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Abstract: Despite therapeutic advances over the past decades, multiple myeloma (MM) remains
a largely incurable disease with poor prognosis in high-risk patients, and thus new treatment
strategies are needed to achieve treatment breakthroughs. MM represents various forms of impaired
immune surveillance characterized by not only disrupted antibody production but also immune
dysfunction of T, natural killer cells, and dendritic cells, although immunotherapeutic interventions
such as allogeneic stem-cell transplantation and dendritic cell-based tumor vaccines were reported to
prolong survival in limited populations of MM patients. Recently, epoch-making immunotherapies,
i.e., immunomodulatory drug-intensified monoclonal antibodies, such as daratumumab combined
with lenalidomide and chimeric antigen receptor T-cell therapy targeting B-cell maturation antigen,
have been developed, and was shown to improve prognosis even in advanced-stage MM patients.
Clinical trials using other antibody-based treatments, such as antibody drug-conjugate and bispecific
antigen-directed CD3 T-cell engager targeting, are ongoing. The manipulation of anergic T-cells by
checkpoint inhibitors, including an anti-T-cell immunoglobulin and ITIM domains (TIGIT) antibody,
also has the potential to prolong survival times. Those new treatments or their combination will
improve prognosis and possibly point toward a cure for MM.
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1. Introduction

Multiple myeloma (MM) is a hematologic malignancy characterized by the clonal proliferation
of plasma cells that produce M-proteins, accompanied by various types of impaired immune
function [1,2]. Despite treatments, including high-dose chemotherapy followed by autologous
hematopoietic stem-cell transplantation (auto-SCT), and novel agents such as immunomodulatory
drugs (IMiDs) and proteasome inhibitors (PIs), which have improved survival in MM patients over
the past two decades, most patients become drug resistant and succumb to their disease [3,4]. IMiD
(lenalidomide or pomalidomide)/PI (bortezomib or carfilzomib)-refractory patients who have received
at least three prior lines of therapy regimens and have been exposed to an alkylating agent have a
poor prognosis, with a median overall survival (OS) time of 13 months from the double-refractory
state [5]. Further, almost all high-risk MM patients still have a poor prognosis, even after high-dose
chemotherapy plus auto-SCT [6], and MM remains incurable even in standard-risk patients. Thus,
strategies including immunotherapies are needed to maintain an enduring treatment response and to
achieve a cure for MM patients.

Allogeneic stem-cell transplantation (allo-SCT) is regarded as one of the first immunotherapies
offering the potential for prolonged survival time in MM patients [7,8]. Donor T cells may
recognize minor histocompatibility antigen-presenting myeloma cells in the human leukocyte antigen

Cancers 2019, 11, 2009; doi:10.3390/cancers11122009 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
http://dx.doi.org/10.3390/cancers11122009
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/11/12/2009?type=check_update&version=2


Cancers 2019, 11, 2009 2 of 15

(HLA)-matched setting, resulting in elimination of myeloma cells, the so-called graft-versus-myeloma
effect [9]. Two studies showed longer progression-free survival (PFS) and OS times in MM patients
treated with nonmyeloablative allo-SCT after auto-SCT compared with those treated with tandem
auto-SCT [10,11], indicating that allo-SCT could be effective in a limited subset of patients with a small
amount of residual myeloma cells after intensive chemotherapy, including auto-SCT. However, the
treatment-related mortality rate was high at 15% [12]. Furthermore, there was no benefit to auto-SCT
followed by nonmyeloablative allo-SCT in high-risk MM patients [13].

It was reported that expanded T-cell clones in MM patients were associated with longer
survival and that most very long-term survivors without relapse had low levels of M-protein,
suggesting that T-cell immunity plays a crucial role in inhibiting MM disease progression, similar to
immunogenic tumors [14,15]. So far, various immunotherapies inducing myeloma-specific cytotoxic
T-cell lymphocytes (CTLs), including immune checkpoint inhibitors and dendritic cell (DC)-based
vaccines, have been reported to have some effect in a very limited subset of MM patients.

Recently, several antibody treatments have been shown to have specific effects in relapsed/refractory
MM (RRMM) [16,17]. The anti-CD38 monoclonal antibody daratumumab (DARA), which can eliminate
immunosuppressive cells and promote T-cell proliferation, was effective in inducing a deep response,
especially in combination with IMiDs, for refractory RRMM patients [18,19].

Clinical trials using antibody drug-conjugate (ADC) and bispecific antigen-directed CD3 T-cell
engager (BiTE) targeting myeloma-associated antigens are ongoing. To achieve more complete tumor
elimination, gene-modified T-cell therapies, such as T-cell receptor (TCR)-engineered T-cell therapy
and chimeric antigen receptor T-cell (CAR-T) therapy, were developed, and many trials are in progress.
This review highlights the latest immunotherapies to treat MM.

2. Antibody-Based Immunotherapies

It is crucial to define desirable targets for the development of immunotherapy for MM patients.
There are at least three definitions of the ideal myeloma-associated target antigen: 1) the expression of
the target antigen is high at diagnosis and does not decrease with disease progression; 2) the target
antigen should have a central function in the biology and/or pathophysiology of MM; and 3) the
target antigen is expressed by as few normal tissues as possible. So far, the B-cell maturation antigen
(BCMA) is the most reasonable immunotherapeutic target, and thus clinical trials of BCMA-targeting
immunotherapies, including CAR-T, BiTE, and ADC, are ongoing with excellent results reported so far
(Table 1) [20–22]. The results of antibody treatment targeting other immunotherapeutic antigens, i.e.,
CD19, CD38, CD56, CD138, SLAMF7, IL-6 receptor, VEGF receptor, immunoglobulin, integrin beta-7,
and G protein-coupled receptor class C group 5 member D (GPRC5D), were reported [23].

Table 1. B-cell maturation antigen (BCMA)-targeting immunotherapies for refractory myeloma patients.

CAR-T Bispecific antibodies ADC

Off-the-shelf Not yet Yes Yes

Ease of administration + + ~ ++ ++++

Dependent on patient T cell
condition Yes Yes No

Results of representative clinical trials

Protocol Bb2121 (n = 33) AMG420 (n = 42) GSK2857916 (n = 35)

Median age (y) (range) 58 (37–74) 63 60 (40–75)

Prior treatment lines Median 7
(range 3–14)

Median 4
(range 2–13)

≥5 prior lines
57%

Response ORR 85%
MRD(–) CR 45%

ORR 70%
MRD(–) CR 40% ORR 60%

Median PFS 12 months 9 months 8 months

Major toxicity

Neutropenia 85%, anemia 45%,
thrombocytopenia 45%, CRS 76%

(grade 3: 6%),
neurologic toxic effects 42%

CRS: all grades 38%
(severe CRS

2%), serious peripheral
neuropathy 5%

Grade 3–4 AEs 80%;
corneal AEs (vision blurred,

keratitis, photophobia, dry eye,
keratopathy, eye pain),

thrombocytopenia

ORR, overall response rate; CR, complete response; MRD, minimal residual disease; PFS, progression-free survival;
CRS, cytokine release syndrome; AEs, adverse events.
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2.1. IMiD-Intensified Antibody Treatment

Impaired immune surveillance, including increased numbers of immunosuppressive cells, is
thought to be involved in MM disease progression at diagnosis and relapse. IMiDs have the dual
effects of direct tumoricidal activity and immunomodulation, which improve immune function [24].
In high-risk smoldering MM patients, who have already exhibited impaired immune systems,
lenalidomide/dexamethasone (Rd) was able to restore decreased expression of activation and type 1
T-helper proliferation markers and induced a marked shift in T cells and natural killer (NK) cells [25].
It was reported that the fold change in the number of regulatory T cells (Tregs) in peripheral blood
was significantly higher in relapsed MM patients compared with patients who achieved a complete
response (CR) 1 year after auto-SCT transplantation [26]. The expression level of CD38 on Tregs is
higher than that on conventional T cells and in myeloma patients compared with healthy controls [27].

The anti-CD38 monoclonal antibodies have dual mechanisms: 1) effects through the
ligation of tumor cells, i.e., antibody-dependent cell cytotoxicity (ADCC) mediated by NK cells,
complement-dependent cytotoxicity (CDC), antibody-dependent cell phagocytosis (ADCP) mediated
by macrophages, direct apoptotic induction by crosslinking, and inhibition of enzyme function; and
2) immune effects through inhibition of immunosuppressive cells, such as Tregs, regulatory B cells,
and myeloid-derived suppressor cells (Figure 1) [1,28,29]. DARA monotherapy increased CD8+/CD4+

and CD8+/Treg ratios as well as T-cell clonality [28]. Lenalidomide can increase the CD38 expression
level by promoting interferon-responsive sequence element transcription via Ikaros degradation [27]
and enhance the antitumor effects of DARA-mediated ADCC and T-cell expansion, resulting in
antimyeloma T-cell immunity with long-term antitumor effects. An investigation of the efficacy of
DARA combined with Rd reported an overall response rate (ORR) of 93%, including a high CR rate of
43% in 569 RRMM patients with 1 median (range 1–11) prior regimen [18]. Furthermore, the percentage
of responders who had long-term deep responses with sustained ≥12-month MRD negativity (10–5)
was 13% in those who received DARA combined with Rd, but the percentage was smaller in those
receiving other regimens, i.e., only 0.4% with Rd, 3% with DARA plus bortezomib/dexamethasone
(Vd), and 0% with Vd [30]. That evidence of the immune effects of DARA was supported by a report by
Kitadate et al., which showed that the absolute number of Tregs in peripheral blood was significantly
higher in responders to DARA-based treatment compared with non-responders [31].

Figure 1. Immune evasion and anti-CD38 monoclonal antibody-targeting cells in the myeloma
microenvironment. T-cell immune function is inhibited by the surrounding immunosuppressive cells,
such as regulatory T cells (Tregs), regulatory B cells (Bregs), and myeloid-derived suppressor cells
(MDSCs), signaling from immune checkpoint receptors. Anti-CD38 antibodies can eliminate myeloma
cells as well as immunosuppressive cells.
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The antibody elotuzumab, a humanized IgG1 kappa immunostimulatory monoclonal antibody
targeting SLAMF7 (also referred to as CS1 or CD319), in combination with lenalidomide or
pomalidomide is used for the treatment of RRMM patients in clinical practice [32]. SLAMF7 is
a member of the SLAMF family, which is expressed on the surface of various immune cells, such as
T, B, and NK cells, but not in nonhematopoietic cells. It was reported that the expression levels of
SLAMF7 mRNA were decreased in relapsed patients compared with newly diagnosed MM (NDMM)
patients [33], and that, on the contrary, surface expression levels of SLAMF7 were almost the same at
diagnosis and relapse [34]. SLAMF members share a similar structure with an extracellular domain
consisting of Ig variable- and constant 2-like domains, and most members exhibit self-binding. The
cytoplasmic domain contains an immunoreceptor tyrosine-based switch motif (ITSM), which can bind
to adaptor proteins, resulting in modulation of immune responses. In NK cells, SLAMF7 self-ligation
can enhance NK cell activity through adaptor protein EAT-2 recruitment [35], although the function
and adaptor protein-mediated signaling of SLAMF7 in myeloma cells remain to be clarified. Recently,
Kikuchi et al. have reported that the soluble form of SLAMF7 could increase myeloma cell proliferation
in vitro and in vivo and that knockdown of surface SLAMF7 cancelled the proliferative function of
soluble SLAMF7 in vitro [36]. They found that soluble SLAMF7 can bind surface SLAMF7 on myeloma
cells, leading to activation of the SHP-2/ERK signaling pathways.

We also found that higher levels of serum soluble SLAMF7 were associated with advanced revised
International Staging System (ISS) stage disease, and that the detection of serum soluble SLAMF7 was
associated with a very low deep response rate. However, elotuzumab can rapidly neutralize soluble
SLAMF7 in MM patients [37]. Xie’s group reported that SLAMF7 was upregulated in MM patients
with the t(4;14) translocation because multiple myeloma SET protein (MMSET) regulates the SLAMF7
transcription level, and that SLAMF7 knockdown decreased myeloma cell colony formation [38].
Monotherapy with elotuzumab, which shows anti-MM efficacy via NK cell-mediated ADCC and
augmented NK function, had no clinical effect in RRMM patients [39], which may be due to NK
impairment in those patients. A phase III trial (n = 321) of elotuzumab combined with Rd demonstrated
a very good partial response (VGPR) rate of 22% and ORR of 78% in RRMM patients and improved
hazard ratios in the PFS and OS times of t(4;14)-positive RRMM patients compared with patients with
the 17p deletion [40,41]. We reported the efficacy of elotuzumab combined with Rd in the real-world
setting. The ORR was 56% and the clinical benefit rate was 79% for RRMM patients who had received
a median of 3 prior therapies, which ranged from 1 to 12 [42]. Elotuzumab in combination with
pomalidomide demonstrated a median PFS of 10.3 months with an ORR of 53% in RRMM patients
who had received a median of 3 (range 2–8) prior therapies [43]. Those results demonstrated that
SLAMF7 is associated with the pathophysiology of MM, and elotuzumab is an effective treatment in
RRMM patients, especially those with the t(4;14) translocation.

2.2. Bispecific Antibodies

The results of clinical studies of the bispecific antigen-directed CD3 T-cell engager antibody BiTE
appeared promising for the treatment of both bulky disease and MRD [44]. A CD19/CD3 bispecific
antibody designed in the BiTE format, blinatumomab, was reported to be effective in patients with
B-cell malignances, such as relapsed or refractory B-cell precursor acute lymphoblastic leukemia,
chronic lymphocytic leukemia, and non-Hodgkin lymphoma [45–47]. The BCMA/CD3 bispecific T-cell
engager induced myeloma lysis in vitro and in vivo [48,49]. Topp et al. showed that treatment with
AMG 420, a BCMA bispecific T-cell engager in the BiTE antibody construct, induced MRD-negative CR
in a phase I study of 42 RRMM patients who had received a median of 4 (range 2–13) prior treatment
lines [21]. Cytokine release syndromes occurred in 38% (n = 16), with only one of grade 3. In the cohort
treated with AMG 420 at the maximum tolerated dose of 400 µg/day (n = 10), the ORR was 70% and
the MRD-negative sCR rate was 40%. We are awaiting the results of advanced clinical studies.

Compared with CAR-T therapy in vitro, BiTE-activated T cells showed similar functional avidity,
as assessed by cytokine production of IL-2/TNFα and killing activity [50]. In the clinical setting,
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CD19/CD3-bispecific antibody has advantages, i.e., off-the-shelf administration with no preparation
time needed. On the other hand, CAR-T therapy demonstrated higher response rates with deep
responses in heavily pretreated patients [51]. A bispecific antibody, however, is less effective than
anti-CD19 CAR-T therapy [52]. Other antigen/CD3 bispecific T-cell engagers are under development,
and a clinical trial using a CD38/CD3 bispecific T-cell engager is ongoing [51]. New bispecific antibodies
targeting FcRH5 and GPRC5D are being developed.

2.3. Immunochemotherapy and ADCs

The safety, tolerability, and preliminary clinical activity of BCMA-ADC, a novel anti-BCMA
antibody conjugated to the microtubule-disrupting agent monomethyl auristatin F (GSK2857916),
were reported [22]. In RRMM patients (n = 35), including 20 (57%) heavily treated patients who had
received ≥5 lines of therapy, the ORR was 60% (stringent CR 3%, CR 6%, VGPR 43%, and PR 9%) with
a median PFS of 7.9 months. Grade 3 or 4 adverse events were reported in 28 (80%) of 35 patients, the
most common of which were thrombocytopenia (4%) and anemia (14%). Other ADCs for MM patients
are being examined in ongoing trials.

It was reported that most myeloma cells from NDMM and RRMM patients express high levels of
SLAMF2 (CD48) [53,54]. Anti-CD48 monoclonal antibody can inhibit myeloma cell growth in vivo,
suggesting it could be effective in treating MM patients. A phase I clinical trial (NCT03379584) using
SGN-CD48A, a potent CD48-targeting ADC utilizing a novel glucuronide-monomethylauristatin E
linker, is in progress, but patients are no longer being recruited. Similar to SLAMF2 and SLAMF7,
SLAMF6 is highly expressed on myeloma cells from NDMM and RRMM patients [35,55]. In an MM
xenograft model, SGN-CD352A, a humanized anti-CD352 engineered cysteine monoclonal antibody
conjugated with 2 molecules of pyrrolobenzodiazepine dimer, a potent DNA-damaging cytotoxic drug,
produced durable CRs. A safety study of SGN-CD352A treatment for RRMM patients is also underway
(NCT02954796). SLAMF2/6-targeting ADCs are expected to show clinical benefits for RRMM patients.
Phase 1 studies of other ADCs targeting CD38, CD46, and CD74 are ongoing.

3. Gene-Modified T-Cell Therapies

Gene-modified T-cell therapies consist of two categories: autologous T cells that express an
affinity-enhanced TCR and a CAR recognizing known tumor target antigens [56]. A number of clinical
trials using TCR-engineered T cells were performed in melanoma patients [57,58]. NY-ESO-1, an
immunogenic cancer testis antigen, is expressed in up to 60% of advanced myelomas and its expression
levels are higher in relapsed disease [56]. The testis antigen is associated with myeloma cell proliferation
and high-risk features, i.e., cytogenetic abnormalities [59–63]. A clinical trial of NY-ESO-1/LAGE-1
TCR-engineered T cells showed clinical responses in 16 of 20 MM patients (80%) with advanced disease,
with a median PFS of 19.1 months, although disease progression was observed with the loss of T-cell
persistence or targeting antigen [64]. Further, TCR-engineered T-cell therapy has several disadvantages,
including a requirement for a specific HLA type, leading to restrictions on treatment.

CAR-T therapy targeting CD19 (CART19, CTL019) has been established in heavily treated acute
lymphocyte leukemia (ALL) patients because of high CR rates and durable effects in limited numbers of
patients [65]. Anti-CD19 CAR-T therapy could replace allo-SCT in ALL, chronic lymphocytic leukemia,
and B-cell lymphoma [66]. Several clinical trials of anti-CD19 CAR-T therapy in MM patients are in
progress. BCMA-targeting CAR-T cell therapy (bb2121) demonstrated an excellent response, with
an ORR of 85% and a median PFS of 12 months in heavily treated MM patients who had received a
median of 7 (range 3–14) prior therapy regimens [20].

To enhance the effects of anti-BCMA CAR-T therapy, a CAR T-cell therapy targeting 2 BCMA
domains (LCAR-B38M) was developed and demonstrated a high response rate, with an ORR of
88% (CR 68%, VGPR 5%, and PR 14%), MRD negativity of 63%, and median PFS of 15 months
in 57 RRMM patents [67]. CD19-targeting CAR-T cell therapy after auto-SCT with lenalidomide
maintenance showed responses of CR 10%, VGPR 60%, and PR 20%. CD19 expression is detected in
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very few myeloma cells by flow cytometry, although single molecule-sensitive direct stochastic optical
reconstruction microscopy (dSTORM) demonstrated CD19 expression on a fraction of myeloma cells
(10%–80%) in approximately 70% (n = 14) of MM patients with density of 13–5000 molecules/cell. CD19
CAR-T cells can eliminate those myeloma cells with a low density of <100 molecules/cell in vitro [68].

To increase the effect of BCMA CAR-T cells, CD19- and BCMA-targeting dual CAR-T cell therapy
was developed and demonstrated a high response rates with a 95% ORR (stringent [s]CR 43%, CR
14%, VGPR 24%, and PR 14%) in 21 RRMM patients and an 100% ORR (sCR 70%, CR 10%, and
VGPR 20%) and 60% MRD negativity (<10−6) in 10 high-risk NDMM patients [69,70]. CD19- and
BCMA-targeting dual CAR-T cell therapy is thought to be a reasonable treatment to eliminate a wide
range of heterogenetic myeloma cells in patients. BCMA is known to derive from myeloma cells in
active disease, and thus BCMA-targeting CAR-T combined with a γ-secretase inhibitor prolonged
survival in a murine myeloma model because the inhibitor upregulated BCMA expression levels on
MM cells [71,72]. A phase I clinical trial (NCT03502577) of this combination in relapsed or persistent
MM patients is now in progress. In the CARTITUDE-1 phase 1b/2 clinical trial of BCMA CAR-T
using an identical construct of LCAR-B38M, the ORR was 100% (≥CR 69%, ≥VGPR 86%) and the
MRD-negative rate was 82% with two severe CRS’ (one of grade 3 and one of grade 5) [73]. Other
CAR-T clinical trials targeting BCMA are ongoing, i.e., dual-specificity CD38 and BCMA CAR-T
(NCT03767751), PD1-CAR-T-secreting mutant PD-1Fc fusion protein with high-affinity binding to the
PD-L1 ligand (NCT04162119), autologous CD8+ T-cells expressing anti-BCMA (NCT03448978), etc.

The effects of anti-BCMA CAR-T therapy (bb2121) were investigated in high-risk MM patients
who had adverse chromosomal abnormalities, high tumor burden, and extramedullary disease [20].
In terms of adverse events, cytokine release syndrome (CRS) is important in the care of patients
treated with CAR-T therapy. Clinical trials of CTL019 anti-CD19 CAR-T therapy showed a severe CRS
occurrence rate of 29% in B-ALL, 39% in B-CLL, and 20% in B-non-Hodgkin’s lymphoma patients,
although BCMA-targeting CAR-T included a grade 3/4 CRS occurrence rate of 6% (all grades 76%)
in a bb212 trial and 7% (all grades 90%) in a LCAR-B38M trial. Similar to CRS, the frequency of
neurotoxicity was lower: bb2121 42% (grade 4: 3% = reversible), LCAR-B38M 2% (grade 1: aphasia,
agitation, and seizure-like activity).

At present, the clinical data on CAR-T therapies targeting CD138, NKG2D ligands, and kappa-light
chain remain insufficient [74–76]. Clinical trials using other antigen-targeting CAR-T cell regimens
in MM, which are targeting CD38, SLAMF7, CD44v, CD56, GPRC5D, transmembrane activator and
CAML interactor (TACI), Lewis Y, and NY-ESO-1, as well as preclinical studies targeting CD229
(SLAMF3), integrin β7, CD70, and CD1d, are in progress [23,34,77–79]. CAR-T therapy may find a
place in MM treatment in the near future.

4. Immune Checkpoint Inhibitors

Exhausted T cells expressing immune checkpoint receptors are involved in disease progression
in cancer models, although the role of exhausted T cells in the pathophysiology of MM remains
controversial [15,80,81]. An in vivo murine myeloma model demonstrated that the expression levels of
immune checkpoint receptors such as programmed cell death protein 1 (PD-1), T-cell immunoglobulin
and ITIM domains (TIGIT), lymphocyte activation gene-3 (LAG-3), and T-cell immunoglobulin mucin-3
(Tim-3) were increased on CD8+ T cells in bone marrow in MM-relapsed mice compared with those in
control mice and MM-controlled mice [82]. PD-L1 (CD274) was first identified as a homologue of the
B7 family and named B7-H1 by our group [83,84]. PD-L1, which is expressed on most tumor cells, can
inhibit antitumor T-cell responses [83]. The PD-1–PD-L1 pathway is involved in tumor growth with
evasion from tumor immunity.

We and others previously reported that PD-L1 expression levels are higher on plasma cells from
MM patients compared with those in healthy controls and monoclonal gammopathy of undetermined
significance (MGUS) patients and its expression is often upregulated in the relapsed/refractory
phase [85,86]. Furthermore, high PD-L1 expression levels on MM cells are associated with disease
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progression in asymptomatic MM patients and MM cells with MRD [87,88]. PD-L1 expression on
MM cells is upregulated by the IL-6 signal cascade through STAT3, MEK1/2, and JAK2, and by IFN-γ
produced by CTLs and NK cells through the MEK/ERK pathway [85,86], suggesting that PD-L1
expression can be induced in the myeloma microenvironment. We also found that PD-L1+ myeloma
cells had more proliferative potential and were resistant to antimyeloma agents, with higher expression
levels of Ki-67 and Bcl-2 compared with PD-L1− myeloma cells [86]. Furthermore, PD-1-bound PD-L1
can activate the Akt pathway in myeloma cells, leading to drug resistance [89]. Those data suggest
that PD-L1 plays a crucial role in the pathophysiology of MM. In addition, PD-1 expression on T
cells was reported to be correlated with tumor burden in a murine myeloma model [90–92]. In MM
patients, the percentage of CD8+PD-1+ T cells co-expressing CD57 was significantly increased by
approximately 35% in comparison with healthy controls (about 20%) [81]. In relapsed MM patients
one year after auto-SCT, PD-1 expression levels on both CD28-CD4+ and CD28-CD8+ T cells were
significantly increased compared with those in patients sustaining CR [26].

In contrast to the expected efficacy, the anti-PD-1 immune checkpoint inhibitor nivolumab
alone had few effects in 63% of 27 RRMM patients with stable disease, which was maintained for
a median of 11.4 weeks [93]. This might have been because the immune system in RRMM is more
exhausted, including impaired T-cell tumor immunity. Only one RRMM patient who also underwent
radiation therapy (RT) during the treatment period achieved CR after nivolumab retreatment for two
months [93]. RT can synergize with immune checkpoint inhibitors because cell death induced by RT is
thought to induce DC activation through “eat-me (calreticulin-CD91)”, “danger (HMGB1-TRL4)”, and
“find-me (ATP-P2RX7)” signals, resulting in enhanced CTL function (Figure 2) [94]. The combination
of RT and anti-PD-1/PD-L1 monoclonal antibody may be effective in both RRMM and lung cancer
patients [95]. The IMiD lenalidomide can enhance antimyeloma immune responses, even when
induced by immune checkpoint inhibitors, suggesting the clinical benefits of this combination [96,97].
The anti-PD-1 antibody pembrolizumab in combination with the IMiD lenalidomide or pomalidomide
demonstrated a high overall response rates of 50%–60% in heavily treated patients with a median
3 to 4 prior chemotherapies [98–100]. A phase II clinical trial of pembrolizumab combined with
pomalidomide/dexamethasome showed an sCR/CR rate of 8%, VGPR rate of 19%, and PR rate of
33% in 48 RRMM patients. However, overall survival was decreased in two randomized trials of
pembrolizumab in both NDMM and RRMM patients. Krauss provided an overview of the US Food
and Drug Administration analysis, demonstrating that there was no difference in the ORR with or
without immune-related adverse events (irAE) in RRMM patients, whereas an increased ORR was
observed in patients with irAE with an increased irAE rate in NDMM patients [101]. Further studies
are needed to clarify the optimal use of immune checkpoint inhibitors in RRMM patients.

Figure 2. Combined immunotherapy. Radiotherapy (RT) can induce immunogenic cell death, resulting
in dendritic cell (DC) activation through “eat-me (calreticulin-CD91)”, “danger (HMGB1-TRL4)”, and
“find-me (ATP-P2RX7)” signals, leading to enhanced cytotoxic T-cell lymphocyte (CTL) function.
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Recently, research into other immune checkpoints, including TIGIT, LAG3, and TIM3, has
focused on the immunosuppressed status of MM patients. Exhausted effector T cells expressing
CD28–LAG3+TIGIT+ were increased in MM patient’s refractory to DARA combined with
pomalidomide [102]. The percentages of TIGIT+CD8+ T cells and their expression levels were
increased in patients with NDMM and RRMM [82]. In an in vivo murine myeloma model, CD8+ T
cells in the bone marrow of MM-relapsed mice expressed higher levels of TIGIT and lower levels
of another receptor of CD155, DNAM-1, which can deliver a positive signal in T cells through the
binding of CD155, compared with those in control or MM-controlled mice. Anti-TIGIT monoclonal
antibody decreased myeloma cells in bone marrow and prolonged survival compared with control-Ig or
anti-PD-1 monoclonal antibody-treated mice [103], suggesting that TIGIT expression is more dominant
than PD-1 in the immunosuppressive function in MM. A clinical trial using anti-TIGIT monoclonal
antibody in advanced solid tumors is underway (NCT04047862, NCT03563716). A new checkpoint
inhibitor, an anti-TIGIT antibody, is a potential efficient treatment for MM patients.

5. Immune Vaccination: Dendritic Cell Vaccination and Tumor-Antigen Peptide Vaccination

Tumor vaccines against tumor-associated antigens were reported to be promising in eliminating
MRD without significant toxicity [104,105]. However, there are very few reports of tumor vaccines for
MM patients. Idiotype-pulsed DC vaccination after auto-SCT prolonged OS but not PFS in 27 MM
patients compared with historical controls [106]. The administration of a DC/myeloma fusion vaccine,
which is a very attractive technology because DCs can express many patient tumor antigens and elicit
efficient CTL activity to patients who had undergone auto-SCT, resulted in the achievement of CR/near
CR in 24% of the PR group after transplantation [107]. Immune checkpoint inhibitors such as anti-PD-1
in combination with a fusion vaccine is appears to be a desirable immunotherapy for MM patients
with stable disease and MRD [108]. A clinical trial (NCT01067287) of anti-PD-1 antibody plus the
DC/myeloma fusion vaccine following SCT is still ongoing.

6. Conclusions

Profound disrupted immune surveillance is caused by dysfunctions of NK cells, CTLs, and
DCs with increased immunosuppressive cell levels in MM patients. Improved understanding and
elucidation of myeloma biology and pathophysiology have led to landmark achievements in drug
development. IMiDs, key drugs in treating MM, can enhance the effect of monoclonal antibody
treatments, such as DARA. Other antibody-based immunotherapies, such as bispecific antibody,
CAR-T and ADCs, show excellent efficacy in RRMM patients, even heavily treated ones, but outcomes
are not yet satisfactory owing to the loss of target antigens and T-cell exhaustion. To achieve the
desired treatment breakthroughs, many immunotherapies, including CAR-T regimens, are under
development for MM patients. The hope is that those treatments will prolong OS in patients with
no or low levels of MRD. It was reported that immunotherapies such as DC vaccine and allo-SCT
can achieve longer survival with small doses of M-protein in some patients. Thus, it is also necessary
to develop immunotherapies that can inhibit MM cell proliferation, even in the relapse phase after
CAR-T and bispecific antibody therapies. The results so far suggest that T-cell immunity is crucial in
controlling the disease, and thus immunotherapies are required to treat MM patients.
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