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Abstract

Background: Large-scale computational prediction of protein structures represents a cost-effective alternative to empirical
structure determination with particular promise for non-model organisms and neglected pathogens. Conventional
sequence-based tools are insufficient to annotate the genomes of such divergent biological systems. Conversely, protein
structure tolerates substantial variation in primary amino acid sequence and is thus a robust indicator of biochemical
function. Structural proteomics is poised to become a standard part of pathogen genomics research; however, informatic
methods are now required to assign confidence in large volumes of predicted structures. Aims: Our aim was to predict the
proteome of a neglected human pathogen, Giardia duodenalis, and stratify predicted structures into high- and
lower-confidence categories using a variety of metrics in isolation and combination. Methods: We used the I-TASSER suite
to predict structural models for ∼5,000 proteins encoded in G. duodenalis and identify their closest empirically-determined
structural homologues in the Protein Data Bank. Models were assigned to high- or lower-confidence categories depending
on the presence of matching protein family (Pfam) domains in query and reference peptides. Metrics output from the suite
and derived metrics were assessed for their ability to predict the high-confidence category individually, and in combination
through development of a random forest classifier. Results: We identified 1,095 high-confidence models including 212
hypothetical proteins. Amino acid identity between query and reference peptides was the greatest individual predictor of
high-confidence status; however, the random forest classifier outperformed any metric in isolation (area under the receiver
operating characteristic curve = 0.976) and identified a subset of 305 high-confidence-like models, corresponding to
false-positive predictions. High-confidence models exhibited greater transcriptional abundance, and the classifier
generalized across species, indicating the broad utility of this approach for automatically stratifying predicted structures.
Additional structure-based clustering was used to cross-check confidence predictions in an expanded family of Nek
kinases. Several high-confidence-like proteins yielded substantial new insight into mechanisms of redox balance in G.
duodenalis—a system central to the efficacy of limited anti-giardial drugs. Conclusion: Structural proteomics combined with
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2 Structural proteome prediction in Giardia

machine learning can aid genome annotation for genetically divergent organisms, including human pathogens, and stratify
predicted structures to promote efficient allocation of limited resources for experimental investigation.

Keywords: Giardia duodenalis; structural homology; I-TASSER; random forest; functional prediction; machine learning;
prioritization; parasite; protist

Introduction

Giardia duodenalis is a microaerophilic, parasitic protist that
causes diarrheal disease in 200–300 million people annually. Gia-
rdia duodenalis is also a deep-branching eukaryote, with little ge-
netic similarity to model eukaryotes such as yeast. As such, at
least one third of protein-coding genes predicted in this parasite
have not been functionally annotated. The lack of functional in-
formation for these proteins precludes understanding of essen-
tial biological functions in the parasite, including metabolism,
signaling, and stress response mechanisms. Similar problems
beset research on other human pathogens, including protists in
the genera Plasmodium, Trichomonas, and Entamoeba, and bacte-
ria such as Mycobacterium tuberculosis. As these pathogens en-
compass massive genetic diversity and are often incompatible
with standard laboratory culture or reverse genetic technologies,
insufficient functional gene annotation hampers basic research
and therapeutic development.

In the absence of experimental investigation, protein func-
tion can often be inferred by comparing the sequence of inter-
est with those of functionally characterized proteins and identi-
fying the most similar match. The predominant algorithms for
sequence-based homology searching are hidden Markov mod-
els (HMM) [1], and Basic Local Alignment Search Tool (BLAST;
heuristic local alignment) [2]. HMMs are generally more sensi-
tive than BLAST and identify discrete functional domains. How-
ever, both algorithms perform poorly when the amino acid (AA)
sequence identity between the query and the reference falls be-
low 20% [3]. By contrast, the three-dimensional (3D) structure
of a protein tends to tolerate substantial variation in the con-
stituent AA sequence and is thus a robust indicator of function
[4]. Comparison of 3D structures can therefore provide a highly
sensitive basis for inferring the function of proteins encoded in
genetically divergent organisms that lack sequence-based ho-
mologues. However, empirical determination of protein struc-
ture (e.g., using X-ray crystallography) remains laborius, expen-
sive, and subject to chemical, purity, and yield constraints. In-
deed, to date only 36 full-length or partial Giardia protein struc-
tures have been solved, despite the genome having been avail-
able for more than a decade [5]. The lack of predicted functional
information makes prioritizing much-needed biochemical ex-
perimentation on hypothetical proteins exceedingly difficult. In
silico prediction of protein structure provides an attractive alter-
native to empirical structure determination for gaining prelim-
inary insight into hypothetical protein function and elaborating
our understanding of annotated proteins. When applied on a
genome-wide scale, termed “structural proteomics,” computa-
tional structure prediction has immense potential.

Several computational methods have been developed to pre-
dict protein structure from the constituent primary AA sequence
[6]. Since 2008, the I-TASSER software suite has consistently
ranked among the best-performing protein structure predic-
tion programs, as tested in the biennial Critical Assessment of
Structure Prediction competition [7]. This software can correctly
predict the structure of query peptides that have low (<20%)
AA identity relative to template structures. Named for Iterative
Threading ASSEmbly and Refinement, I-TASSER uses sequence-

based homology combined with secondary structure predic-
tion to produce numerous tertiary structure solutions, mod-
eled on homologous regions of empirically-determined protein
structures available in the Research Collaboratory for Structural
Bioinformatics (RSCB) Protein Data Bank (PDB). The structure of
any non-homologous regions in the query are predicted ab initio,
solutions are clustered to identify the best model (i.e., the center
point of the site of greatest convergence), and molecular dynam-
ics simulation then minimizes the free energy over a structure
representing the entirety of the query peptide in 3D space (here-
after termed “model”). To enable annotation of the query pep-
tide, the corresponding model is searched against the PDB to
identify the closest structural homologue (termed “reference”)
[8]. Additional information such as predicted cofactor binding
sites and Gene Ontology terms are provided based on proper-
ties of the 10 closest reference structures. The I-TASSER web
server predicts this information for individual query peptides.
However, a stand-alone version of I-TASSER permits concurrent
prediction of structure and function for multiple query peptides
[9]. While a substantial undertaking, with sufficient computing
resources, it is possible to predict the structure and function of
an entire proteome.

Reference structures can provide putative functional anno-
tations for genetically divergent hypothetical proteins, akin to
BLAST-based genome annotation. Discrete domain annotations
may also be inferred from reference structures, providing a more
sensitive alternative to HMM-based annotation. Models of par-
ticular interest can be visually examined to gain insight into
the biochemistry of protein-substrate and -ligand interactions.
However, before embarking on genome annotation, hypothesis
generation, or experimentation, models predicted in silico re-
quire thorough curation. For single peptides of interest, this can
involve manual inspection of aligned structures and inspection
of structure-based sequence alignments. At a proteome-wide
scale, however, manual inspection of predicted structures is im-
practical, and informatic methods are required to expedite in-
dependent and automated assessment of model quality.

The I-TASSER suite generates metrics that describe inher-
ent features of the predicted model and the goodness-of-fit be-
tween it and the reference structure. First, the convergence score
(C-score) conveys the degree to which multiple independently-
generated structural solutions converge on a common struc-
ture during the SPICKER clustering process [10]. The extent of
3D structural homology between each pair of model-reference
structures is expressed in the TM (template modeling) score,
which is a goodness-of-fit metric that is independent of the
length of the query and the reference structures; the root mean
squared deviation (RMSD; Å) of α carbon atoms in each structure;
and the proportion of the predicted structure aligned against
the reference (“coverage”). The proportionate AA identity in the
aligned region of each model-reference pair is also generated.

Whereas these metrics describe different elements of the
predicted structure or homology search results, efficiently val-
idating thousands of predicted structures requires a metric that
encompasses confidence in both the predicted structure and the
information available via the reference structure. To this end, an
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attractive approach involves testing for agreement between fea-
tures in the query peptide and in the peptide encoding the refer-
ence structure (“reference peptide”). For example, the presence
of identical protein domains in query and reference peptides in-
dicates that both peptides are likely to exhibit a similar 3D fold.
The presence of matching domains can thus be used to assign
models into a “high-confidence” (HC) category.

Here, we predict the structures of nearly 5,000 annotated and
hypothetical proteins encoded in the genome of G. duodenalis
and use the presence of matching protein family (Pfam) domains
between query and reference peptides to automate stratification
of models (and reference-derived functional information) into
high- and lower-confidence (LC) categories. With the aim of ob-
viating the need for additional informatics analysis after large-
scale structure prediction, we investigate the power of individual
I-TASSER output metrics to correctly assign models as HC or LC
and develop a random forest (RF) classifier that successfully pre-
dicts these categories and also provides a more sensitive, con-
tinuous confidence score. Importantly, query-reference peptide
pairs that lack matching Pfam domains but are classified as HC
(i.e., false-positive classifications) form a second tier of “HC-like”
structures that otherwise lie beyond the reach of informatic val-
idation. Among this second tier of models are several models
that illuminate important features of the central metabolism
and redox biology of Giardia. To our knowledge, this represents
the most sensitive and ambitious application of structural pro-
teomics to enhance the annotation of a eukaryote to date.

Materials and Methods
Datasets and I-TASSER suite implementation

Peptides encoded in the G. duodenalis WB-C6 genome strain (as-
semblage A) were downloaded from GiardiaDB.org (release 39),
and those between 30 and 1,500 AAs in length were selected for
analysis. Products of expanded, genetically redundant Giardia-
specific gene families (232 ankyrin repeat “21.1” proteins, 196
variant-specific surface proteins, 48 high-cysteine membrane
proteins, and 25 high-cysteine proteins) were excluded from
analysis. The stand-alone implementation of I-TASSER v3.0 (RR
ID:SCR 014627) was run on x86 cores with the following param-
eters: runI-TASSER.pl -light true -LBS true -GO true -nmodel 1,
stipulating a light implementation with ligand-binding sites and
GO terms predicted for the single “best” model.

Feature extraction

Metrics for the predicted structure including C-score, TM-
model, TM-sd-model, RMSD-model, and RMSD-sd-model were
extracted from the “Cscore” output file (see Supplementary
Methods). The PDB code and chain identifier for the reference
structure (i.e., the closest structural homologue) and metrics de-
scribing alignment between it and the model (TM score, RMSD,
coverage, and percent AA identity) were extracted from the
”similarpdb model1.lst” file. The molecular name and species
encoding the reference were extracted from rcsb.org using
curl (Linux). Obsolete PDB codes were updated according to
[11]. Pfam annotations and primary AA length for query pep-
tides were downloaded from GiardiaDB.org (release 39). Equiva-
lent information for reference structures was downloaded from
rcsb.org (rcsb.org/pdb/rest/hmmer?file=hmmer pdb all.txt; ac-
cessed 4 December 2017).

Additional feature calculation

The secondary structure complexity of the prediction was ex-
pressed as the standard deviation of proportional helix, strand,
and coil predictions, as extracted from seq.ss output files. The
primary AA length of the query was transformed as a ratio of
the length of the reference (hereafter “length ratio”) (Table 1).

Machine learning and evaluation

Models for which at least one matching Pfam domain was iden-
tified in the query and reference peptides were categorized as
“high-confidence,” (HC) and those that lacked matching Pfam
domains were classified as “lower-confidence” (LC; Fig. 1). The
ability of individual metrics to correctly categorize predicted
structures was represented as area under the receiver operating
characteristic curve (AUC; calculated using the R pROC package).
The R caret package was then used to train a RF classifier (train-
ing set: 750 HC and 750 LC structures; five-fold cross-validation),
using all metrics described above as features, and the HC cate-
gory (i.e., the presence of at least one matching Pfam domain
between query and reference peptides) as the factor of inter-
est. The classifier accuracy was tested on a hold-out set of 250
HC and 250 LC models. Technical variation in the classifier out-
put was quantified by training 500 models on the same data set
and calculating the mean and standard deviation of HC proba-
bility scores for each model. Similarly, the reproducibility of con-
fidence scores was assessed by training multiple classifiers us-
ing progressively smaller, randomly selected training sets. The
relative predictive value of each metric was expressed as impor-
tance (i.e., mean decrease in Gini coefficient), and the perfor-
mance of the model was examined relative to individual fea-
tures using AUC. Transcriptional abundance of protein-coding
genes in each confidence group was assessed using normalized
count data [cpm; 12], with null values recoded to 0.001. Normal-
ized counts were divided by transcript length, and differences
between confidence groups were tested using analysis of vari-
ance (ANOVA), followed by Tukey’s honest significant difference
(HSD) test.

Cluster analysis

AA similarity for all pairs of Nek kinase peptides was computed
using BLASTp [2]. Three-dimensional alignments (TM score) for
all pairs of predicted structures were calculated using TM-align
[8]. Multidimensional scaling for each data type was performed
using cmdscale in R.

Data visualization

All charts were generated using ggplot2 and upSetR, and protein
structures were visualized using USCF Chimera software [13].
For brevity G. duodenalis gene identifier prefices are abbreviated
from GL50803 to “GL.”

Supplementary Methods
Investigating discordant reference structure matches
for Giardia peptides encoding solved structures

For solved Giardia protein structures, the AA similarity between
the genomically encoded peptides and respective solved struc-
tures was inferred by searching AA sequences extracted from
PDB files against the G. duodenalis proteome (release 39), us-
ing PSI-BLAST with default settings. In cases where query pep-

https://scicrunch.org/resolver/RRID:SCR_014627
http://rcsb.org/pdb/rest/hmmer?file=hmmer_pdb_all.txt
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Table 1: I-TASSER output metrics and additional features used in this study

Feature class I-TASSER output feature Additional feature

Predicted structure
metrics

C-score: Convergence score SS-sd: Standard deviation in
proportional secondary
structure predictions

C-sd: Error in convergence
score
TM-model: Estimated TM
score
TM-model-sd: Error in
TM-model
RMSD-model: Estimated
RMSD
RMSD-model-sd: Error in
RMSD-model

Structural homology
metrics

% AA ID: Amino acid identity
across region of structural
homology
TM score: Template
modeling score
RMSD: Root mean squared
deviation in alpha-carbon
atom position
Coverage: Relative coverage
in 3D space

Comparative sequence
metrics

Length ratio: ratio of query
peptide-to-reference peptide
AA length
Pfam match: presence of at
least one identical Pfam
domain annotated in both
query and reference peptides

tides related to solved structures but were matched by I-TASSER
to non-Giardia structures, the similarity between those query-
reference pairs was also calculated via PSI-BLAST. ANOVA was
performed on query-reference AA length ratios and bit scores
from PSI-BLAST output. Significant results were followed with
multiple pair-wise comparisons using Tukey’s HSD test (ad-
justed P < 0.05).

Additional model convergence metrics

A predicted TM score and RMSD metric (“TM-model” and
“RMSD-model”) are calculated as a function of the C-score for
each predicted structure, based on previous benchmarking of
these measurements using 500 non-homologous proteins [14].
Error for these estimates is also provided (“TM-model-sd” and
“RMSD-model-sd”) in the Cscore file. These metrics differ from
the actual TM and RMSD scores calculated for each model rela-
tive to its reference structure in the PDB (Table 1).

Recoding output pdb files

PDB format files output from I-TASSER are always single
chain and lack a chain annotation. All model1.pdb out-
put files were modified to conform to the official PDB for-
mat via inclusion of a “dummy” chain denoted “A.” Code
to add and rename chains in such pdb files is available at
github.com/bjpop/pdb rename chain.

Testing classifier performance across species

To compare the performance of the RF classifier trained on Gia-
rdia protein models against models predicted for Homo sapiens,
200 peptides no greater than 1,500 AA in length were selected at
random from the latter species and submitted to I-TASSER for
structure prediction. Output files were processed to generate all
relevant metrics, as for Giardia, and a final sample of 45 HC and
55 LC models formed the test dataset (Supplementary Table S1).
The accuracy of the classifier for predicting the HC category in
this data was tested using the R caret package.

Results
Matching Pfam domains as a proxy for high confidence
in predicted structures enhances functional annotation

The G. duodenalis genome (WB-C6 strain; assemblage A) includes
5,901 protein-coding genes, 5,085 (86%) of which encode pro-
teins greater than 30 and less than 1,500 AAs in length. Af-
ter excluding 816 proteins arising from genetically redundant
Giardia-specific gene families, we predicted structures for 4,901
proteins (1,650 BLAST-annotated proteins and 3,251 hypotheti-
cal). All predicted structures, reference structures, and associ-
ated metrics produced in this project, as well as predicted lig-
ands, GO terms, and bound complexes, are available at the Pre-
dictein website [15]. Code and input data for reproducing the re-
sults and figures presented here (excluding homology model fig-
ures) are available at a github repository [16].
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Figure 1: Pfam code agreement as a proxy for predicted protein structure quality. A query peptide sequence is submitted to I-TASSER software to predict its 3D structure
(colored blue). Metrics describing the predicted structure (“model”) are extracted for downstream analysis. The model is compared with empirically determined protein
crystal structures available in the PDB using TM-align, from which the closest structural homologue is identified (”reference”; colored red). Metrics describing the
alignment are also extracted. Pfam codes are assigned to primary peptide sequences that constitute the model and reference structures using InterPro Scan software

(lower right side). The presence of at least one matching Pfam code assigned to the query and reference peptides (“PFAM match”) indicates greater likelihood of
structural similarity between the model and the reference. Models with this feature are assigned as “high-confidence.” The ability of each extracted metric (“Feature”)
to predict the high-confidence category (“Factor”) is assessed, and then a RF classifier is trained to identify the factor using all available features.

For 20 Giardia query peptides associated with approximately
full-length, experimentally determined structures at the com-
mencement of this study, 15 were correctly matched to their
respective structure by I-TASSER. The remaining five peptides
were found to be significantly longer than the peptides rep-
resented in their corresponding crystal structures and were
matched instead to structures of similar peptide length (Sup-
plementary Fig. S1). This result indicates a preference in the
I-TASSER 3D alignment software for fuller coverage over local
sequence identity. Nevertheless, for all five peptides, the corre-
sponding Giardia reference structure was among the 10 closest
structural homologues identified by the software. Pfam annota-
tions were available for 2,063 Giardia query peptides (1,452 an-
notated and 611 hypothetical) and 3,685 reference structures.
At least one matching Pfam code was present in 1,095 query-
reference peptide pairs, and 20% of these pairs included a hy-
pothetical (i.e., un-annotated) Giardia query peptide (Fig. 2). Gi-
ardia models in model-reference pairs with matching Pfam do-
mains were considered “high-confidence” (HC). The most preva-
lent reference structures for HC hypothetical protein models
were ankyrin family proteins (n = 29), followed by ribonucleases

L (8), α-tubulin N-acetyltransferases, and baculoviral inhibitor of
apoptosis (IAP) repeat-containing proteins (Supplementary Ta-
ble S2). As I-TASSER is reported to perform best for single do-
main proteins [17], to discount the influence of large discrep-
ancies in relative peptide length or domain number among HC
model-reference pairs, we compared these features across pairs
with varying numbers of matching Pfam domains. For the ma-
jority (650/1,095 = 59%) of HC query-reference peptide pairs, a
single Pfam code was annotated in the reference, matching ex-
actly to the query peptide. Further, query peptides were gener-
ally within ±20% of the reference peptide length regardless of
the number of domains matched (Supplementary Fig. S2).

For 713 HC models (65% of total), all query- and reference-
derived Pfam codes were identical. In cases where a subset of
Pfam codes differed, the domain family was often the same (e.g.,
“Ankyrin repeat”/“Ankyrin repeats [3 copies]”/“Ankyrin repeats
[many copies]”) or the codes were redundant (e.g., both PF13181
and PF13374 denote a “Tetratricopeptide repeat”). Nevertheless,
we found more terms relating to EF-hand domain and ferredoxin
domain functions among reference-derived Pfam terms (Fig. 2B).
To assess the feasibility of inferring additional protein functions
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Figure 2: Structure prediction and homology searching elaborates putative functions for query peptides. (A) Intersection of predicted structures for which Pfam codes

were available via query or reference peptides. The majority of structures predicted from BLAST-annotated peptides (blue vertical bars) had at least one Pfam annotation
that matched with the reference structure. The majority of peptides that lacked BLAST annotation (aka “hypothetical proteins”; black vertical bars) also lacked Pfam
codes. A total of 824 proteins (792 hypothetical) for which no Pfam codes were annotated in the query or the reference are not displayed. (B) Differential abundance of
Pfam codes assigned to query and reference peptides for 1,095 high-confidence pairs. (C) Number of unique Pfam codes available for query (orange) and reference (teal)

peptides for 1,095 high-confidence pairs. The right-shifted distribution in reference-derived Pfam codes indicates an overall increase in annotation via this method.

via reference-derived Pfam codes, we selected five Giardia Nek
kinase peptides with ankyrin repeat or zinc finger Pfam domains
that were matched to a reference structure annotated with both
kinase (matching) and EF-hand (non-matching) domains. The EF
hand domains in the reference were superimposed onto the Gia-
rdia models; in three cases, these domains overlapped, preclud-
ing the inference of additional function (Supplementary Fig. S3).
For two models, however, EF-hand domains mapped to regions
exclusive of domains predicted in the query peptide. Calcium-
binding sites were also predicted in these models, which fur-
ther supports the possibility of additional calcium-dependent
DNA binding activity in Giardia Nek kinases, which is not dis-
coverable through an HMM-based search of primary peptides. To
investigate reference-derived domains in HC hypothetical pro-
teins, we selected three models annotated with ankyrin repeat
domains that matched to an RNAse L reference structure (PDB
code: 4O1O) containing both ankyrin repeats and a kinase do-
main (Supplementary Fig. S4). Although the kinase domain in
the RNAse reference has been shown to be inactive [18], the anal-

ogous region in the Giardia models is complete and structurally
homologous, indicating that these Giardia proteins may be ge-
netically divergent RNAses. Together, these case studies indi-
cate the potential for structural homology searching paired with
query-reference peptide domain matching to add valuable func-
tional insights into both annotated and hypothetical proteins.
Indeed, when reference-derived Pfam codes were incorporated
for the 1,095 HC Giardia protein models, the average number of
unique Pfam annotations per model increased from 1.34 to 1.66
(Fig. 2C).

While this approach is useful for elaborating and refining
the functional information available for under-annotated
proteomes, it adds time and computational complex-
ity to structural proteomic analysis. We therefore tested
whether metrics output from the I-TASSER suite could ac-
curately predict the presence of matching Pfam domains
in query-reference peptide pairs and could thus be used
as a simple, rapid alternative for assigning confidence in
predicted models. Twelve metrics were extracted that de-
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Table 3: Performance of classifier trained on Giardia duodenalis data
on 100 models predicted for Homo sapiens

H. sapiens structural model
data

Predicted
HC LC Class error

All metrics Actual HC 43 2 0.04
LC 9 46 0.16

scribed inherent properties of predicted structures (”models”)
and the goodness of fit between model-reference pairs
(Table 1). Receiver operating characteristic (ROC) curves were
constructed for each metric, and performance assessed as area
under the curve (AUC). AA identity was the best-performing
metric, with an AUC of 0.92, followed by the peptide length
ratio (0.82), RMSD (0.81), and C-score (0.73). In order to further
increase classification accuracy, we supplied all available met-
rics in combination to train a RF classifier on 1,500 models (750
HC and 750 LC), using the Pfam domain match status as the
factor of interest (Fig. 1). As reference peptide length could not
be computationally curated for 71 Giardia ribosomal proteins
due to redundant and inconsistent chain identifiers, these
were excluded from the classifier training set and subsequent
analysis.

A random forest classifier outperforms individual
I-TASSER metrics in predicting Pfam match status

The classifier predicted the categories of the training data with
90% accuracy (out-of-bag estimated error rate: 10%) and the
hold-out data with 90.8% accuracy. Accuracy over the entire
dataset was 93% (Table 2). The proportional AA identity between
the query and reference peptides was the most important fea-
ture in the model, accounting for a quarter of the prediction
accuracy, followed by the query-reference peptide length ratio
(14%) and RMSD (9%) – results that agree with the AUC per-
formance of these metrics (Fig. 3A and 3B). When AA identity
was omitted from the training data, the classifier performance
dropped only slightly (Table 2), and the latter metrics now ac-
counted for 18% and 13% of the prediction accuracy respectively
(Supplementary Fig. S5). Importantly, the sensitivity and speci-
ficity of the classifier outperformed all other metrics (AUC =
0.976; Fig. 3B). To test whether the classifier could generalize
across species, we generated models for 100 randomly selected
human proteins using I-TASSER (45 HC and 55 LC; Supplemen-
tary Table S1). The classifier correctly predicted the confidence
status for 89 human protein models, with greater class error in
the LC category (Table 3).

We investigated the technical variability of the classifier
by plotting for each model, the HC category classification rate
against the mean probability of HC classification, from 500 tri-
als. For the vast majority of models with a mean HC probabil-
ity above 0.9, the standard deviation in classification rate was
0.02 (Supplementary Fig. S6a). We assessed the robustness of
classifications by training 50 models at a time on randomly se-
lected, progressively smaller datasets and then predicting the
confidence status for the entire Giardia structural proteome. The
variance in prediction was relatively stable until the training set
size fell below 300, although LC predictions were more consis-
tent than HC in all cases (Supplementary Fig. S6b). We estimated
the thresholds for the mean confidence prediction values (train-

ing set size = 1,000; 50 iterations) at which models were rarely
misclassified to be <0.25 and >0.75 for LC and HC models, re-
spectively. As the training set size increased, a distinct subpop-
ulation emerged corresponding to the HC-like models. The fea-
tures driving this separation will be a subject of future research
(Supplementary Fig. S6c).

To ascertain features of those peptides that yield LC mod-
els, we summed Pfam terms associated with Giardia peptides
in this group and found an abundance of galactose oxidase,
dyenin heavy chain, and tubulin C-terminal domains. Such fea-
tures, combined with low secondary structure complexity (i.e.,
higher variance in proportionate predicted secondary structure;
Fig. 4), may be useful filters for a priori elimination of pep-
tides that are unlikely to produce reliable models. Although only
34 LC-like models were identified in this work, we noted 13
Nek kinases, which are a massively expanded gene family in
Giardia that have been extensively manually curated in addi-
tion to sequence-based homology annotation [19]. Interestingly,
structure-based clustering analysis revealed a large cluster of HC
Nek kinase models interspersed with LC-like models (Supple-
mentary Fig. S7). This result indicates the utility of cluster anal-
ysis for following up false negatives, which are easier to discount
given prior knowledge and a sufficiently large gene family.

Application of a random forest classifier to the Giardia
proteome reveals a subset of “high-confidence-like”
model structures

Models with false-positive predictions are of particular inter-
est as these may have similar features to HC models but lack
any matching Pfam domains. Investigation of 305 such “high-
confidence-like” models revealed technical artifacts such as
models of Giardia annexin and flavodiiron proteins that matched
to their respective crystal structures in the PDB (accession no.:
4EVF, 2II2 and 2Q9U) but lacked Pfam annotations for the query
or the reference peptide. These artifacts nevertheless serve as
experimenter-blinded positive controls and demonstrate the ac-
curacy of the RF classifier. Expression of essential protein-coding
genes is generally higher than that of non-essential and pseu-
dogenes [20]. To further validate the distinction between con-
fidence categories, we compared transcription between groups
using mean transcriptional abundance values reported for drug-
sensitive assemblage A Giardia cell lines [12]. Genes encoding
HC and HC-like proteins were transcribed more highly than
those encoding LC models, indicating that HC-like models have
both putative structural properties and transcriptional proper-
ties that are similar to HC models. Interestingly, LC-like models
showed transcriptional abundance similar to that of HC mod-
els, further supporting results from clustering analysis that sug-
gested little difference between HC and LC-like (false negative)
models (Supplementary Fig. S8).

Having assessed the classifier with quantitative and qual-
itative methods, we focused on HC-like enzymes involved in
metabolic processes. Giardia is an amitochondriate protist that
relies on bacterial-like electron transport mechanisms, which in
turn require a highly reduced (electron-rich) intracellular envi-
ronment. These features make Giardia, other amitochondriate
human parasites, and anaerobic bacteria exquisitely sensitive to
redox-active drugs such as the classic nitroheterocyclic metron-
idazole. Among the BLAST-annotated HC-like models were per-
oxiredoxin enzymes with potent antioxidant activity and two
thioredoxins. Both protein classes are implicated in resistance
to nitroheterocyclic drugs in Giardia [21, 22]. A methionine sul-
foxide reductase was also classified as HC-like and was re-
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Table 2: Random forest classifier performance discriminating high- from lower-confidence predicted protein structures

Hold-out data All data
Predicted Predicted

HC LC Class error HC LC Class error

All metrics Actual HC 228 22 0.088 1054 34 0.031
LC 24 226 0.096 305 3437 0.082

% AA identity
omitted

Actual HC 227 23 0.092 1048 40 0.037
LC 29 221 0.116 349 3393 0.093

Metrics for 71 mainly ribosomal protein structures were insufficient for inclusion in data sets for the random forest.

Figure 3: A random forest classifier correctly identifies the majority of high-confidence models using I-TASSER software output and derived metrics. (A) Relative impor-

tance of 12 metrics used to predict the presence of matching Pfam terms between query peptides and reference peptides identified via structural homology searching.
(B) Receiver operating characteristic curves for the best-performing individual metrics (AUC ≥0.7; Table 1) and the random forest classifier (“Exact match prediction”).
The unbroken x = y line represents chance prediction.

cently shown to be secreted by assemblage A Giardia tropho-
zoites and potentially involved in virulence [23]. Two homo-
logues of redox-responsive KefF proteins from Escherichia coli
may be involved in managing DNA damage [24] or may inter-
act directly with nitroheterocyclic drugs. These proteins, en-

coded by GL 17150 and GL 17151, exhibit inverse transcriptional
changes in metronidazole-resistant lines [12], suggesting sub-
tly different biochemistry that may have pronounced effects
on anti-parasitic drug tolerance. The HC-like models generated
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Figure 4: Distribution of I-TASSER software output and derived metrics across high-confidence, high-confidence-like, lower-confidence, and lower-confidence-like

models. The random forest classifier’s prediction of confidence status (“Exact match prediction”) is outlined in black.

here provide a sound basis for further biochemical investigation
of these intriguing enzymes.

Excitingly, 114 models of hypothetical proteins were classi-
fied as HC-like (Supplementary Table S3). Among these were
proteins potentially involved in redox homeostasis and nucleic
acid binding and repair. For example, ferredoxins are central to
electron transport in Giardia [25], with three annotated genes in
the assemblage A genome. An additional three structural homo-
logues of ferredoxins are among the HC-like proteins (GL 23325,
GL 4081, and GL 2863). Investigation of these molecules may yet
reveal greater metabolic flexibility in Giardia than previously ap-
preciated. Interestingly, a homologue of a bacterial glutamate
synthase beta subunit was identified as HC-like, which may
provide additional clues as to the incompletely defined elec-
tron transport pathways in this protist (Fig. 5). Among nucleic
acid-binding and -repair proteins were a RadA homologue that

may be involved in DNA repair and a RadA-interacting partner,
RAD52, that is an annotated HC-like protein [26]. The presence of
pumillo and ribonuclease homologues, as well as several DNA-
binding protein homologues (GL 14310, GL 135970, and GL 9294),
provide numerous starting points to further elucidate funda-
mental biological processes in Giardia.

Discussion

Protein structure prediction is a relatively inexpensive and po-
tentially highly valuable tool for gaining additional insight into
the biology of genetically divergent organisms. Decreasing com-
puting costs coupled with increasing power will likely sup-
port the widespread use of structural proteomics for functional
genome annotation in the near future. However, metrics sup-
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Figure 5: Computationally predicted structures for putative ferredoxin:NAD(P)H reductases (FNRs). The high confidence-like structure predicted for GL 87577 is similar
to the predicted C-terminal of an Entamoeba histolytica protein previously annotated as glutamate synthase (EhNO1) [27]. EhNO1 exhibits FNR activity and, unlike
bacterial enzymes such as the Thermogota maritime FNR (PDB code: 4YLF), does not require an alpha subunit. Tm FNR beta subunit: purple; alpha subunit: blue; FMN
co-factor: green.

plied by structure prediction programs tend to be highly cor-
related and rarely transferrable across software platforms. Ac-
cordingly, informatic approaches that rapidly assess the qual-
ity of structure-based functional predictions on a proteome-
wide scale are now needed. To this end, under the assump-
tion that similar Pfam domains form similar 3D folds, we used
agreement between sequence-based annotations (Pfam codes)
for query peptides and their closest structural homologues (ref-
erence structures) as an independent proxy for confidence in
predicted structures. We assigned high confidence in structural
and functional information predicted for query peptides when
at least one Pfam code matched across query and reference pep-
tides. Unlike BLAST homology results, HMM-based Pfam anno-
tations are particularly attractive for this purpose as they pro-
vide a discrete, species-agnostic annotation that can serve as a
binary factor of interest for classification purposes. We found
that domain matching alone can be useful to refine and ex-
pand annotations for both annotated and hypothetical proteins,
and then developed a RF classifier to predict membership of
the HC category using structural alignment metrics generated
by I-TASSER and some additional derived metrics. Although AA
identity between model-reference pairs was by far the most im-
portant metric for predicting HC occupancy, a classifier trained
on multiple metrics outperformed the AA identity metric, indi-
cating the presence of additional valuable information in met-
rics describing the inherent properties of predicted models and
other features of the model-reference alignment. This finding
demonstrates the utility of combining metrics into a classifier
to stratify confidence in predicted structures. In addition, the
classifier was able to discriminate tiers of HC-like models, which
may be highly genetically divergent but maintain structural fea-
tures of HC models and are otherwise beyond informatic as-
sessment. The classifier can thus provide greater sensitivity and
specificity than fixed thresholds for assigning confidence in pre-
dicted structures.

We suggest that this approach be used to bin predicted struc-
tures into confidence categories that can then be prioritized
for experimental or further in silico investigation. For example,

drug docking simulations, mapping of experimental data such
as post-translational modifications and transcriptional informa-
tion, as well as clustering analyses, can all aid in interpreta-
tion of predicted structures prior to biochemical experimenta-
tion. Sequence-derived Pfam codes should be retained when
available and augmented with structure-derived codes for HC
and HC-like proteins where appropriate. In cases of disagree-
ment, we suggest that sequence-based annotations take prece-
dence over structure-derived annotations. Lower-confidence
structures should be treated with caution. Extension of the ap-
proach presented here could yet improve the resolution of in-
formation associated with HC models by incorporating Pfam hi-
erarchy information as a feature in the RF classifier, differenti-
ating matches by Pfam subtype (family, active site, binding site,
or domain) or using the number of matching Pfam codes as a
continuous outcome. We addressed the question of whether a
classifier trained on one organism is useful for other geneti-
cally distant organisms and showed good performance of the
Giardia-based classifier on human protein models. This indi-
cates that a general RF model may be serviceable for multiple
species, although even better performance might be achieved
with species-specific classifiers. On this point, we expect that
the classifier developed in this work should be relatively conser-
vative, given the vast evolutionary distance between Giardia and
the model organisms from which the majority of empirically-
determined protein structures are derived.

We briefly explored clustering of predicted models for fur-
ther quality control of HC-like and LC-like models and found
that many LC-like models occupied the same space (indicating
similar structure) as HC models (Supplementary Fig. S7). This
suggests that LC-like models, which constitute a small portion
of all models, should not be discarded in first-pass filtering. Fu-
ture work to develop and deploy protein family-specific classi-
fiers and define family-specific clustering coordinates will be of
great interest for further automating confidence assignment.

From a biological perspective, this work demonstrates the
exceptional value of structural proteomics for illuminating the
biology of under-studied and genetically divergent organisms,
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such as Giardia. The electron transport systems in Giardia are
of particular interest given the sensitivity of this parasite to ni-
troheterocyclic drugs, namely, metronidazole, which must be
enzymatically reduced to become activated [25]. The bacterial
glutamate synthase-like structures identified in this work pro-
vide further insight into electron transport systems in Giardia.
As mentioned previously, ferredoxin-based electron transport
chains predominate in this parasite, being essential for energy
generation and antioxidant activity. Pyruvate decarboxylation
is linked to reduction of soluble ferredoxins, and oxygen is as-
sumed to act as a terminal electron acceptor when available [21].
FNR activity is likely required to link glycolysis with reduction
of oxygen and has been theoretically attributed to ferredoxin-
nitroreductases [28]; however, such activity is yet to be demon-
strated. Here, we identify GL 87577 as a glutamate synthase-like
structure in the HC-like category. The only functional informa-
tion previously available for this peptide is a “nucleotide bind-
ing domain” annotation (GiardiaDB.org). The predicted model
for this protein suggests that the bound nucleotide is flavin ade-
nine dinucleotide. The structural similarity between GL 87577
and FNRs encoded in the amitochondriate human parasite En-
tamoeba histolytica [28] and in Thermogota maratima (Fig. 5) sup-
port the possibility that GL 87577 may function as an FNR in
Giardia. Although this protein lacks the contiguous ferredoxin
domain identified in E. histolytica, it is conceivable that the nu-
merous soluble ferredoxins in Giardia may associate with the N-
terminal of GL 87577 to facilitate the FNR reaction. Lastly, the
gene encoding GL 87577 is transcriptionally upregulated in Gia-
rdia cell lines that are resistant to metronidazole, which further
supports a potential role in electron transport, as modulation of
ferredoxin-based electron transport chains is a common feature
of metronidazole resistance.

This work presents a novel approach for classifying compu-
tationally predicted protein structures en masse. We used the I-
TASSER suite to predict the structure of 4,901 G. duodenalis pro-
teins, including 3,251 hypothetical proteins for which little to no
functional information was previously available. Using the pres-
ence of matching domains in query and reference peptides as
a proxy for confidence in model structures, we created an RF
classifier that correctly assigned the vast majority of high- and
lower-confidence structures but also revealed hundreds of high-
confidence-like structures, constituting a second tier of valuable
structural and functional information. This approach therefore
vastly increases the functional information available for hypo-
thetical proteins in Giardia. It is important to note that lower-
confidence structures, for which Pfam codes are not available
or for which query- and reference peptide-derived Pfam codes
do not match, are not necessarily poor predictions. Rather, we
cannot infer the quality of those predictions using the present
approach. Functional information for the highly divergent pep-
tides that predominate among lower-confidence structures may
yet be inferred through the development of a more refined clas-
sifier, possibly in conjunction with expression clustering or high-
throughput subcellular localization analysis [29, 30], for exam-
ple.

Structural proteomics is likely to prove particularly impor-
tant for improving our understanding of pathogens and archaea
that are intractable in the laboratory or lack sufficient funding
for direct experimentation. We have focused on the human in-
testinal pathogen Giardia to demonstrate the utility of computa-
tional structural approaches for illuminating long-standing bio-
chemical questions that are relevant for understanding mech-
anisms of anti-parasitic drug action. The high-confidence and
high-confidence-like structures we identify provide a starting

template for experimental crystallographic structure prediction,
drug docking experiments, and mutational analysis, among
other exciting avenues of enquiry. Importantly, this approach
has the potential to provide valuable additional functional infor-
mation for any organism with a sequenced genome of reason-
able quality and should be amenable to output from other struc-
ture prediction software (e.g., MODELLER [31], Rosetta [32]). We
look forward to broader implementation of this approach and its
potential for both illuminating the biology divergent organisms
and fighting disease.

Availability of supporting data

All predicted structures, reference structures, and predicted co-
factor binding sites are available to view on the Predictein web-
site [15] and for download via a figshare repository [33]. R scripts
used to generate derived metrics, to train and assess the RF clas-
sifier, and to generate the figures and tables in this manuscript
are available at CodeOcean [34] and via a github repository [16].
An archival copy of scripts and data is also available via the Gi-
gaScience repository, GigaDB [35].

Additional files

Supplementary Figure 1: Positive control data suggests I-TASSER
has a greater preference for model-reference coverage than AA
identity. Query-reference peptide length ratios (A) and sequence
similarity (B) for Giardia peptides related to solved Giardia protein
structures. 20 peptides were selected for which the difference in
query-reference AA length was < 10%. Predicted Giardia mod-
els that were matched to non-Giardia reference structures by I-
TASSER (middle and right series) were further investigated at the
primary sequence level. ∗ adjusted P < 0.05 relative to correctly
matched model-reference pairs (left series) (Tukey’s HSD) after
ANOVA. N.B. Data in middle and right series represent the same
query peptides measured against different reference peptides.
See supplementary methods for further details.
Supplementary Figure 2: Relative peptide length and number of
matching Pfam domains. Number of unique matching Pfam do-
mains between query and reference peptides (x axis) is plotted
against the peptide length ratio (y axis), faceted by the number of
unique Pfam domains in the PDB reference. Numbers above each
box plot represent the total group size. The majority of high-
confidence query peptides (x axis >= 1) are similar in length
to, and share a single Pfam domain with the reference peptide,
in which no additional Pfam domains are annotated (top left
panel).
Supplementary Figure 3: Spatial overlap in query- and
reference-derived domains in high-confidence models. Models
of five Giardia peptides encoding Nek kinases were matched
with a Calmodulin-domain protein kinase 1 via structural ho-
mology searching (PDB code: 3HX4; panel A, top left). EF-hand
domains in 3HX4 are colored grey. Residues in Giardia models
that overlap with the reference EF hand domains in 3D space
are also colored grey. Ankyrin repeat, and Zinc-finger domains
annotated in Giardia models are colored green and royal blue,
respectively. At least one EF hand domain is superimposed
on a separate region to query-derived domains for the models
in panel A, indicating possible additional functions for these
Giardia Nek kinases. Little can be concluded in cases where
query and reference-derived domains overlap in 3D space
(panel B), however we suggest that query-derived domain
annotations, which are sufficiently similar to canonical domain
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sequences to be detected via HMM (i.e., at the sequence level),
take precedence. Giardia protein accession codes (left-right):
GL 7356, GL 5999 (panel A); GL 137743, GL 137742, GL 15035
(panel B).
Supplementary Figure 4: Putative kinase domains within mod-
els of hypothetical Giardia proteins suggest possible ribonu-
clease function. The RNAse L reference structure (PDB code:
4O1O; top left) contains both ankyrin repeat domains, and a ki-
nase domain (orange color). Models of three Giardia hypotheti-
cal proteins (top right: GL 115479; bottom left: GL 14433; bottom
right: GL 30474) with ankyrin repeat annotations were matched
to 4O1O. Structural alignment and visual inspection revealed
kinase-like domains (orange) in these Giardia hypothetical pro-
tein models, characteristic of ribonucleases.
Supplementary Figure 5: Relative importance of features used to
predict the high-confidence model category, when proportional
amino acid identity (%AA ID) is omitted from the training data.
Supplementary Figure 6: Variation in classifier performance. A)
500 models were trained on the same training set (750 HC +
750 LC) and variance in prediction of HC status was quantified.
Variance is displayed as log10(1/standard deviation) to represent
confidence in prediction (y axis), relative to mean prediction
(x axis). B) To test robustness of predictions, 50 models were
trained on randomly selected, balanced sets of varying size (x
axis), and variance in prediction (y axis) was calculated. C) The
relationship between mean HC status prediction (i.e., mean “Ex-
act match prediction”; y axis) and the HC call rate (x axis), aver-
aged over output from 50 models is displayed, faceted by training
set size. Points are colored by the RF confidence groups predicted
from the original model (cf Methods; Figs 3 & 4).
Supplementary Figure 7: Clustering Nek kinases by sequence
and predicted structural similarity provides additional informa-
tion with which to judge model quality. A) Multidimensional
scaling plots for Nek kinases clustered according to amino acid
sequence similarity (BLASTp) and B) predicted structural simi-
larity (TM-align). A cluster of HC models is evident at the left of
panel B, with LC-like models interspersed. LC models predomi-
nate in the cluster at right. The negative status of LC-like Nek ki-
nase models could be discarded based on their presence within
the HC model cluster space.
Supplementary Figure 8: Transcriptional abundance differen-
tiates high-confidence and lower-confidence protein model
groups. Length-normalized transcriptional abundance of genes
encoding HC, HC-like, LC and LC-like protein models. Transcrip-
tion of both HC groups is higher (adjusted P < 0.05) than the LC
group. However HC and LC-like models are transcribed at similar
levels.
STable 1.xlsx I-TASSER output metrics and derived metrics for
100 structural models predicted from peptides encoded in Homo
sapiens (45 high confidence and 55 lower confidence).
STable 2.xlsx I-TASSER output metrics, derived metrics, closest
structural homologue information, confidence category and and
RF-based confidence category prediction for 4,901 protein struc-
ture models predicted from the Giardia duodenalis genome.
STable 3.xlsx I-TASSER output metrics, derived metrics, clos-
est structural homologue information, confidence category and
and RF-based confidence category prediction for 114 high-
confidence-like structures of hypothetical proteins encoded in
the Giardia duodenalis genome.
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3D: Three-dimensional; AA: Amino acid; ANOVA: Analysis of
variance; AUC: Area under the receiver operating characteristic
curve; BLAST: Basic local alignment search tool; C-score: Conver-
gence score; FNR: Ferredoxin:NAD(P)H reductase ; GO: Gene on-
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