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Abstract

Quantification of the angular orientation distribution of fibrous tissue structures in scientific

images benefits from the Fourier image analysis to obtain quantitative information. Mea-

surement uncertainties represent a major challenge and need to be considered by propagat-

ing them in order to determine an adaptive anisotropic Fourier filter. Our adaptive filter

method (AF) is based on the maximum relative uncertainty δcut of the power spectrum as

well as a weighted radial sum with weighting factor α. We use a Monte-Carlo simulation to

obtain realistic greyscale images that include defined variations in fiber thickness, length,

and angular dispersion as well as variations in noise. From this simulation the best agree-

ment between predefined and derived angular orientation distribution is found for evaluation

parameters δcut = 2.1% and α = 1.5. The resulting cumulative orientation distribution was

modeled by a sigmoid function to obtain the mean angle and the fiber dispersion. A compari-

son to a state-of-the-art band-pass method revealed that the AF method is more suitable for

the application on greyscale fiber images, since the error of the fiber dispersion significantly

decreased from (33.9 ± 26.5)% to (13.2 ± 12.7)%. Both methods were found to accurately

quantify the mean fiber orientation with an error of (1.9 ± 1.5)˚ and (2.3 ± 2.1)˚ in case of the

AF and the band-pass method, respectively. We demonstrate that the AF method is able to

accurately quantify the fiber orientation distribution in in vivo second-harmonic generation

images of dermal collagen with a mean fiber orientation error of (6.0 ± 4.0)˚ and a dispersion

error of (9.3 ± 12.1)%.

Introduction

The evaluation of the angular distribution of structures in scientific greyscale images is of

major importance for various applications like in the analysis of soft tissue fibers e.g. in [1–15],

textiles [16, 17], electrospun scaffolds [18–20] or even reinforced concrete [21]. Knowing the

angular distribution in fiber reinforced materials gives meaningful insights into their mechani-

cal functionality [22]. For example, in case of biological tissue, the orientation distribution of

collagen fibers can be directly inserted into biomechanical material models for finite element

simulations [23, 24].
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Fiber images from different image modalities such as scanning electron microscopy [25],

histology [1], and laser scanning microscopy as e.g. in [2, 3, 7, 8, 10, 15, 22, 26–29] provide

diverse image properties in terms of sharpness, contrast and fiber appearance. Thus, a variety

of automated image processing techniques were developed including ellipsoidal fitting in the

spatial domain [30], fiber tracking [31], the structure tensor method [10] and Fourier domain

image processing [7, 9, 12, 32–34].

Looking into the Fourier method in more detail, it can be split into four major steps: image

preprocessing, Fourier transform and filtering, calculation of the angular distribution and its

quantification.

In the Fourier domain it is of key importance to reduce noise as it was shown that rotation-

ally symmetric band-pass filtering significantly improve the accuracy of the method [6, 33, 34].

In mechanical experiments, (e.g. stretching of fiber reinforced material), fiber properties such

as angular distribution and diameter get modified [2, 35]. Accordingly, isotropic as well as

anisotropic signal responses in the Fourier domain has to be accounted for, which requires an

adaptive anisotropic filtering. Quantification of the angular orientation distribution in terms

of mean angle and fiber dispersion is commonly realized by fitting a semi-circular von-Mises

distribution to the angular orientation distribution [6, 10, 12, 22, 30, 34, 36, 37].

Here, we investigate the Fourier method by exploiting objective approaches at any of the four

mentioned steps. To approach the requirement of adaptive anisotropic filtering we introduce an

image filter, which is based on the propagation of measurement uncertainties through the dis-

crete Fourier transform. And finally, in terms of an improved quantification of the angular orien-

tation distribution, we test a sigmoid function to model the cumulative orientation distribution.

To capture the performance of our method, we quantitatively compare it to a band-pass

method, introduced by Morrill et. al [34], which was proven to provide an accurate quantifica-

tion of the angular orientation distribution. Based on realistic Monte-Carlo simulated grey-

scale fiber images we observe the evolution of accuracy with respect to fiber width, fiber aspect

ratio, degree of alignment and image quality.

To validate the applicability of our method on real images, we quantify the mean fiber ori-

entations and dispersions in vivo second-harmonic generation (SHG) images of collagen fibers

of human skin [38].

Material and methods

Any calculations were performed using MATLAB [39]. The Image Processing Toolbox [40] as

well as the Curve Fitting Toolbox [41] were applied.

Note that in the following the term uncertainty is used for statistical measurement errors,

whereas the term error is associated with the deviation of a value to its reference.

Fourier transform and uncertainty propagation

Let I(x, y) be an image with x 2 [0, X] and y 2 [0, Y]. The discrete Fourier transform Iðx; yÞ !
F ½Iðx; yÞ� ¼ Îðu; vÞ is given by:

Îðu; vÞ ¼
XY � 1

y¼0

XX� 1

x¼0

Iðx; yÞ � e� 2pi x
Xuþ

y
Yvð Þ ; ð1Þ

where the real and imaginary parts read as

<½Îðu; vÞ� ¼
XY� 1

y¼0

XX� 1

x¼0

Iðx; yÞ cos 2pi
x
X
uþ

y
Y
v

� �� �

ð2Þ
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I½Îðu; vÞ� ¼ �
XY� 1

y¼0

XX� 1

x¼0

Iðx; yÞ sin 2pi
x
X
uþ

y
Y
v

� �� �

ð3Þ

The intensities of the angular distribution are calculated by evaluating the centered power

spectrum of I(x, y), which is defined as the squared magnitude of Î :

Pðu; vÞ ¼ jF ½Iðx; yÞ�j2 ¼ <½Î �2 þ I½Î �2 ð4Þ

Any intensity image exhibits a specific intensity uncertainty ΔI(x, y), which is at least equal

to the photon counting uncertainty DIðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðx; yÞ

p
assuming Poissonian statistics [42].

The uncertainty of the real and imaginary part, Δ< and ΔI are given by propagating Eqs 2

and 3:

D<½Îðu; vÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XY� 1

y¼0

XX� 1

x¼0

DI2ðx; yÞ cos 2 2pi
x
X
uþ

y
Y
v

� �� �
v
u
u
t ð5Þ

DI½Îðu; vÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XY� 1

y¼0

XX� 1

x¼0

DI2ðx; yÞ sin 2 2pi
x
X
uþ

y
Y
v

� �� �
v
u
u
t ð6Þ

Since D<½Î � and DI½Î � both depend on the image uncertainty ΔI, the covariance DÎ<I has

to be taken into account [43, 44]:

DÎ<Iðu; vÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XY� 1

y¼0

XX� 1

x¼0

DI2ðx; yÞ sin 2pi
x
X
uþ

y
Y
v

� �� �
cos 2pi

x
X
uþ

y
Y
v

� �� �
v
u
u
t ð7Þ

The calculation of DPðu; vÞ is straight forward:

DP ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð<½Î � � D<½Î �Þ2 þ ðI½Î � � DI½Î �Þ2 þ 2 � <½Î �I½Î � � DÎ 2
<I

q
ð8Þ

Noise simulation

To verify the validity of our image transformations and uncertainty calculations, a Monte-

Carlo based noise simulation with different test images was carried out.

The uncertainty of each pixel, DIðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðx; yÞ

p
, is assumed as a normal-distributed

fluctuation of a repeated measurement Ik(x, y) around the measured intensity Iðx; yÞ ¼
1

N

PN
k¼0
Ikðx; yÞ ¼ 1

N

PN
k¼0

Iðx; yÞ þ dIkðx; yÞð Þ with 1

N

PN
k¼0
dIkðx; yÞ ¼ 0. N is the number of

measurements (Fig 1).

The propagation of the image uncertainty ΔI(x, y) through an arbitrary image operation

I(x, y)! C(I(x, y)), ΔI(x, y)! ΔC(I(x, y)) is compared to the standard deviation of the Monte-

Carlo simulated images ΔCMC:

DCMC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

k¼0

½CðIðx; yÞ þ dIðx; yÞÞ � CðIðx; yÞÞ�2
s

ð9Þ
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The result of Eq 9 is then compared to the calculated uncertainty ΔC by computing the rela-

tive deviation as:

DMC ¼ ðDC � DCMCÞ=DCMC ð10Þ

Preprocessing and filtering

Artifact removal. The computation of the discrete Fourier transform (Eq 1) intrinsically

assumes a periodical continuation of the image causing cross-like artifacts to appear in the

Fourier domain mainly along the major axis (Fig 2). The magnitude of these artifacts depends

on the image intensities near the boundary. Weighting functions in the spatial domain such

as the Hamming or Welch window, which gradually reduce the image intensity towards the

boundary, are able to remove these artifacts [6, 12, 16, 32, 36, 45]. However, applying window

functions is a trade-off between reducing the image content and removing the artifacts in the

Fourier domain. To overcome the drawback of weighting functions in the spatial domain, the

Fig 1. Schematic outline of the pixel-wise noise simulation. (A) The photon counting noise results in the standard

deviation of each image pixel. In the pixel-wise uncertainty simulation, normal distributions are used to sample the

intensity deviation δI(x, y) in each pixel, as exemplary shown in (B) and (C) for pixels (1, 2) and (1, 1), respectively.

Thereby, high intensity pixels are associated with a large absolute deviation of potential intensity values (B).

https://doi.org/10.1371/journal.pone.0227534.g001
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linear decomposition of the image I(x, y)! per[I(x, y)] into a smooth component s(x, y) and a

periodic component p(x, y) = per[I(x, y)] with I(x, y) = p(x, y) + s(x, y) as proposed by Moisan

[45] is used here (Fig 2). Since the periodic component per(I) differs only slightly from I (Fig

2), the effect of the periodic mapping on ΔI is believed to be negligible. Verification of the

effect of the periodic mapping on the image uncertainty is carried out by applying the Monte-

Carlo noise simulation and evaluating Eq 9 to three different test images. Classic image pro-

cessing greyscale test images including the Lena, Cameraman and Boat image were chosen

[46]. The Boat image serves as example in several figures. The image uncertainty ΔI is assumed

as DI ¼
ffiffi
I
p

, which is indeed an arbitrary choice but since the focus here is on validation only

the assumption is reasonable.

The overall mean deviation (Eq 10,N = 105 iterations) averaged over all images and the entire

image range amounts for ΔMC = (0.01 ± 2.21)%. The image uncertainty exceeds the Monte-

Fig 2. Effect of spatial domain image filters on the power spectrum. Images in the spatial domain are shown in

greyscale (A-C), whereas the respective power spectra are shown in false colors as well as in logarithmic scale for a

better visibility (D-H). Power spectrum values are shifted, such that low frequencies are located in the center. (A)

shows the original image boat [46]. (B) shows the periodic component of the periodic plus smooth decomposition of

Moisan et. al [45]. Apart from small areas near the image boundary, the entire image information of the original image

is conserved. However, as shown in (C), the Hamming window reduces the image information gradually towards the

image boundary. (D), the discrete Fourier transform of images causes cross-like artifacts (black arrows) to appear in

the power spectrum as the image is assumed to be periodical. (E-F), these artifacts disappear in the power spectra if

firstly either the periodic decomposition or the Hamming window are applied. Note that the artifacts reappear in (G)

and (H) where the absolute difference of the power spectra of the filtered images with respect to the power spectrum of

the original image are shown. (G) also reveals that mostly non-directional information is removed from the power

spectrum of the original image as only cross-like shapes are pronounced. Other than in (F), where the reduction of

image information by the Hamming window also affects the power spectrum, which appears less sharp (white arrows)

compared to (D) and (E).

https://doi.org/10.1371/journal.pone.0227534.g002
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Carlo calculated uncertainty at the boundary by (23 ± 6)%. Thus, the original image uncertainty

is slightly underestimated due to the uncertainty of the remaining pixels by −(0.23 ± 0.61)%.

This deviation is considered as sufficiently low to reasonably assume Δ(per(I)) = ΔI. Detailed

results for every test image are listed in the supplementary (S1 Table).

Power spectrum filtering. The same set of test images is used for validating the calculated

uncertainty of the real and imaginary parts (Eqs 5 and 6). The averaged relative deviation (Eq

10) amounts for (0.00 ± 0.22)% for the real and imaginary parts of all images.

Lastly, the Monte-Carlo method was applied on Eq 8 for the same images and same number

of iterations. Averaging the relative deviation ΔMC over the entire image yields a maximum

deviation of −(59.32 ± 26.48)% (S2 Table). However, ΔMC correlates well with the relative

uncertainty of the power spectrum DP=P (Fig 3), which ranges from minor values up to rela-

tive uncertainties above 800%. Restricting the area of evaluation to pixels which exhibit a maxi-

mum relative uncertainty of 100% increases the accuracy of the uncertainty calculation to

−(8.09 ± 5.46)% at maximum (S2 Table, Fig 4). Excluding values with a high relative uncer-

tainty naturally filters the power spectrum, while leaving the back-transformed image relatively

unaffected.

In order to find the optimal cut-off value δcut, images with known ground truth have to be

used. Since fibrous images are in the scope of this work, Monte-Carlo generated greyscale fiber

images serve as test images for determining the optimal cut-off value.

Monte-Carlo image generation

Besides the Monte-Carlo simulation for noise simulation, another Monte-Carlo routine

was implemented for the generation of images containing fibers with a known angular

distribution.

Fig 3. Relative uncertainty between calculated and simulated uncertainty of the power spectrum. The relative

deviation between the theoretical uncertainty DP and the Monte-Carlo simulated uncertainty DPMC, DMC ¼

ðDP � DPMCÞ=DPMC of the Boat image (Fig 4). Note that the spectrum values are shifted such that low frequencies are

located in the origin and that the original image was used here.

https://doi.org/10.1371/journal.pone.0227534.g003
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A single fiber is defined by its width, length, orientation and location. While several publi-

cations dealt with the generation of binary fiber images [12, 34] we focus on the generation

of random greyscale intensity images including noise knowing that the contrast of the fibers

influence their contribution within the power spectrum [36]. Since our goal here is to find the

Fig 4. Relative uncertainty and filtering of the power spectrum. The relative uncertainty (A) of the power spectrum

increases with distance from the origin to values above 800%. A filter mask for the power spectrum is achieved from

excluding relative uncertainties above δcut. (B-E) show the filtered power spectra for different δcut with the respective

inverse Fourier transformations in (F-I). The number of remaining pixels after filtering as well as the error of the

uncertainty calculation compared to the Monte-Carlo simulation ΔMC is shown in (J). The mean error, its standard

deviation (grey shaded areas) as well as the number of remaining pixels gradually decrease towards a lower threshold

δcut. Note that even if 99.5% of the pixels are excluded, the contours of the major image components are still visible (E).

https://doi.org/10.1371/journal.pone.0227534.g004
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optimal evaluation parameters for a large variety of realistic images similar to the SHG images

of dermal collagen that are used later on, the usage of binary images is not reasonable. In addi-

tion, our approach aims on evaluating images without any preprocessing, thus the test images

should cover different image qualities.

The orientation of the fibers is sampled from a semi-circular π-periodic von-Mises distribu-

tion:

Pðy; �y; kÞ ¼
1

pI0ðkÞ
ek�cosð2ðy� �yÞÞ

ð11Þ

with the dispersion parameters k and �y defining the width and the center of the distribution.

I0(k) is the modified zero order bessel function I0ðkÞ ¼ 0

p

R p
0
cos ðxÞdx. A rejection sampling

algorithm is used to sample fiber angles. The intensity of each sampled fiber with certain width

and aspect ratio is added to the existing image to obtain a greyscale image. The image is then

smoothed using a gaussian kernel with standard deviation of two to slightly dissolve sharp

edges. After that, intensities are scaled such that the maximum intensity is equal to the maxi-

mum intensity of a 16-bit intensity image. Width, aspect ratio and dispersion k of the fibers

affect the accuracy of the image processing algorithm [34]. The minimum fiber width amounts

for one pixel as the maximum fiber width is confined by the image size and the maximum

allowed aspect ratio. As images at 512 × 512 pixels are generated, a maximum aspect ratio of

45 and a maximum fiber width of 10 are chosen to still allow for an effective placement of the

fibers within the image boundaries. A minimum aspect ratio of 10 was proposed by Marquez

et. al [6] to allow for a reasonable evaluation of orientation. As we are generating greyscale

fiber images with overlapping fibers we choose a minimum aspect ratio of 15. Dispersed as

well as aligned fiber networks are achieved by sampling k within [0.01, 5].

To enforce different image qualities, we introduce a noise factor. The noise factor ranges

from a minimum of 0, which corresponds to a completely denoised image up to a maximum

of 1 which corresponds to random speckle noise which can value up to half of the maximum

intensity of the image.

Angular distribution generation

Quantifying the angular orientation of the fibers by means of mean angle and fiber dispersion

requires the calculation of the total intensity of each angle of the filtered power spectrum.

This is realized by using a radial summation. The total intensity of a certain angle is given

by the sum over all pixels of the power spectrum, that are included within the angular range

[−δθ, +δθ]. The contribution of each pixel is weighted by the percentage of area, which is

included in [−δθ, +δθ].

IðyÞ ¼
X

y2½� dy;dy�

X

r

P0ðy; rÞ � wyðy; rÞ with
1

X � Y

X

y

X

r

wyðy; rÞ ¼ 1 ð12Þ

The uncertainty propagates as:

DIðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

y2½� dy;dy�

X

r

ðP0ðy; rÞ � wyðy; rÞÞ
2

r

ð13Þ

The calculated intensity is normalized such that
P

y
IðyÞ ¼ 1. An issue that is faced here

are high intensity pixels close to the center of the power spectrum, which do not provide any

directional information. The intensity of these pixels is several magnitudes higher than the

intensities of interest, which causes artifacts in the angular distribution. A sensitivity analysis

Noise reduction and quantification of fiber orientations
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of a set of test images showed that zeroing pixel with a distance smaller than 3 pixels from the

center is sufficient to remove these artifacts (S1 Fig).

Additionally, a modified intensity is defined, which exploits the anisotropy of the intro-

duced filter. Let NΔθ be the number of non-zero pixels within the angular range Δθ of the fil-

tered power spectrum P0. The modified intensity then reads as:

IðyÞ ¼ Na
Dy
�
X

y2½� dy;dy�

X

r

P0ðy; rÞ � wyðy; rÞ; ð14Þ

with the uncertainty given by:

DIðyÞ ¼ Na
Dy
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

y2½� dy;dy�

X

r

ðP0ðy; rÞ � wyðy; rÞÞ
2

r
; ð15Þ

where α defines the impact of NΔθ. A value of α = −1 corresponds to an averaged intensity,

whereas α> 0 amplifies the number of remaining pixels within the given angular range. The

ideal choice of α strongly depends on the chosen cut-off value δcut for the power spectrum.

For example in case of a low cut-off value, the filtered power spectrum P0 might exhibit a high

anisotropy, where α> 1 might lead to a more accurate result compared to the unweighted

sum. Considering a very high cut-off value, P0 ¼ P holds and the number of summed pixels

should not have any influence. Thus α = −1 might be the value of choice. A somewhat similar

approach was used by Polzer et. al [36], which used a factor to empower the entire intensity

distribution IðyÞ.
To find the optimal parameter set [θcut, α], a two parameters optimization algorithm is

applied on N = 104 Monte-Carlo generated images. For this purpose we use the MATLAB-

implemented Nelder-Mead simplex method (fminsearch) [47]. To account for different types

of images, fiber properties, namely width, aspect ratio and dispersion as well as the noise factor

are randomly sampled from the respective interval specified before. We use the mean squared

difference (MSD) between the calculated orientation distribution IMCðyÞ and the prescribed

orientation distribution IðyÞ as objective function, which is minimized:

MSD ¼
1

N � 1

XN

i¼0

SDi with SDi ¼
X

y

ðI iðyÞ � I i;MCðyÞÞ
2

ð16Þ

Termination was enforced as soon as the difference between consecutive iterations of both

parameters was smaller than 10−3. MATLAB uses the same termination criterion for both

parameters. Therefore, we scaled α by a factor of 0.1 to match the magnitude of δcut. A subset

of 103 images was evaluated prior optimization on a 10 × 10 grid with α 2 [−1, 8] and with

δcut 2 [1, 100]% to ensure that the calculated minimum is global and to get an estimate for the

starting values of each parameter. We estimated that α = 2 and δcut = 2% provide a suitable set

of starting values.

Angular distribution quantification

Conventional approach. The common approach for quantifying the mean orientation

and dispersion is to fit a semi-circular von-Mises function (Eq 11) to the distribution IðyÞ.
This approach provides accurate results in case of aligned fibers but looses accuracy in case of

isotropic distributions [34]. Additionally, the use of an arbitrary averaging range to smooth

the angular orientation distribution prevents a meaningful and objective interpretation of the

data in terms of e.g. the number of dominant fiber directions.

Noise reduction and quantification of fiber orientations
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New fitting approach. To find an objective evaluation procedure which reliably can deal

with unprocessed data, fitting the cumulative distribution function (CDF) CðyÞ is quite appeal-

ing, since the data are naturally smoothed:

CðyÞ ¼
Xy

y0¼� 90
�

Iðy0Þ ð17Þ

The uncertainty of DC is given by a quadratic summation:

DCðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xy

y0¼� 90
�

ðDIðy0ÞÞ2
v
u
u
t ð18Þ

Since the choice of the starting angle of the summation (Eq 17) is arbitrary, the uncertainty

DC must be independent from θ. Thus, the maximum uncertainty of CðyÞ is set as uncertainty

for all angles. A peak in the angular distribution corresponds to a step in the cumulative distri-

bution, which approaches a first order polynomial for isotropic distributions. To model the

cumulative orientation distribution a sigmoid function is chosen:

Sðy; b; �yÞ ¼
1

1þ e� b�ðy� �yÞ
ð19Þ

The advantage of fitting a von-Mises distribution is its semi-circularity, namely PVM(θ) =

PVM(θ + 180˚). Since the cumulative distribution function is monotonically increasing, the

corresponding condition reads as CðyÞ ¼ Cðy � 180
�

Þ þ 1 ¼ Cðyþ 180
�

Þ � 1. In order to

meet this condition, Eq 19 is modified by adding neighboured sigmoid functions accounting

for the added offsets:

Scircðy; b; �yÞ ¼ Sðy; b; �yÞ þ Sðyþ 180
�

; b; �yÞ � Sð180
�

; b; �yÞ þ Sðy � 180
�

; b; �yÞ � Sð� 180
�

; b; �yÞ ð20Þ

Validation

Comparison to band-pass filtering. In the following we refer to our method as AF

method (adaptive filtering method) for convenience. To capture the performance of the imple-

mented procedure we compare the AF method to the state of the band-pass method, which

has been proven to provide more accurate results than other methods [34]. In order to observe

the influence of fiber and image properties on the accuracy of both methods, we created a data-

set, where each property is altered separately using the introduced Monte-Carlo method for

generating greyscale images. The following sets of values were used for creating the image

dataset:

width ¼ f1; 5; 10g; AR ¼ f15; 30; 45g; noise factor ¼ f0; 0:5; 1g ð21Þ

and k ¼ f0:01; 0:25; :::; 5g ð22Þ

In order to enable a reasonable statistical evaluation, 20 images with random mean fiber

orientation �y are created for each category, which adds up to a total of N = 33 � 21 � 20 = 11,

340 images. Each image is evaluated using the AF method using the optimal evaluation param-

eters δcut = 2.1% and α = 1.5 and using the band-pass method of Morrill et. al by applying their

provided software FiberFit. We follow their recommendations of the upper and lower cutoff
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parameter t = 2 and t = 32 yielding a lower cutoff frequency of 8 and an upper cutoff frequency

of 128. The resulting evaluation parameters, mean orientation �y and dispersion coefficients b
and k are compared to the reference parameters. To account for Monte-Carlo sampling errors,

reference mean orientation and distribution parameter k are obtained from fitting the fre-

quency distribution of sampled fiber angles. The reference dispersion parameter b is obtained

from fitting the cumulative frequency distribution of sampled fiber angles using the modified

sigmoid function (Eq 20). Mean orientations �yFF of the FiberFit software were inverted and

shifted to match our coordinate system �y 0FF ¼ 180
�

� �yFF. Additionally, angles exceeding the

interval [0˚, 180˚] were shifted by 180˚. Comparisons to the reference parameters are per-

formed by considering the absolute error of the mean orientation angle angle D�y and the abso-

lute relative error of the dispersion parameters Δbrel and Δkrel. A small fraction of images were

found to exhibit large relative errors Δbrel and Δkrel. Those are classified as outliers if they are

exceeding three times the interquartile range of the respective distribution.

Statistics. A paired t-test is used to calculate the level of significance (p-value) between the

error of both evaluation methods for the same subset of images in terms of width, aspect ratio,

dispersion and noise. If a value is classified as outlier, the corresponding value of the pair is

excluded for p-value calculation. An unpaired t-test is used for p-value calculations among

groups with different noise factor. Significance levels of 0.05, 0.01 and 0.001 are marked as

(�, ��, ���), respectively.

Application on experimental data. Finally, we checked the applicability of the AF

method on in vivo experimental data. We use SHG-images of dermal collagen that were

recorded using a CE-certified multi-photon microscope (DermaInspect) for in vivo applica-

tions, which was developed in collaboration with Jenlab GmbH (Jena, Germany). The SHG

signal was captured using an excitation wavelength of 820 nm together with a specific band-

pass filter (410 ± 10 nm, AQ 410/20m-2P, Chroma Technology Corp., Bellows Falls, VT). A

scan time of 13 s and image dimensions of 512 × 512 pixels with a 220 × 220 μm field of view

were chosen as image acquisition parameters. For a detailed description of the microscope

refer to [48–50]. In total, ten SHG images of dermal collagen were taken from ten different vol-

unteers at a depth of 30 μm under the basal membrane located at the cheek.

This study was conducted according to the recommendations of the current version of the

Declaration of Helsinki and the Guideline of the International Conference on Harmonization

Good Clinical Practice, (ICH GCP). In addition, this study was approved and cleared by the

institutional ethics review board (Beiersdorf AG, Hamburg, Germany). Written informed con-

sent was obtained from each volunteer.

To get the reference angular distribution we manually trace the collagen fibers. Statistical

variance is achieved by tracing each image three times in random order. The angular orienta-

tion distribution is achieved from adding up the length of each fiber being oriented along a

certain angle in 1˚ steps. A smooth distribution is obtained by filtering the data using a Gauss-

ian kernel with a standard deviation of 1˚. Reference parameters �ym and bm are obtained by fit-

ting the modified sigmoid function (Eq 20).

Results

Angular distribution generation

Fig 5 shows the result of the optimization procedure of the evaluation parameters δcut and α.

Apart from a minor fraction of outliers, data points of minimal difference spread within δcut <

4% and 0< α< 3. Since the frequency distributions p(δcut) and p(α) are not normally distrib-

uted, the median value of both parameters is considered as estimation of the overall minimum
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(δcut = 2.1%, α = 1.5). The mean squared difference minimizes for α in [1, 3] and for δcut <

10% indicating that a global minimum is considered. Subsequent calculations using the AF

method are performed with δcut = 2.1% and α = 1.5. Median values of the mean squared differ-

ence as a function of fiber dispersion k, image quality (NF) and fiber geometry (width, aspect

ratio) are provided in the supplement (S2 Fig).

Validation

Comparison to band-pass filtering. The overall error of the mean fiber orientation, D�y

amounts for (2.2 ± 1.8)˚ and (1.8 ± 1.4)˚ (p< 0.001) for the band-pass and the AF method,

respectively (Table 1). Note that for calculating the overall error D�y highly dispersed fiber

Fig 5. Effect of evaluation parameters δcut and α on the error. False colours indicate the mean squared difference

MSD between the computed angular distributions and their reference on a subset ofN = 103 images for a discrete set of

10 × 10 parameter values. Data points represent the optimal parameter set for each image (N = 104) based on the

exploited two parameters Nelder-Mead optimization algorithm which used the squared difference between reference

and calculated orientation distribution as objective function. Histograms show the frequency distribution of parameter

δcut and α. The median values of both distributions(δcut = 2.1%, α = 1.5) were identified as optimal evaluation

parameters. The mean number of iterations, until the termination criterion was met, is 23 ± 9. Only 0.2% of the images

reached the maximum number of iterations, which was set to 100.

https://doi.org/10.1371/journal.pone.0227534.g005

Table 1. Overall error of mean orientation and dispersion determined by the band-pass method and by the AF method. Note that f indicates the percentage of data

points that were classified as outlier.

Δ�θ ½
�

�ðk > 1Þ Δbrel|Δkrel[%] fΔb|Δk[%] R2

band-pass method 2.3 ± 2.1 33.9 ± 26.5 0.73 0.78 ± 0.24

AF method 1.9 ± 1.5 13.2 ± 12.7 0.76 0.99 ± 0.00

p-value < 0.001 < 0.001 < 0.001

https://doi.org/10.1371/journal.pone.0227534.t001
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networks (k< 1) were excluded from statistical analysis since they do not feature a mean

orientation. The overall mean error of the dispersion parameters Δkrel, Δbrel amounts for

(33.9 ± 26.5)% and (13.2 ± 12.7)% (p< 0.001) using the band-pass and the AF method, respec-

tively. It was found that for both methods the error of the mean fiber orientation D�y mainly

depends on the degree of the alignment of the fiber network (Fig 6A) and is rather indepen-

dent from the fiber geometry or image quality (not shown). The error of both methods reduces

towards an increasing degree of fiber alignment.

The error of the dispersion parameters Δbrel and Δkrel is found to strongly depend on

the degree of alignment, fiber geometry and image noise (Figs 6B and 7). With increasing

the degree of alignment, the fiber dispersion error of the AF method, Δbrel, continuously

decreases from a maximum error of 10.9% at k = 0.01 to a plateau of�5% for k> 2.2. The

Fig 6. Error of the band-pass method and the AF method vs. the dispersion k of the fiber network. Fibers with a

width of 5, aspect ratio of 30 and an image noise factor of 1 were considered here. (A) shows the error of the mean fiber

orientation D�y. Inlets show exemplary Monte-Carlo generated greyscale fiber images from respective distributions. (B)

shows the relative error of the fiber dispersion parameters Δkrel, Δbrel. Sample greyscale images, that were simulated by

the implemented Monte-Carlo method are shown for k = 0.01 and k = 5. (�p< 0.05, ��p< 0.01, ���p< 0.001).

https://doi.org/10.1371/journal.pone.0227534.g006
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fiber dispersion error of the band-pass method, Δkrel, exhibits a large error at k = 0.01 Δkrel =

101.4%, which is first reduced to a minimum error of Δkrel� 12% around k� 1 but then is

increased again towards aligned fiber networks to an error of 27.7% at k = 5 (Fig 6B). Except

for k = 1 and k = 1.25 the error of both methods shows a significant (p< 0.05), for most values

of k even highly significant (p< 0.001) difference.

Other than the error of the mean fiber orientation, the error of the dispersion parameter

strongly depends on the fiber geometry, image noise and choice of evaluation method (Fig 7).

An at least significant decrease (p< 0.05) in error was found for every group if the image was

evaluated with the AF method.

A decreased fiber width strongly increases Δkrel for every combination of aspect ratio, dis-

persion and noise. In case Δbrel, the increase in error can be noted for aligned networks only.

Fig 7. Error of the dispersion parameter of the band-pass method and the AF method for different fiber

geometries, dispersions and noise factors. (A) shows the error of the dispersion parameter for fibers with a width of 1

pixel for aspect ratios 15 and 45 as well as noise factors 0 and 1. (B) shows the same as in (A) but for fibers with a width

of 10 pixels. Each error is given for a dispersed (k = 0.01) and an aligned fiber network (k = 5). Inlets show exemplary

Monte-Carlo generated greyscale fiber images from respective distributions. (�p< 0.05, ��p< 0.01, ���p< 0.001).

https://doi.org/10.1371/journal.pone.0227534.g007
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A raised noise factor significantly (p< 0.001) increases Δkrel and Δbrel for aligned networks of

fibers with a width of 1. Additionally, a significant (p< 0.05) decrease and a highly significant

increase (p< 0.001) in Δbrel was found for thick, short fibers (width = 10, AR = 15).

Application on experimental data. Our implemented algorithm was applied on an exem-

plary set of ten in vivo recorded SHG images of dermal collagen. Parameters of the cumulative

angular distribution �y and b were calculated using the AF method and compared to reference

parameters �y and b achieved from manual fiber tracing (Fig 8, S1 Dataset). The absolute

mean error between calculation and manual segmentation for the mean orientation amounts

for D�y ¼ ð6:0� 4:0Þ
�

, whereas the mean relative error of the fiber dispersion is Δbrel =
(9.3 ± 12.1)%. The mean coefficient of determination was R2 = 0.99 ± 0.01.

Fig 8. Evaluation example of an in vivo SHG-image of dermal collagen. Left column ((B),(D),(F)): Evaluation steps

of the implemented image processing algorithm. Right column ((C),(E),(G)): Manual fiber tracing of fibers, which

serves as ground truth. (A) shows the original SHG-image as measured with the multi-photon microscope. (B), the

filtered power spectrum for δcut = 2.1%. (C), manually traced fibers. (D) and (E) show the resulting angular orientation

distributions. For (D), α = 1.5 was used. (F) and (G) show the respective cumulative orientation distributions and the

fit parameters obtained from sigmoid fitting.

https://doi.org/10.1371/journal.pone.0227534.g008
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Value pairs of calculated and reference parameter were fitted using a first order polyno-

mial (Fig 9). High Pearson correlations were found for both parameters, namely R2 = 0.99

and R2 = 0.90 for the mean orientation angle and dispersion, respectively. Calculated Pearson

correlations with respect to an ideal calculation (slope equal to one) amount for R2 = 0.98

and R2 = 0.8.

Discussion

We report on a robust method to quantify the angular distribution of fibers in noisy greyscale

fiber image. The whole image processing procedure covers: the application of the periodic

decomposition to remove cross-like artifacts in the Fourier domain, Fourier filtering by only

permitting values below a certain relative uncertainty δcut, computation of the angular distri-

bution by weighting the number of pixels with Nα and quantification of the mean angle and

dispersion by fitting a modified sigmoid function to the cumulative orientation distribution.

In comparison to conventionally used window functions like in [12, 16, 32, 36], the periodic

decomposition has the advantage of conserving almost the entire image information while

completely removing artifacts in the Fourier domain, as shown in Fig 2. Therefore, we omit a

quantitative analysis. The Monte-Carlo noise simulation revealed that the effect on the uncer-

tainty can be neglected since the periodic mapping only has significant effects on the image

boundary only.

Filtering the power spectrum by excluding values above a predefined relative uncertainty

allows for the definition of an adaptive filter. Optimal evaluation parameters were identified

by applying a two parameter Nelder-Mead optimization, which succeeded for 99.8% of the

images. A maximum cut-off error of δcut = 2.1% and a weighting factor of α = 1.5 was calcu-

lated, while the non-locality of the optimum was ensured. Polzer et. al introduced a similar

weighting factor which raises the entire intensity distribution I(θ) [36]. However, the optimum

value of their weighting factor seems to suffer from large fluctuations, whereas the optimal

value of α is stable throughout the degree of alignment of fiber networks and throughout dif-

ferent fiber properties and image noise (S2 Fig).

Fig 9. Calculated angular distribution parameters vs. reference distribution parameters for the experimental data.

(A) Mean fiber orientation �y vs. mean fiber orientation �ym achieved from manual segmentation. (B) Fiber dispersion b
vs. fiber dispersion bm achieved from manual segmentation. R2 values are given for the fitted curve (solid, orange) as

well as for the ideal curve (dashed, black) with a slope of one. Errorbars represent 95% confidence bounds of fitted

parameters.

https://doi.org/10.1371/journal.pone.0227534.g009
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Previously used filtering methods like the bandpass method [6, 34, 36] work with rotation-

ally symmetric filters, which disregard the anisotropy of the signal. The derivation of optimal

band-pass range is based on the fiber diameter [6]. With the AF method we apply a relative

uncertainty criterion without any assumptions on the underlying fiber properties. The optimal

value of δcut is found to be completely independent from the chosen fiber geometries, fiber dis-

perion and image noise (S2A, S2C, S2E and S2G Fig). As a consequence, the fiber dispersion

can be quantified with a significantly lower error for completely dispersed and highly aligned

fiber networks in comparison to the band-pass method (Fig 6B). Especially the quantification

of highly dispersed fiber networks (k< 1) is much more reliable using the AF method, whereas

the dispersion calculated by the band-pass method suffers from large errors (Δkrel > 100%)

(Figs 6B and 7). This is in accordance with the observations of Morrill et. al [34], who mea-

sured an error of� 30% for k� 0.2 using binary Monte-Carlo images.

If we use the AF method in conjunction with a von-Mises fit of the angular orientation dis-

tribution, large errors of the dispersion coefficient can be noted towards dispersed fiber net-

works (S3 Fig). Contrary to the band-pass method, Δkrel rapidly decreases towards aligned

networks to a level of� 10%. This effect is solely related to the adaptive filter and the weighted

radial summation of the AF method, whereas the sigmoid fit ensures a reliable dispersion

parameter estimation for dispersed networks.

Fibers with a width of 1 somehow represent an exception in comparison to the images con-

taining fibers with width> 1 pixel. Regarding the result of the optimization of α with respect

to different image and fiber properties (S2 Fig), it can be seen that α is quite stable throughout

the dispersion k, noise factor and different fiber geometries. α fluctuates within the interval

[1, 2] except for fibers with a width of 1 pixel, where the median value α amounts for αwidth=1 =

2.4. The application of the gauss-filter to dissolve sharp edges might even reduce the true fiber

dimension down to a size which is near the resolution limit of power spectrum based methods

resulting in large deviations of the dispersion for highly aligned fiber networks.

Using the Monte-Carlo approach to create artificial fibrous images for validation purposes

is a common tool. However, it is rather difficult to draw a comparison to the accuracy of other

methods found in the literature since mostly a low quantity of binary images was investigated

[12, 34]. For example, Morrill et. al measured an overall error of (0.71 ± 0.43)˚ for the mean

orientation and (7.4 ± 3.0)% for the fiber dispersion using binary fiber images, whereas we

measured errors of (2.3 ± 2.1)˚ and (33.9 ± 26.5)% [34]. The use of greyscale images will gener-

ally result in a lower accuracy compared to the evaluation of binary images, since the superim-

position of fibers might generate intensity deviations in the power spectrum.

The AF method was applied to in vivo SHG images of dermal collagen. The multi-photon

images that were used provide a sufficiently high image intensity I(x, y) (16-bit), which comes

along with a sufficiently low relative intensity error DI=I ¼ 1=
ffiffi
I
p

. Therefore, δcut = 2.1% pro-

vides a reasonable filtering value, which results in an accurate quantification of the angular ori-

entation distribution in terms of mean fiber orientation and fiber dispersion.

Conclusion

The proposed adaptive filter method modifies common Fourier methods at different stages,

namely artifact removal in the Fourier domain, filtering of the power spectrum and quantifica-

tion of the angular signal.

The adaptive filter conserves the anisotropy of the angular signal in the Fourier domain,

which ensures a stable error for disordered as well as highly aligned fiber networks. Using the

cumulative distribution naturally averages the data, which spares out any averaging of the

angular distribution. The high mean goodness of the fit R2 = 0.99 which was measured for
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both, Monte-Carlo images and SHG-images, indicates that the modified sigmoid function pro-

vides a perfect model of the cumulative distribution function.

The adaptive filtering method was found to be a reliable and accurate tool for quantifying

the angular orientation distribution in fibrous SHG images of dermal collagen, even for images

suffering from a low image quality. Aside from its benefits concerning accuracy and reliability,

the AF method considers measurement uncertainties, which are of key importance in any

kind of scientific experiment.

Supporting information

S1 Table. Periodic decomposition: Relative deviation of the error propagation simulated

by Monte-Carlo and the basic image error ΔI for N = 105 iterations.

(PDF)

S2 Table. Power spectrum: Relative deviation between calculated and Monte-Carlo simu-

lated uncertainty for N = 105 iterations.

(PDF)

S1 Fig. Sensitivity analysis of the central cut-off radius. (A) Squared difference between

calculated angular orientation distribution and sampled fiber angle distribution on N = 104

images (Monte-Carlo generated). The same dataset was also used for evaluation parameter

optimization. Unfiltered power spectra are used to isolate the effect of the cut-off radius. (B-D)

Evaluation example for cut-off radii (0,3,6). The artifact dramatically reduces from a 0 pixel

cut-off to a radial cut-off of 3 pixels. Cut-off radii above 3 pixels barely influence the angular

distribution. In order to save angular information, we choose a cut-off radius of 3 pixels.

(EPS)

S2 Fig. Optimal evaluation parameters vs. fiber properties and image noise. Plotted are

median values and errorbars represent the interquartile range (25, 75). (A,C,E,G) represent

plots of δcut vs. dispersion k, noise factor NF, aspect ratio (AR) and width. (B,D,F,H) are plots

of the weighting factor α vs. dispersion k, noise factor NF, aspect ratio (AR) and width.

(EPS)

S3 Fig. Error of the dispersion parameter k and b of the von-Mises fit and the sigmoid fit

of the AF method for fibrous Monte-Carlo images (width = 5, AR = 30). The von-Mises fit

was applied to the angular orientation distribution as calculated by the AF method, whereas

the sigmoid fit was applied to the respective cumulative orientation distribution.

(EPS)

S1 Dataset. The .csv file provides the reference parameter as well as the parameter calcu-

lated by the AF method for each image.

(CSV)
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