et al., 2017).
Severe deficiency of both Tet2 and Tet3, is associated with >90%
loss of 5hmC in HSPCs and causes the spontaneous accumulation
of DSBs, marked by elevated and persistent yH2AX foci and rapid
leukemia progression (An et al., 2015). Taken together, these
findings suggest that vitamin C, by maintaining TET activity in
HSPCs, provides protection from leukemia transformation.

EFFECT OF VITAMIN C TREATMENT AS
AN ANTI-CANCER THERAPY

Vitamin C supplementation is being explored as an adjuvant
to many existing cancer therapies (Figure 3B). As cancer
patients frequently present with decreased plasma vitamin C
levels (Waldo and Zipf, 1955; Anthony and Schorah, 1982;
Mayland et al., 2005; Carr et al., 2020) that are further
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FIGURE 3 | Vitamin C uptake and therapeutic potential as an anti-cancer agent. (A) Structures of ascorbate (ASC) and dehydroascorbate (DHA). ASC primarily
enters cells through sodium-dependent vitamin C transporters (SVCTs) and can be transported in its oxidized form as DHA via glucose transporters (GLUTs) then
reduced back to ASC by the antioxidant glutathione (GSH) once inside the cell. ASC can enhance the activity of α-ketoglutarate dependent dioxygenases (α-KGDD),
and high doses can act as a pro-oxidant, creating increased levels of reactive oxygen species (ROS), H2O2 and increased redox active iron levels (Fe2+) that cause
lipid, DNA, and protein oxidation in cancer cells. (B) Plasma ascorbate levels correlate with disease states, overall health, and therapeutic potential. Ascorbate
deficiency is associated with increased all-cause mortality and lower α-KGDD activity. Oral supplementation can restore plasma levels to normal and allow vitamin C
antioxidant properties to provide benefit as a pre-malignant therapy potentially lowering genomic instability and preventing transformation. High-dose intravenous
administration of ASC can be used to generate millimolar (mM) plasma concentrations and generate ROS and pro-oxidant damage to cancer cells. Vitamin C has
currently shown efficacy as an adjuvant for many cancer therapies in pre-clinical and clinical trials in combination with standard chemotherapy, DNA hypomethylating
agents and targeted inhibitors: Carboplatin and Paclitaxel, Azacitidine, poly-adenosine diphosphate-ribose polymerase (PARP) inhibitors (Olaparib), immune
checkpoint inhibitors (anti-PD1 and anti-CTLA4), and bromodomain and extraterminal domain (BET) inhibitors (JQ1). Figure created with BioRender.com.

decreased by chemotherapy (Mousseau et al., 2005; Carr et al.,
2020), vitamin C treatment to restore normal amounts in the
circulation as an adjuvant for standard chemotherapy could
be of therapeutic benefit. The vast majority of patients are
TET2 haploinsufficient (Abdel-Wahab et al., 2009; Delhommeau
et al., 2009; Kosmider et al., 2009; Langemeijer et al., 2009),
suggesting that enhancing residual TET2 activity, or restoring the
activity of functionally defective mutant TET2 proteins, could
be a particularly viable therapeutic strategy for TET2 deficient
hematological malignancies. A recent study showed that oral
supplementation of 500 mg/day of vitamin C in combination
with DNMTi treatment in patients with myeloid malignancies
was able to raise deficient vitamin C plasma levels to ∼100 µM
concentration, increase 5hmC/5mC ratios and decrease global
5mC levels that were elevated at baseline in the peripheral
blood cells (Gillberg et al., 2019). While previous clinical studies
in advanced cancer patients given similar oral doses did not
show any benefit (Creagan et al., 1979; Moertel et al., 1985),
long-term oral vitamin C supplementation may have important
clinical implications for pre-malignant and low-risk patients with

mutation in specific epigenetic regulators such as TET2 and
should be investigated further.

High-Dose Vitamin C Pro-oxidant Roles
in Cancer Cells
Maximal plasma concentrations from oral vitamin C doses
above 500 mg/day do not exceed 150 µM, due to homeostatic
down-regulation of vitamin C transporters in enterocytes and
kidney cells, leading to reduced absorption and increased
urinary excretion (Young et al., 2015). High-dose vitamin
C (up to 100 g) administered by intravenous (IV) infusion
can bypass the limited oral bioavailability without reported
toxicity, and raise plasma concentrations to high millimolar
levels that remain above 100 µM for up to 6 h (Padayatty
et al., 2004). An intriguing effect of high-dose vitamin C
treatment in cancer cells is its ability to create ROS and act
as a pro-oxidant.

Vitamin C in the form of ascorbate, under normal growth
conditions, behaves as an anti-oxidant that donates electrons
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to quench damage-inducing free radicals, becoming a relatively
stable ascorbate radical while to protecting cells from lipid,
protein, and DNA oxidation (Padayatty et al., 2003). In contrast
to the effect vitamin C has in reprogramming and stem cell
cultures, which is to reduce ROS, increase proliferation and
protect cells from apoptosis, vitamin C treatment of cancer cells
correlates with an increase in ROS-mediated oxidative stress and
reduced viability (Chen et al., 2008; Noguera et al., 2017; Ghanem
et al., 2020; Wu et al., 2020; Zhou et al., 2020). Moreover, it
has been demonstrated that while diverse cancer cell types are
sensitive to low- and sub-millimolar doses of vitamin C, even
with high millimolar doses, limited cytotoxicity is observed in
normal tissue (Chen et al., 2008; Noguera et al., 2017). This points
to a unique synthetic lethality of cancer cells to high-dose vitamin
C treatment that can be exploited for cancer therapy. In a Burkitt’s
lymphoma model, toxicity to ascorbate was associated with ROS-
induced peroxide formation that could be abrogated by catalase
treatment (Chen et al., 2005). Follow up work by the same group
showed elevated ascorbate radical and peroxide levels in vivo in
the microenvironment of three separate models where vitamin
C reduced tumor burden in mice (Chen et al., 2008). Another
study showed mitochondrial hyperpolarization associated with
high-dose ascorbate and ROS production (Ghanem et al., 2020).

The pro-oxidant effects of vitamin C in these studies has
been attributed to excess uptake and formation of redox active
iron. In a series of reactions, ascorbate can reduce ferric (Fe3+)
iron to ferrous (Fe2+), which can then be returned to the ferric
state after reducing O2 to superoxide. Superoxide reacts with
itself and protons to generate hydrogen peroxide and O2, and
the hydrogen peroxide can be reduced by Fe2+ in a Fenton
reaction to form hydroxide radicals that can create the pro-
oxidant killing effects observed in cancer cells (Du et al., 2012).
Another possibility is that high-dose vitamin C can exhaust
the primary cellular antioxidant GSH when taken up in higher
amounts by more metabolically active cells, thus rendering cancer
cells more vulnerable to oxidative stress. In this capacity, high-
dose vitamin C was shown to be selectively toxic to KRAS or
BRAF mutant colorectal cancer cells due to increased cellular
uptake of oxidized vitamin C (DHA) through upregulated GLUT
transporters, which led to GSH depletion and lethal levels of ROS
(Yun et al., 2015).

Combination Cancer Therapies With
Vitamin C Treatment
Multiple cellular and animal models and recent clinical trials have
shown that high-dose vitamin C treatment can reduce cancer
cell viability and improve treatment outcome in combination
therapies. In patients with ovarian cancer, high-dose intravenous
vitamin C (IVC) administered in combination with carboplatin
and paclitaxel enhanced chemosensitivity and reduced adverse
side effects of chemotherapy (Ma et al., 2014). Glioblastoma
patients receiving IVC in combination with radiation therapy
and temozolomide have also shown improved survival compared
to previous studies (Schoenfeld et al., 2017). Another notable
adjuvant use of vitamin C was with PARP inhibitor treatment for
a small group of patients with HR-deficient advanced metastatic

cancers (primarily BRCA mutations) where partial or complete
responses were observed in all eight patients (Demiray, 2020).

High-dose parenteral vitamin C treatment can be modeled
in mice via IP administration, where 4 g/Kg delivered IP can
induce mM concentrations in plasma similar to pharmacokinetic
studies in patients treated with high-dose IVC (Padayatty
et al., 2004; Yun et al., 2015). Vitamin C treatment of Tet2-
deficient mouse HSPCs and patient-derived AML leads to
increased 5hmC formation, DNA hypomethylation and a block
in aberrant self-renewal in vitro with suppression of disease
progression in vivo (Cimmino et al., 2017). High-dose vitamin
C also enhances immune checkpoint inhibitor therapy, that in
animals models was shown to be curative when used to treat
tumors with high mutational burdens such as mismatch repair–
deficient (MMRd) or microsatellite instable (MSI) breast and
colorectal mouse tumors that otherwise would be unresponsive
to single immune checkpoint inhibitors (Magri et al., 2020).
MSI cancers exhibit microsatellite DNA hypermethylation and
accumulate 5mC mutations in CpG in the absence MMR that
has been attributed to methylation-associated repair deficiencies
(Ling et al., 2010; Poulos et al., 2017). While a role for TET
mediated hypomethylation in microsatellite stability was not
assessed, this may be one mechanism by which vitamin C
treatment could play a role in MMR-deficient cancer treatment.
Importantly the therapeutic efficacy of vitamin C in combination
with checkpoint inhibitors was dependent on a functional
immune system, suggesting that tumor cell-intrinsic and immune
microenvironmental effects of vitamin C can work together to
slow tumor growth.

Multiple studies continue to identify new potential
combination cancer treatment strategies with vitamin C. In
cellular and preclinical studies, high-dose vitamin C enhances
the sensitivity of hematological cell malignancies to arsenic
trioxide (Huijskens et al., 2016; Noguera et al., 2017) and
increases chemosensitivity and radiosensitivity of various solid
tumor cells including ovarian (Ma et al., 2014), pancreatic (Du
et al., 2015) glioblastoma and non-small cell lung carcinoma
cells (Schoenfeld et al., 2017). Vitamin C has also been shown to
sensitize melanoma cells to bromodomain inhibitors (Mustafi
et al., 2018). These studies argued in favor of combination
therapies based primarily on the mechanism of oxidative stress
generated by high-dose ascorbate, that could increase cancer
cell susceptibility to standard therapies by exacerbating DNA
damage. The effect of vitamin C as a co-factor of α-KGDDs and
specifically as a regulator of DNA demethylation via increased
TET function were not investigated. However, it has been shown
that TET-mediated DNA oxidation induced by vitamin C can
create a synthetic lethality, where AML cells being forced to
undergo active DNA demethylation renders them hypersensitive
to PARP inhibition (Cimmino et al., 2017). In this study, vitamin
C treatment increases the expression of genes involved in BER
that may be a response to the increased oxidation of 5mC and
in combination with the PARP inhibitor, Olaparib, enhances
the killing of human AML cells greater than either agent alone
(Cimmino et al., 2017). Future studies on the use of vitamin C as
a therapeutic agent would benefit from the inclusion of additional
correlative studies such as DNA methylation changes, oxidized
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mC formation or even histone and RNA methylation levels in
order to fully appreciate the cell-intrinsic or microenvironmental
epigenetic biomarkers of its anti-cancer efficacy.

CONCLUSION

Given the numerous roles for vitamin C in biological processes
that maintain and influence genomic stability, it is no surprise
that vitamin C continues to be explored for potential anticancer
activity. From the studies by Cameron and Pauling in the
1970s (Cameron and Pauling, 1976, 1978) to the present day,
there is an ever-expanding volume of research attempting to
elucidate the true and, more relevantly, meaningful roles of
vitamin C in disease etiology, treatment, and prevention. But
important consideration must be given to robust data collection
and interpretation, especially where clinical samples are involved
(Lykkesfeldt, 2020). Considering vitamin C’s accessibility and
prevalence as a dietary nutrient, synthesizing meaningful
conclusions on the role of vitamin C in cancer prevention
by oral supplementation will require large population studies.
However, vitamin C’s role as an anti-tumor agent that can
restore DNA damage and repair signaling processes at high
doses appears to go beyond just regulating the oxidation state
of the cell. Vitamin C has also been shown to influence many
enzymes within the Fe2+ and α-KGDD superfamily that can
work together to maintain genomic stability beyond the direct

effect of vitamin C in TET-mediated modulation of cytosine
modification and turnover in the genome. The role of vitamin
C as an epigenetic regulator will have context specific effects
that depend on the cancer cell lineage. The strong association
of DNA hypermethylation coupled with the frequent mutation
of TET2 in hematological malignancies suggest that vitamin C
treatment could be a targeted therapy for these patients. Future
studies into how vitamin C can maintain the function of the
diverse α-KGDDs known to have direct and indirect roles in the
maintenance of genomic stability will allow us to fully understand
the effect of this essential vitamin in the etiology, prevention, and
treatment of cancer.
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