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Abstract

‘Onium’ compounds, including ammonium and phosphonium salts, have been employed as
antiseptics and disinfectants. These cationic biocides have been incorporated into multiple
materials, principally to avoid bacterial attachment. In this work, we selected 20 alkyl-triphe-
nylphosphonium salts, differing mainly in the length and functionalization of their alky!
chains, in fulfilment of two main objectives: 1) to provide a comprehensive evaluation of the
antifouling profile of these molecules with relevant marine fouling organisms; and 2) to shed
new light on their potential applications, beyond their classic use as broad-spectrum bio-
cides. In this regard, we demonstrate for the first time that these compounds are also able to
act as non-toxic quorum sensing disruptors in two different bacterial models (Chromobac-
terium violaceum and Vibrio harveyi) as well as repellents in the mussel Mytilus galloprovin-
cialis. In addition, their inhibitory activity on a fouling-relevant enzymatic model (tyrosinase)
is characterized. An analysis of the structure-activity relationships of these compounds for
antifouling purposes is provided, which may result useful in the design of targeted antifoul-
ing solutions with these molecules. Altogether, the findings reported herein provide a differ-
ent perspective on the biological activities of phosphonium compounds that is particularly
focused on, but, as the reader will realize, is not limited to their use as antifouling agents.
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Marine biofouling is a deleterious process that imposes a plethora of costly problems to human

activities in the ocean, particularly to the shipping industry [1]. It is estimated that the costs as-
sociated to this phenomenon already exceed US $200 billion every year [2]. Biofouling is a
complex phenomenon that involves a wide array of organisms, from microbes to invertebrates.
It is often depicted as a successional process with four main stages, illustrated with an hypo-
thetical material surface that is submerged in the sea (Fig 1): 1) adsorption, from the first sec-
onds after immersion, of organic particles onto the submerged surface, with the development
of a so-called ‘conditioning film’ that constitutes the molecular fouling and promotes the 2) ar-
rival of primary colonizers, initially (first 24 h) pioneer motile bacteria and, within the first
days, an array of microorganisms, with bacteria and benthic diatoms as the main representa-
tives, that form complex multispecies biofilms (microfouling) and tend to promote the 3) set-
tlement of macroalgal zoospores (e.g. ulvophycean) and 4) invertebrate larvae (e.g. mussel
pediveligers, barnacle cyprids) that end up forming a complex macroscopic fouling communi-
ty. Consequently, to characterize the antifouling profile of any given substance accurately, it is
necessary to conduct bioassays with key organisms that are representative of the different
stages of this phenomenon [3].

Over the second half of the past century, the problem had been relatively under control
through the use of organotin compounds, in particular bis-(tris-n-butyltin)oxide (TBTO).
However, increasing evidence of the detrimental environmental impact of these chemicals
arose from the 1980s [4-6]. That increasing concern led to a stepwise prohibition of organotin
compounds in antifouling paint formulations that was established by the International Mari-
time Organization and fully entered into force in September 2008.

Current antifouling research focus on the design of less harmful solutions that include:
the tethering of biocides to the coating matrix, which remain fixed or are released to the
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Fig 1. Schematic representation of the biofouling process.

doi:10.1371/journal.pone.0123652.g001
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surroundings in a controlled fashion (self-polishing antifouling systems) [1,7], low-surface-en-
ergy fouling-release coatings [8], hybrid antifouling-fouling release coatings [9], engineered
microtopographies [10,11], enzyme-based coatings [12,13] or natural product antifoulants
[14,15]. As biofouling begins with the formation of a biofilm, which in turn conditions the sub-
sequent settlement of macroscopic organisms (Fig 1) [1,16], the use of inhibitors of bacterial
cell-to-cell communication or quorum sensing (QS) has emerged as a non-toxic mechanism
for the control of the early stages of the biofouling process [17].

Cationic compounds, such as quaternary ammonium and phosphonium salts, have been
used since the 1930s as disinfectants and antiseptics and they have stood out due to their
broad-spectrum antimicrobial activity and relatively low toxicity [18]. In comparison, phos-
phonium salts display better antimicrobial properties than their ammonium counterparts,
either as single molecules in solution [19] or in their polymeric forms [20]. Phosphonium cat-
ions also exhibit higher thermal stabilities and ionic conductivities [21,22]. Their use has not
been restricted to industrial environments and even in the biomedical field, phosphonium salts
have been proved to display better antitumoral activities and lower toxicities than ammonium
salts [23].

Over the last years, the abovementioned properties had led to the inclusion of phosphonium
moieties in polymers for biomedical applications [22,24], water treatment [25], food packaging
[26] or antifouling purposes [27,28]. They have been included in rubbers [29] or clays [30,31]
to confer antimicrobial properties on these materials. As alkyl-triphenylphosphonium cations
readily trespass the lipid bilayers, they have been employed as carriers to deliver drugs and
therapeutics inside the mitochondria [32,33] or genes inside cells [34]. Other fields of applica-
tion of phosphonium cations include the supramolecular chemistry [35,36], and the design of
smart materials due to their self-assembly properties [37].

Despite such an intensive research, there was still a missing piece: a comprehensive assess-
ment of their profile as antifouling agents with relevant fouling species that goes beyond the
classical view of these compounds as broad-spectrum antimicrobials. To that end, 20 alkyl-tri-
phenylphosphonium salts (Fig 2), differing in the length and functionalization of their alkyl
chains, were selected for their study in a multidisciplinary approach that included their biologi-
cal evaluation towards a wide panel of marine fouling organisms, an innovative use as bacterial
QS disruptors and mussel repellents, and an enzymatic and fluorescence-based characteriza-
tion as tyrosinase inhibitors, an enzyme that plays an essential role in mussel byssal production.
Overall, the findings reported herein provide a detailed description, based on the chemical
structure, of the profile of these molecules as active ingredients in antifouling coatings not nec-
essarily as biocides but also as non-toxic repellents and disruptors of key processes for the bio-
logical colonization of immersed substrata.

Materials and Methods
Chemicals

A total of 20 triphenylphosphonium salts were used in this study (Fig 2). Compounds 1-3, 11
and 15 were obtained from the chemical library of the Institute for Bioorganic Chemistry
“Antonio Gonzélez”, University of La Laguna. Compounds 4-7 were purchased from Sigma-
Aldrich, and compounds 9, 10, 14 and 16 were acquired from Alfa-Aesar. Compounds 8, 13,
and 17-20 were synthesized according to [38]. Briefly, a mixture of triphenylphosphine and
the corresponding alkyl bromide was refluxed for 48 h. The resulting salt was filtered, washed
in ether (x3) and dried. General methodological information and spectroscopic data relative to
the synthetic products are available in S1 File.
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*This compound lacks the bromide anion: 4-(Triphenylphosphonio)butane-1-sulfonate.

Fig 2. Structures and cLogP values of the compounds used in this study.

doi:10.1371/journal.pone.0123652.9002
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Octanol/water partition coefficients were calculated with MarvinSketch 6.0.0 (ChemAxon
Ltd., Budapest, Hungary). Unless otherwise stated, product samples were dissolved in dimethyl-
sulfoxide (DMSO) at a concentration of 40 mM and conserved at -202C. TBTO (Sigma- Aldrich)
was used as antifouling standard.

General considerations for bioassays

All the biological assays were run by triplicate. Unless otherwise stated, the cut-off concentra-
tion was set at 100 uM and the maximum proportion of solvent was 0.25% (v/v). A product
causing no effect at this concentration was considered not active. For the active products, serial
dilutions were performed to calculate the half-maximal inhibitory concentrations (ICs,) or the
minimal inhibitory concentrations (MIC). Unless otherwise stated, the test concentrations
were 100, 50, 25, 10, 5, 2.5, 1, 0.5 and 0.1 pM. Dose-response curves were adjusted with Graph-
Pad Prism 5 software using a four-parameter non-linear regression model.

Bioassays with marine bacteria

Six strains of marine bacteria were purchased from the Spanish Type Culture Collection
(CECT): Cobetia marina CECT 4278, Pseudoalteromonas atlantica CECT 579, Shewanella
algae CECT 5021, Vibrio alginolyticus CECT 521, Vibrio anguillarum CECT 4347 and Cellulo-
phaga lytica CECT 5014. Growth inhibition was assessed in Marine Broth (Conda) according
to CLSI guidelines for broth microdilution susceptibility testing [39]. The incubation time was
24 h and the incubation temperature was 302C. Flat-bottom microtiter plates were employed
(Nunc 167008). Bacterial growth inhibition was determined by measuring the optical density
at 625 nm (ODg,5).

Bioassays with marine-derived fungi

Three strains of marine-derived fungi were kindly provided by Dr. A. Trigos (University of Ve-
racruz, Mexico). The strains were isolated from reef organisms collected from the Veracruz
Reef System and identified as Aspergillus sp., Fusarium sp. and Alternaria sp. [40].

Fungal strains were cultured in Potato-Dextrose Agar (PDA) supplemented with filtered
seawater (FSW) (50% v/v) at 262C for 5 days prior to experiments. Bioassays for fungal
growth inhibition were conducted in 96-well plates in RPMI-1640 medium (+ L-Glutamine,—
NaHCOjs, Biochrom) supplemented with 2% glucose according to the EUCAST protocol [41].
Briefly, fungal inocula were prepared by addition of 5 ml of sterile saline solution to the cul-
tures. Gently swabbing released conidia. Inocula were adjusted to 2-5 x 10° cfu ml™* by count-
ing in a haemocytometer and diluted 1:10 in RPMI-1640 medium before dispensing into the
wells (100 pl) in the presence of the appropriate dilution of the test products in RPMI (100 ul).
The plates were incubated for 5 days at 262C. The calculation of the half-maximal inhibitory
concentrations (IC5) was performed using OD 495 as endpoint [42].

Bioassays with diatoms

Five strains of benthic diatoms, Nitszchia sp. BEA 0497, Navicula cf. salinicola BEA 0055,
Phaeodactylum tricornutum, Cylindrotheca sp. and Amphora sp. were used to study the effect
of the compounds on microalgal growth. The Nitzschia and Navicula strains were purchased
from the Spanish Bank of Algae (Marine Biotechnology Center, University of Las Palmas de
Gran Canaria). The other three strains were kindly provided by Dr. G. Courtois (University of
Las Palmas de Gran Canaria). Diatoms were cultured at 19+12C in Erlenmeyer flaks (250 ml)
containing 150 ml of Guillard’s F/2 medium, and subjected to a photoperiod of 18:6. Tests
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were run in 48-well plates. Inocula were prepared by adjusting diatom concentration to

2-4 x 10° cells ml™" using a Neubauer chamber. Test products were dissolved in F/2 medium
(500 ul) to which diatom inocula (500 ul) were added. Thus, the final assay volume was 1 ml
and the starting cell densities were ca. 1-2 x 10° diatoms ml™". Plates were incubated under the
abovementioned conditions for 5 days and then chlorophyll-a (Chla) was quantified.

In order to extract Chla, the content of each well was transferred to a microcentrifuge tube
and centrifuged at 10,000 rpm for 10 min. The supernatants were discarded and 200 pl of
DMSO were added to the pellets. The tubes were incubated at 652C for 2 h in total darkness
and vortexed every 30 min. Then, the content of each tube was transferred to a 96-well plate
and the amount of Chla was determined spectrophotometrically [43]. Path length correction
factor for the DMSQO extracts was determined [44].

Bioassays with macroalgal spores

To evaluate the effect of the phosphonium salts on the germination of macroalgal spores, Gayr-
alia oxysperma (Kiitzing) K.L.Vinogradova was selected as model organism. G. oxysperma
(Ulotrichales, Chlorophyta) is a cosmopolitan member of the Ulvophyceae [45]. Unlike Ulva
species, which produce biflagellate male and female gametes, as well as quadriflagellate spores,
G. oxysperma only produces biflagellate spores. This is an advantage as bioassays can be con-
ducted straightforwardly without the need to distinguish between gamete-producing and zoo-
spore-producing plants. G. oxysperma specimens were collected from the upper eulittoral at El
M¢édano, Tenerife, Canary Islands (UTM 28R 348359 3102405). Voucher specimens are depos-
ited as TFC Phyc 14912 (Herbarium University of La Laguna). Fresh fertile fragments were se-
lected and placed in Petri dishes. Spores were then released in Von Stosch Solution (VSS) by
the osmotic method [46,47]. Bioassays were conducted in flat-bottom 96-well plates as de-
scribed by Chambers and co-workers [48], with slight modifications. Each well was filled with
50 pl of the appropriate dilution of the products in VSS to which 50 pl of spore inoculum (ca.
2x 10” spores ml') were added. Plates were incubated at 19+1°C for 6 days. After the incuba-
tion time, the bottom of each well was examined for the presence of germinated spores with an
inverted microscope. A spore was considered as germinated when the germ tube was visible.
The MIC was recorded as the lowest concentration inhibiting spore germination.

Artemia salina tests

Artemia salina cysts (INVE Aquaculture, Ghent, Belgium) were hatched in brackish water

(30 %o salinity) at 282C with aeration and under constant light. Newly hatched instar I nauplii
were harvested for bioassays. Tests were conducted in 96-well plates (15+5 nauplii per well,
test volume = 200 pl). The number of dead and alive individuals was recorded after 24 h of in-
cubation at 282C and 24-hour photoperiod.

Quorum sensing bioassays with Chromobacterium violaceum

The reporter strain C. violaceum CVO26 (CECT 5999) was used to screen the ability of the
products to interfere with violacein production, a QS-regulated phenotype. C. violaceum
CV026 is a mini-Tn5 mutant that depends on an exogenous source of autoinducer (AI) (N-
hexanoyl homoserine lactone, HHL) for violacein production. C. violaceum CVO26 was cul-
tured in LB broth (Sigma-Aldrich) supplemented with 25 ug ml"' kanamycin. Inocula were
prepared by dilution (1:100) of an overnight culture of the reporter strain [49]. One hundred
microliters of inoculum with HHL (Sigma- Aldrich, 6 uM) or without the Al were added to
96-well plates containing 100 pl of the appropriate dilutions of the test products in LB. Thus,
two sets of plates were prepared. One set of plates (without HHL) was used to evaluate the
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effect of the products on bacterial growth, whereas the other set of plates (with HHL) was used
to evaluate their effect on violacein production. Both sets of plates were incubated at 302C with
agitation (150 rpm) for 18 h.

Growth inhibition was quantified in the first batch of plates by re-suspending bacterial pel-
lets and measuring the ODyg,s. From the second batch of plates violacein was extracted and
quantified [50]. Briefly, the plates were dried overnight (602C) and violacein was re-solubilized
by the addition of 200 ul of DMSO. The plates were shaken for 3 h and then the ODsg, was
determined.

Quorum sensing bioassays with Vibrio harveyi

V. harveyi BB120 (wild type strain), BB170 (luxN::Tn5kan), BB886 (luxPQ::Tn5kan) and
BB721 (luxO::Tn5lacZ) were acquired from ATCC. To screen the ability of the compounds to
interfere with QS, the test products were serially diluted in 100 ul of Autoinducer Bioassay
(AB) medium [51] using white, clear-bottom 96-well microtiter plates (Costar 3610) as assay
platform. Aerobic bacterial cultures were incubated overnight (302C) and diluted 1:50. One-
hundred pl of the diluted cultures were dispensed inside each well in the microtiter plate. That
gave a starting cell density of 1-2 x 10” cfu ml"". The plates were covered with a sterile sealing
film. Luminescence and ODg, were monitored every 15 min over 18 h with a multimode plate
reader (Perkin-Elmer EnSpire) in order to correlate the effects of the products on both the
growth and bioluminescence kinetics.

Tyrosinase inhibition assays

Mushroom tyrosinase (EC 1.14.18.1) was purchased from Sigma-Aldrich. Tyrosinase inhibi-
tion assays were conducted as described in [52] with slight modifications. First, in order to
characterize the Michaelis-Menten parameters of the enzyme kinetics, 100 ul of a mushroom
tyrosinase solution (25 U) in sodium phosphate buffer (50 mM, pH 6.5) were pipetted in each
well of a flat-bottom microtiter plate (Nunc 167008). Two-fold dilutions of L-Dopa, from

4.8 t0 0.075 mM (final concentrations) were mixed (100 ul) with the enzyme solution. The en-
zymatic reaction was followed by measuring the absorbance at 475 nm every 30 s over 15 min,
with shaking (150 rpm) between measurements. Temperature was kept constant at 302C. The
values of Ky and vp,,x under these conditions were obtained from Lineweaver-Burk plots.

For tyrosinase inhibition assays, each well of the microtiter plate was filled with 100 pl of a
mushroom tyrosinase solution and the appropriate amount of the test substance dissolved in
DMSO. The compounds were pre-incubated with the enzyme at 302C for 10 min. Subsequent-
ly, the enzymatic reaction was triggered by addition of 100 pl of L-Dopa (1.2 mM test concen-
tration). Formation of dopachrome was followed by measuring the absorbance at 475 nm as
described above. Kojic acid (Sigma-Aldrich) was used as positive control.

Fluorescence spectroscopy analysis

Fluorescence measurements of tyrosinase solutions were performed using an Edinburgh Instru-
ments LifeSpec II fluorescence spectrometer, exciting the complexes at 280 nm with an Edin-
burgh Instruments EPLED-280 subnanosecond pulsed diode source (typically pulse width at
half maximum around 860 ps, repetition rate 10 MHz) and using Edinburg Instruments F900 ac-
quisition software. A multichannel plate photomultiplier was used as the detector using single
photon counting technique. Lifetime estimation was made using instrument response function
(IRF) reconvolution analysis with FAST software by Edinburgh Instruments, providing a tempo-
ral resolution around 0.2 ns. A blank medium without enzyme was used to confirm that the col-
lected fluorescence comes from the enzyme molecules and any influence of the fluorescence of
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the quencher and buffer components on the enzyme fluorescence is negligible. Enzyme solutions
(2 mg ml™") were prepared in phosphate buffer (50 mM, pH 6.5) in the presence of different con-
centrations of compound 16 (0-30 pM). A denatured enzyme sample was prepared by mixing
the enzyme solution with an extremely high quencher concentration (1 mM), which provides a
surfactant effect.

Mussel foot retraction assay

The mussel Mytilus galloprovincialis was used as target organism. Individuals of 4.0-4.5 cm
shell length were collected at intertidal rocky shore of the outer Ria de Vigo (NW Spain). Ani-
mals were kept in running seawater aquarium tanks with open-flow design for few days and
fed daily by pulses with a mixture of the microalgae (Tahitian Isochrysis aff. galbana) and sedi-
ment from the seafloor below the mussel rafts.

Mussel foot retracting assay was conducted following the method reported by Hayashi and
Miki [53]. Briefly, subsamples of individuals from the maintenance tanks were transferred to
containers filled with 1-um FSW. After 30 min, the posterior adductor muscle (PAM) was cut
to open both animal s valves as shown in S1A Fig, and byssus filaments were removed from
their insertion with the soft tissues. Animals were disposed individually on flexible innocuous
plasticine basis as a holder still for 15 min in FSW. The latter disposition avoided animal s ma-
nipulation before and after each test solution was dripped directly on the foot of immobilized
animals. FSW was removed and animals exposed their internal cavities in dry conditions for
the dripping actions but maintaining a humidity layer over soft tissues.

Initially two different controls (negative and positive) were considered. As negative control,
2.5 pl of DMSO in 0.2-pm FSW was used. Only animals that did not react were considered fur-
ther. After the negative control test, the animals were disposed back in 1-pum FSW for 15 min.
With regard to the positive control, 1000 ppm of CuSO, was used. For the latter case, only ani-
mals that did react to such positive control were used. After this second control, animals were
disposed back in 1-um FSW, this time for 25 min in order to remove completely any rest of cop-
per. All animals considered for the experiment have accomplished the two controls satisfactorily.

Different concentrations (6.25, 12.5, 25, 50, 100 and 200 uM) of two test compounds, 3 and
16 were used. Stocks of 40 mM for the two compounds under investigation were prepared in
DMSO. Posterior dilution actions to get the distinct concentrations desired were prepared with
0.2-um FSW. Concentrations were tested in ascending order from 6.25 to 200 M. Animals
were kept in 0.2-um FSW for 15 min at each time interval between sampling with the aim to
wash the internal soft tissues. After each removal of seawater, animals were ready to use again.

Eight series of ten animals each were considered for retracting muscle foot analysis and each
test compound. Each potential foot-reacting substance was individually dripped on the foot of
the mussels (S1B Fig) and the animal’s reactions were noted. Activity was reported for each test
compound concentration as the percentage of mussels showing reaction at several concentra-
tions of the test compound according to the formula: (No. of reacted mussels / No. of total
mussels) x 100. Final data are given as means +SD.

Results and Discussion

In this study, the antifouling profile of a collection of 20 alkyl triphenylphosphonium salts has
been evaluated in detail. These compounds have a common triphenylphosphonium moiety
and differ in the length of and chemical functionalities present in the alkyl chain (Fig 2).

To that end, the compounds were assayed in a panel composed by target microscopic and mac-
roscopic fouling species, as well as an acute toxicity model (A. salina), QS models (C. viola-
ceum, V. harveyi), and an enzymatic model (tyrosinase). In the following sections, organized
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according to the kind of activity displayed, insights about their modes of action and structure-
activity relationships are discussed.

Biocidal activity

The biocidal profile of the compounds evaluated is summarized in Table 1. The following lines
discuss the results showed therein. With respect to their bioactivity, a borderline can be estab-
lished below C; alkyl chains. These short-chain compounds were in general not active inhibit-
ing bacterial or fungal growth with a few exceptions with P. atlantica and C. lytica. These
products were also unable to inhibit the germination of G. oxysperma spores (only compounds
1 and 5 exhibited activity at 100 uM) and displayed little or null toxicity in A. salina nauplii,
with the only exception of 5 that exhibited an unusually low LC5, of 17.2 uM. Apparently, the
secondary amine bound to the phosphorus atom is the responsible for this activity, since it is
the only difference between 5 and 7 (LCs, > 100 uM). Conversely, diatoms were more sensitive
to the action of the products, and ICs, values in the range 8.2-81.5 M were determined for
this subset of compounds.

A clear shift in terms of activity is observed for products with alkyl chains of C;, or above. In
the antibacterial tests, the lowest ICs, values were generally achieved by compounds 12-14. In-
deed, the activity reached a maximum for alkyl chains between C,, and C;4, with a rapid loss of
activity for longer chains. The activity for this group of compounds was notably better than
that displayed by TBTO. However, the presence of a carboxyl group at the end of the hydrocar-
bon chain (compound 19) led to a total loss of activity, not only with bacteria but in all the bio-
assays conducted. Activity towards fungi followed an analogous pattern to that described for
bacteria. In this case, the lowest ICs values were recorded for compounds 13-15. Interestingly,
the presence of an additional triphenylphosphonium moiety (compound 20) lowered the ICsq
to values below that of TBTO. In diatoms, the decrease in the activity for very long alkyl chains
was only evident in Nitzschia sp. Low-uM or even nM ICs, values (compounds 18 and 20, P.
tricornutum) were recorded. These results in microalgae contrast with the relatively high MICs
(50 uM, compounds 9-16) necessary to suppress macroalgal spore germination. Only 20
achieved an activity equivalent to that of TBTO. In A. salina tests, the activity increased step-
wise with the length of the hydrocarbon chain. In fact, compounds 17 and 18 exhibited a very
potent activity, with LCs, values below 500 nM, and all compounds with C, alkyl chains or
higher surpassed the activity of the TBTO control, with the abovementioned exception of com-
pound 19, which was inactive.

The mode of action of cationic biocides has been intensively described, primarily as antibac-
terial agents, and it is often depicted in six sequential stages: 1) adsorption on the bacterial cell
wall, caused by electrostatic interaction between the negatively-charged bacterial surface and
the cationic compound [9]; 2) diffusion through the cell wall; 3) attachment to the cell mem-
brane; 4) lysis of the cell membrane; 5) leakage of the cytoplasmic contents and 6) cell death
[54]. The ability to kill microbial cells by contact has promoted the use of quaternary ammoni-
um and phosphonium compounds as disinfectants and antiseptics in solution over decades or,
more recently, incorporated into materials surfaces and polymers for the avoidance of microbi-
al biofilm formation [55].

There is a clear correlation between the length of the alkyl chain and the biocidal activity
(Table 1 and Fig 3). This correlation was highly dependent on the target cell. This phenomenon
has often been linked to the increased hydrophobicity of the compounds with longer alkyl
chains and the subsequent decrease in the critical micellar concentration (cmc), thus facilitat-
ing a surfactant mode of action [19]. It should be recalled that the ICs, values determined for
the products used in this study are well below their cmcs [56], thus cell death is unrelated to a
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Fig 3. Correlation between the activity and the cLogP of the compounds evaluated in this study. Data correspond to three representative organisms:
Vibrio alginolyticus (blue squares), Fusarium sp. (red triangles) and Phaeodactylum tricornutum (green circles). Dotted lines show the cLogP of each
compound, whose ID. number is indicated above. Missing symbols indicate lack of activity.

doi:10.1371/journal.pone.0123652.9003

surfactant activity. Fig 3 shows the activity of the compounds in function of their cLogP value in
three tested microbial cells. For instance, for the Gram-negative bacterium V. alginolyticus, the
optimal activity is achieved by compound 15, whereas alkyl chains of C,5 and above caused com-
plete loss of activity. These findings are in fair agreement with previously reported data [57]. For
the filamentous fungus Aspergillus sp., a similar trend is observed in the homologous series, al-
though the compounds with the longest alkyl chains remained active. However, for the diatom
P. tricornutum the activity improved as cLogP increased. This is likely due to the different nature
and chemical composition of the microbial cell wall in each case. Nonetheless, cLogP alone is
not the only factor affecting the biocidal effect of quaternary phosphonium compounds in solu-
tion. Two examples are evidenced in this study: 19 and 20. The incorporation of a carboxyl moi-
ety at the end of the alkyl chain (19) causes a decrease in cLogP from 9.06 (11) to 7.74 (19). This
value is still above the ‘virtual threshold” established by heptyl triphenylphosphonium bromide
(8) as discussed previously. However, 19 is inactive, a fact likely derived from a different state of
aggregation of the compound in solution. At alkaline pH (7-8), the carboxyl group exists as a
carboxylate and may interact with the positively charged triphenylphosphonium moiety. As
alkyl-triphenylphosphonium compounds need to trespass the biological membranes, this config-
uration leads to the inactivation of the compound. Conversely, 20 has two positive charges and
interacts strongly with the negatively-charged cell membranes.

Quorum sensing inhibition

Biofilm formation is a first stage in the biofouling process (Fig 1). The development of biofilms
is a crucial step in the whole phenomenon as they alter the microtopograhy and physicochemi-
cal properties of the surface and, as a consequence of microbial metabolism and signaling,

they change the chemical nature of the surface and produce an array of chemical cues that can
deter, but more frequently attract, the arrival of secondary and tertiary colonizers [58].

QS, or bacterial intercellular communication, regulates bacterial gene expression as a func-
tion of population density [59]. The process relies on the production, excretion and detection
of signaling molecules (generally, small molecules such as acyl homoserine lactones in Gram-
negatives and small peptides in Gram-positives) so that, when a threshold extracellular
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concentration of Als is achieved, bacterial gene expression is altered. Among the QS-regulated
processes are biofilm formation and maturation [60-63]. There is clear evidence that the settle-
ment of macrofouling organisms is modulated by the development of bacterial biofilms, as it is
the case, for instance, of the polychaete Hydroides elegans [64,65], or Ulva species, whose zoo-
spores can detect acyl homoserine lactones as positive cues for settlement [66]. For this reason,
QS inhibitors have been proposed over the last few years as a mean to disrupt, or at least delay,
biofouling [67,68]. QS inhibitors are an attractive antifouling treatment since they constitute a
means of controlling biofilm formation without exerting a selective pressure (i.e. toxicity) on
bacterial populations, thus avoiding bacterial resistance towards biocidal treatments. Indeed,
bacterial cells in biofilms are up to 1000 times more resistant—or, more precisely, more toler-
ant- to chemical treatment than their planktonic counterparts [69].

To evaluate the effect of the alkyl triphenylphosphonium salts on QS-regulated phenotypes,
an initial screening at the cut-off concentration of 100 uM was conducted with C. violaceum
CV026. The QS model of C. violaceum is relatively simple and consists of an acyl-homoserine
lactone synthase (Cvil) that produces the AI molecule N-hexanoyl homoserine lactone (HHL,
strain ATCC 31532), or N-3-hydroxydecanoyl homoserine lactone (strain ATCC 12472) [70]
which is recognized by the cytoplasmic receptor CviR (Fig 4). The reporter strain CVO26 is a
Cvil::mini-Tn5 mutant of strain ATCC 31532 and thus recognizes HHL. CviR is a DNA-bind-
ing transcription factor that activates the expression of the genes encoding the production of
violacein, the characteristic purple alkaloid that gives name to the species [70].

Interestingly, an inverse correlation between the length of the alkyl chain and the inhibition
of the QS-regulated phenotype was found. Indeed, the inhibitions observed in violacein pro-
duction for long alkyl chains (10-18, 20) were clearly correlated to the biocidal effect exerted
by these compounds, with ‘therapeutic ratios’ (ICs, for growth inhibition/ICs for violacein in-
hibition) around 1, in general (Table 2). Note that, as the length of the hydrocarbon chain be-
comes shorter, this ratio increased (8-9). Compounds 1 and 2 were inactive. However, four
compounds (3-5, 7) displayed an attractive profile as QS inhibitors, with ICs, values for bacte-
rial growth inhibition above the highest test concentration and consequently high therapeutic
indexes (Table 2). To evaluate these compounds in further detail, 40-mM stock solutions were
prepared in water to avoid the use of high concentrations of DMSO in the bioassays. As com-
pound 7 has a poor solubility in water a 200-mM stock in DMSO was prepared. Serial two-fold
dilutions (500-3.9 M) were assayed. Consequently, the highest amount of DMSO used in the
assay was 0.25% (v/v). The recorded ICs, values for growth inhibitions were all above 500 uM,
whereas violacein inhibitions were in the range 52.9-142.2 uM (Table 2 and Fig 5). In terms of
growth kinetics, concentrations up to 250 pM of these compounds did not display any signifi-
cant effect (Fig 6 and S2 Fig). Growth inhibitory effects are only observed at 500 pM, particu-
larly for compound 7 (Fig 6D).

To check whether the compounds were able to thwart other QS-regulated phenotypes and
gain knowledge on their molecular targets, products 3-5 and 7 were evaluated in the more
complex QS model of Vibrio harveyi (Fig 4B). In V. harveyi, three Als are synthesized by LuxM
(produces the HAI-1 signal, an acyl homoserine lactone), LuxS (AI-2 signal, a furanosyl borate
diester) and CqsA (CAI-1 signal, an o-amino ketone), respectively. These signals are believed
to mediate intra-species, inter-species and intra-genera communication, respectively [71].
These Als are detected by three membrane sensors: LuxN, LuxPQ and CgsS, respectively. At
low AI concentrations, the receptors phosphorylate the 6°*-dependent response regulator
LuxO by means of the phosphotransferase LuxU, which activates the production of Quorum-
regulatory RNAs (Qrr sRNAs), four of which, together with the chaperone Hfq, target and de-
stabilize the mRNA that encodes the master regulator LuxR. On the contrary, at high AI
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Fig 4. Quorum sensing circuits of Chromobacterium violaceum (A) and Vibrio harveyi (B). In C. violaceum ATCC 31532 (A), the synthase Cvil
produces the Al molecule HHL that is recognized by the cytoplasmatic receptor CviR. When bound to HHL, CviR dimerizes and binds DNA, leading to the
expression of QS-regulated genes, including those involved in violacein production. In V. harveyi (B), three different Als, synthesized by LuxM, LuxS and
CqgsA are recognized by the transmembrane two-component receptors LuxN, LuxPQ and CgsS, respectively. At low Al concentrations, these receptors act
as kinases, phosphorylating LuxU and subsequently the 6>*-dependent response regulator LuxO. The phosphorylated LuxO activate the transcription of Qrr
sRNAs that together with the chaperone Hfq, destabilize the mluxR RNA. At high Al concentrations, the receptors switch to phosphatases and the expression
of the master regulator LuxR is allowed.

doi:10.1371/journal.pone.0123652.9004

concentrations, the QS receptors dephosphorylate LuxO via LuxU, allowing the expression of
more than 100 genes, those encoding luciferase amongst them [72].

Compounds 3-5 and 7 were evaluated in V. harveyi WT and three mutant strains: BB886
(luxPQ::Tn5Kan), unable to detect AI-2; BB170 (luxN::Tn5Kan), unable to detect HAI-1; and
BB721 (luxO::Tn5lacZ), a LuxO null mutant that produces maximal luminescence per cell con-
stitutively. In order to take into account the cumulative effects of the compounds, biolumines-
cence and growth were measured simultaneously every 15 min over 18 h (Fig 7). Accordingly,
IC5 values for bacterial luminescence and growth were obtained by integration of the areas
under the curves for each tested dose (Table 3). For clarity of the graphs, error bars has been
omitted in Fig 7 and only the mean curves are shown. A detailed version of this Fig. showing
the dispersion of the results is provided as S3 Fig. Several deductions can be inferred from
these data:

First, regarding the growth curves, some toxicity was observed at the highest dose (500 uM),
evidenced as a growth delay, for compounds 4 and 5 (Fig 7E-7H and 71-7L). This effect was

Table 2. Half-maximal inhibitory concentrations (uM) for the tested compounds on the growth and
violacein production of C. violaceum CV026.

Compound IC5o (Growth inhibition) IC5 (Violacein inhibition) Ratio (GI/VI)
1 >100 >100 =

2 >100 >100 -

3 >500 92.3 >5.4
4 >500 142.2 >3.5
5 >500 136.8 >3.7
6 >100 >100 -

7 >500 52.9 >9.5
8 52.5 19.0 2.8
9 16.0 7.6 21
10 11.9 7.7 1.6
11 4.9 15 1.4
12 10.3 6.6 1.6
13 3.2 3.9 0.8
14 2.3 4.6 0.5
15 2.6 1.2 22
16 3.2 4.2 0.8
17 7.0 7.0 1.0
18 40.1 35.2 1.1
19 >100 >100 -

20 12.8 16.7 0.8

The index on the right column is calculated as the ratio between the ICs, value for growth inhibition (Gl)
and that for violacein (VI).

doi:10.1371/journal.pone.0123652.t002
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more prominent for compound 7 (Fig 7M-7P) but notably lower for compound 3, which in-
deed did not cause any substantial effect on bacterial growth (Fig 7A-7D). In addition, inhibi-
tions in bioluminescence were not strictly proportional to the inhibitions impaired on bacterial
growth, evidenced by the bioluminescence:growth ratios shown in Fig 8. Thus, toxicity does
not explain by itself the effects observed in the luminescent phenotype. Second, according to
the IC5, data for the different signaling pathways presented in Table 3, although the ICs, values
obtained for inhibitions in the AI-2-mediated QS were slightly lower than those obtained for
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Fig 6. Growth curves of C. violaceum CV0O26 in the presence of compounds 3 (A), 4 (B), 5 (C) and 7 (D). Serial two-fold dilutions of the compounds from
500 to 7.8 M were tested. A detailed version of this Fig is provided (S2 Fig).

doi:10.1371/journal.pone.0123652.9g006

that mediated by HAI-1, there seem to be no clear preference of the compounds for one or an-
other receptor, further confirmed by the luminescence inhibitions observed for the LuxO null
mutant. Since V. harveyi BB721 is constitutively bright, we deduce that any luminescence inhi-
bition in this strain, if observed, should be due to interaction of the test substance with ele-
ments downstream LuxO (although strictly, an inhibition caused by direct interaction of the
compounds with the luciferase enzyme cannot be discarded with these data; the possibility of
multiple targets cannot be discarded either). Third, it is particularly evident a non-monotonic
dose-response relationship for compound 5 (Fig 7I-7L and Fig 8) which is in marked contrast
with the monotonic trend of the other three phosphonium bromides. This non-monotonic be-
havior is more evident in the HAI and AI2” mutants (Fig 7] and 7K), and less accused in the
WT and LuxO" strains (Fig 7I and 7L), suggesting a preferential interaction with the LuxN and
LuxPQ receptors. Since these are membrane-bound proteins, this evidence agrees with the
mode of action of triphenylphosphonium compounds, which target and trespass the cell
membranes.

There are very few reports of QS inhibition by quaternary “-onium’ salts. For instance, qua-
ternary ammonium compounds such as calmidazolium has been proven to interfere with QS
in V. harveyi [73], whereas Peach and co-workers highlighted two miltefosine-related

PLOS ONE | DOI:10.1371/journal.pone.0123652 April 21,2015 16/30
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Fig 7. Bioluminescence (solid lines) and growth curves (dotted lines) for compounds 3-5 and 7 in V. harveyi. Compound 3 (A-D); compound 4 (E-H);
compound 5 (I-L); compound 7 (M-P). Serial two-fold dilutions of the compounds from 500 to 7.8 uM were tested.

doi:10.1371/journal.pone.0123652.9g007

compounds as hits in a high-throughput screening of biofilm inhibitors in V. choleare [74]. In
that case, however, the authors did not study if biofilm inhibition was caused by QS disruption
or through any other mechanism. To the best of our knowledge, this is the first report of QS
disruption by phosphonium compounds. In the present study, compounds 3-5 and 7 did not
cause a substantially different response in either the LuxN receptor nor in the LuxPQ receptor.
Evidence of QS disruption downstream LuxO further supports the existence of more than one
target in the QS signaling circuit. Interestingly, the effect of compound 5 followed a non-mono-
tonic trend. This kind of response was unexpected for a QS disruptor, but it is not uncommon
in pharmacology, in particular for endocrine disruptors and hormones [75]. Among the causes
attributed for this kind of response, one of the most common is nonselectivity [75]. Even

Table 3. IC5, values (uM) for luminescence and growth inhibitions caused by compounds 3-5 and 7 in
V. harveyi WT and reporter strains.

Compound Luminescence Growth
WT BB886 BB170 BB721

3 296.7 265.2 251.0 348.5 >500

4 >500 306.9 225.8 >500 >500

5% >500 >500 >500 >500 >500

7 205.1 179.4 128.6 276.4 >500

*Non-monotonic response.

doi:10.1371/journal.pone.0123652.t003
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Fig 8. Relative luminescence ratios (Light units/ODgq) for compounds 3-5 and 7 in V. harveyi. WT (A), BB886 (B), BB170 (C) and BB721 (D). Serial
two-fold dilutions of the compounds from 500 to 7.8 uM were tested.

doi:10.1371/journal.pone.0123652.9008

though evidence of QS disruption, unrelated to toxic effects, is deduced from the present find-
ings, the precise mechanisms describing how these compounds thwart bacterial cell-to-cell
communication remain to be elucidated. It is worth to recall that, since quaternary phosphoni-
um compounds have shown a promising profile as therapeutics and drug carriers [76-82], the
present findings immediately suggest a potential use as coadjuvants in antibiotherapy or other
antibacterial treatments (e.g. luminescent vibriosis in aquaculture [83]).

Tyrosinase inhibition

Tyrosinases (polyphenol oxidases) are ubiquitous enzymes whose function is the catalysis of
the hydroxilation of monophenols to o-monophenols, and the subsequent oxidation of the lat-
ter to o-quinones [84,85]. Tyrosinases play a key role in many biochemical processes, from the
biosynthesis of pigments such as melanin to sclerotisation of insect cuticules or the production
of biological adhesives such as those of barnacles and mussels [85,86]. Mussels become at-
tached to rocks in the intertidal zone through the production of adhesive threads termed byssi.
Byssogenesis occurs in three stages [87]: 1) the mussel explores a surface with a muscular
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organ termed ‘foot” and, when a suitable place is found, the mussel cleans the surface of unat-
tached matter and gets prepared for byssal secretion with contractional movements of the foot;
2) the foot is pressed tightly to the surface and a pull of adhesive proteins rich in DOPA resi-
dues is secreted, forming a byssal thread and a terminal plaque within few minutes; 3) the foot
is retracted and the process is repeated to form more threads (S1 Video). Tyrosinases are pres-
ent in the proteinaceous secretions of the foot glands and are involved in the curation (cross-
linking) of the polymeric adhesive through the oxidation of DOPA (post-transcriptionally con-
versed to tyrosine) to o-quinone [87,88].

Tyrosinase inhibition is thus a key target for the laboratory testing of antifouling molecules.
Although Mytilus sp. phenoloxidase differs to some extent from that of the widespread com-
mercial source (Agaricus bisporus), the latter was used for the in-vitro testing of the phosphoni-
um compounds since a) it is non-expensive and commercially available, thus making it suitable
for screening purposes, and b) it has been previously proposed for antifouling testing [89].
Under our experimental conditions, the kinetic parameters Ky; and v,,,, obtained for the cata-
lytic conversion of L-Dopa to dopaquinone were 0.8-1.0 mM and 0.07-0.09 AU min". As
Table 4 shows, only compounds with alkyl chains of C;,-C,, exhibited ICs, values below the
cut-off concentration of 100 uM. A steep shift in the activity is observed for lengths above C, 4,
with a performance similar to that of the known tyrosinase inhibitor kojic acid. However, com-
pound 20 did not display relevant inhibitions at the tested concentrations. Thus, it is deduced
that the inhibitory activity is caused by the interaction of the alkyl chain with the enzyme,
which is reverted by the presence of a second cationic moiety.

Compound 16 was selected to further characterize the type of inhibition displayed by the
triphenylphosphonium salts. Lineweaver-Burk plots of the inhibited enzyme by a dose around
the IC5( (15 pM) and double (30 pM) in comparison to the uninhibited enzyme yielded a
group of straight lines that converged at their intersection with the x axis (Fig 9). This pattern
corresponds to a non-competitive inhibition, in which the inhibitor has the same affinity for
the free enzyme than for the enzyme-substrate complex. These results suggest that compound
16 inhibits tyrosinase activity by causing a conformational change derived from its binding to
an allosteric site.

Fluorescence of enzymes is very sensitive to conformational changes of the protein struc-
ture. The interaction of tyrosinase inhibitors can be evaluated by the analysis of the intrinsic ty-
rosinase fluorescence when tyrosinase and inhibitor (quencher) molecules are mixed in a
solution. In particular, we have evaluated the effect of the tyrosinase inhibitor 16. Quenching
of tyrosinase fluorescence is expected as a consequence of conformational alterations induced

Table 4. Tyrosinase IC5, values (uM) for the compounds tested in this study.

Compound IC50 (LM)
1-11 >100
12 94.5
13 78.9
14 347
15 28.4
16 17.5
17 15.0
18 12.3
19 >100
20 >100
Kojic acid 16.5

doi:10.1371/journal.pone.0123652.t004
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Fig 9. Lineweaver-Burk plots for tyrosinase inhibition in the presence of compound 16. Data represent
the mean £ SD (N = 3).
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by the quencher [90,91]. Tryptophan residues are basically responsible of the tyrosinase fluo-
rescence when the compound is optically excited at around 280 nm. Fig 10 shows the fluores-
cence emission spectra of tyrosinase enzymes mixed with different quencher concentrations.
The quencher concentrations chosen in this study ranged from zero (native enzyme) to 30 uM.
This upper limit is well below the cmc threshold, which is estimated to be around 100 uM [56].
In this way, we assure that the reported tyrosinase fluorescence quenching is due to enzyme-in-
hibitor interaction and it is not related to any detergent-like side effect. In addition to this, a de-
natured enzyme sample was included in the study for comparison purposes. Quenching of the
fluorescence intensity is observed as the concentration of the inhibitor increases. In some cases,
a red-shift is expected in the maximum of the emission wavelength, which is associated to a
higher exposure of the tryptophan residues in the distorted protein structure to the polar
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Fig 10. Fluorescence spectra of tyrosinase under 280 nm excitation at different concentrations of 16. The denatured and uninhibited enzyme were
included as controls. Inset: Stern-Volmer plot of the fluorescence quenching.

doi:10.1371/journal.pone.0123652.9010
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environment of the solvent [92]. However, there is no significant red-shift in the emission spec-
tra, which indicates that the tryptophan residues are not very much exposed to the
solvent environment.

Fluorescence quenching can be described by the Stern-Volmer equation:

L =14k (1)

where Fy and F are the fluorescence intensities before and after the addition of the quencher, re-
spectively, [Q] is the concentration of the quencher, and Kgy is the Stern-Volmer quenching
constant, which indicates the sensitivity of the enzyme to the quencher. A linear dependence of
the ratio Fo/F on the quencher concentration can be observed in the inset of Fig 10. This is nor-
mally an indication of a single class of fluorophore, tryptophan residues, which are equally acces-
sible to the quencher. The Kgy constant of about 4490 M ™" has been obtained from the best
fitting of the Stern-Volmer plot to a linear equation. Two possible quenching mechanisms pro-
vide linear Stern-Volmer plots. On the one hand, collisional quenching of the fluorescence oc-
curs when the quencher diffuses to the fluorophore during the lifetime of its excited state. The
excited molecule returns to its ground state without emission of radiation due to contact with
the quencher. This is a dynamic process, in which there is no permanent distortion of the pro-
tein. On the other hand, static quenching happens when a molecular complex is formed between
the fluorophore and the quencher. In order to distinguish which of the two mechanisms is re-
sponsible of the tyrosinase fluorescence quenching, lifetime measurements can be performed.

In the case of collisional quenching (dynamic quenching) the lifetime of the excited state of
the fluorophore decreases with the quencher concentration according to the following equa-
tion:

T
?0 =1+ K[Q] (2)
Consequently,
E_ 1
0_X 3
ET (3)

This means that a shortening of the lifetime equal to that of the fluorescence intensity shoud
be expected.

However, if static quenching is occurring, the enzyme-quencher complexes are non-fluores-
cent. This means that the fluorescence detected comes from proteins which have not interacted
with the quencher and, consequently, their lifetime remains the same.

The decay of the PL has been measured under excitation at 280 nm and detection at the
maximum emission wavelength (Fig 11). A similar exponential decay curve has been measured
for the native enzyme and for the enzyme-inhibitor solutions up to the highest quencher con-
centration used (30 uM). This result indicates that static quenching is responsible of the fluo-
rescence quenching observed. When the data are fitted to an exponential decay curve the best
fit is obtained for a lifetime value of about 2.3 ns. In contrast, a significant drop of the fluores-
cence lifetime to 0.75 ns is measured for the denatured enzyme.

The fact that the lifetime of the enzyme-quencher solutions is the same than that of the
native enzyme indicates that the quenching of the fluorescence is due to a static process,
which occurs by the formation of a permanent enzyme-quencher complex which is non-fluo-
rescent. The short decay of the denatured protein is probably due to the unfolding of the en-
zyme, which exposes the tryptophan residues to the solvent environment introducing new
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Fig 11. Decay of the fluorescence of tyrosinase tryptophan residues at different concentrations of
compound 16. IRF is the instrumental response function.

doi:10.1371/journal.pone.0123652.g011

non-radiative relaxation mechanisms, which are responsible of the shortening of the lifetime
and decrease of the intensity of the fluorescence.

Mussel foot retraction assay

At this point, two groups of triphenylphosphonium compounds can be distinguished: those in-
hibiting QS-regulated phenotypes, with a non-toxic mode of action (3-5, 7) and those with a
broad-spectrum biocidal and tyrosinase inhibitory activity (12-18). To investigate the behavior
of both kinds of compounds as mussel repellents, a representative compound of each class was
selected to be tested in M. galloprovincialis. Thus, compounds 3 and 16 were selected for fur-
ther evaluation. As described before, mussels explore substrata with their feet before byssal for-
mation. Consequently, substances causing a repellent response (evidenced by foot retraction)
are likely to deter mussels from settling.

Both 3 and 16 caused rather similar mussel foot retraction behaviors, with a clear dose-de-
pendent effect (Fig 12). The highest test concentration (200 M) caused the strongest effect for
both tested compounds (94-95%). Mean increments between consecutive increasing tests on
the whole range of concentrations represented approximately two-fold increase for both com-
pounds with maxima of four-fold and three-fold increase from 12.5 to 25 uM and 6.25 to
12uM for both 16 and 3, respectively. The concentration of both compounds required to cause
foot repulsion in 50% of mussels was 47 and 34 uM for 3 and 16, respectively (Fig 12). Visual
evidence of these results in comparison to the positive (CuSO,) and negative (FSW) control
can be observed in $2-54 Videos.

Conclusions

In this study, the antifouling profile 20 triphenylphosphonium salts has been comprehensively
evaluated (Fig 13). The activity displayed by these compounds fall into four main categories:
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Fig 12. Dose-response curves for compunds 3 and 16 in mussel (Mytilus galloprovincialis) foot
retraction assays.

doi:10.1371/journal.pone.0123652.9g012

1. Broad-spectrum biocides against marine microorganisms, macroalgal spores and inverte-
brates. These compounds interacted strongly with the biological membranes due to their
high lipophilicity (> C;) or positive charge (20).

2. Tyrosinase inhibition, caused by compounds with alkyl chains above C; ;. This activity was
notably higher for compounds 16-18, with ICs, values similar to that of kojic acid, in the
low-micromolar range. The type of inhibition was non-competitive. Fluorescence spectros-
copy analyses confirmed that the inhibition was due to a static process, caused by the forma-
tion of a permanent enzyme-quencher complex.

3. QS inhibition. Four compounds in this series (3-5 and 7) exhibited a promising behavior as
QS disruptors in two bacterial models: C. violaceum and V. harveyi. These compounds were
non-toxic to bacteria at inhibitory concentrations and, in particular, compound 3 did not
exert any toxic effect up to 500 uM. The evaluation in V. harveyi mutants suggests non-spec-
ificity, likely with multiple molecular targets, including elements downstream LuxO.

4. Mussel foot repellents. Compounds 3 (a QS inhibitor) and 16 (a broad-spectrum biocide
and potent tyrosinase inhibitor) were tested in mussel foot retraction assays with Mytilus
galloprovincialis as test organism. Both compounds exhibited a similar behavior, with effec-
tive doses of 47 and 34 uM, respectively.

Recall that compounds with negatively-charged functionalities at the end of the alkyl chain
(6, 19) were inactive, probably as a consequence of a different arrangement in solution.

The findings reported in this study widen the scope of use of triphenylphosphonium com-
pounds as antifouling additives. However, it is worth to recall that the activities reported herein
have been demonstrated with molecules in solution and it remains to test whether they are able
to exhibit the same properties in functionalized material surfaces for antifouling protection.
Since their biocidal properties has been exploited over decades to confer antimicrobial proper-
ties on different kinds of materials, it is likely that the new activities presented herein for this
family of compounds will be retained as well.

Whereas the use of biocides is environmentally safe only when they are immobilized (e.g.
functionalized surfaces) or they are easily biodegraded and released in a controlled way (e.g.
self-polishing coatings), the use of non-toxic inhibitors of key processes for the biological
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Fig 13. Summary of this study. The different colors highlight the main bioactivities and the structure-activity relationships of the tested
triphenylphosphonium salts.

doi:10.1371/journal.pone.0123652.9013

colonization of material surfaces is more versatile and desirable. In this regard, it is particularly
prospective the discovery of the ability of certain triphenylphosphonium compounds to disrupt
bacterial cell-to-cell communication without exerting significant toxicities. We are aware that
these properties could be also exploited in other fields not necessarily related to marine anti-
fouling protection.

The promising profile of these non-toxic compounds was reinforced by the similar response
that compound 3 caused in mussel foot retraction tests in comparison to compound 16, which
would implicate such non-toxic product selection for fouling impact analysis as a powerful
strategy in terms of environmental impact versus broad-spectrum product efficiency balance.
Those innocuous products for the biological environment that exert powerful repelling actions
on the mussel feet (at least comparable to other components with high biocidal action) might
be desirable for dealing with fouling impact. Nonetheless, it is necessary to keep in mind the
gap between the antifouling impact and the mussel foot-repelling actions we are checking,
which are more comparable to a negative chemotactic response rather than an inhibitory effect
on mussel attachment.

Overall, this study re-focus on the antifouling properties of alkyl triphenylphosphonium
compounds from a different perspective, including new biological targets such as tyrosinase in-
hibition or bacterial intercellular communication. As far as we are aware, this study reports for
the first time the QS inhibitory properties of phosphonium compounds, which deserve a par-
ticular in-depth evaluation.

Supporting Information

S1 Fig. Arrangement of M. galloprovincialis individuals employed in foot retraction assays.
The posterior adductor muscle is cutted to open both valves (A), and the foot-retracting assay
is conducted by dipping the test solutions onto the animal’s feet (B).

(TIF)
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S2 Fig. Growth curves of C. violaceurn CV026 in the presence of compounds 3 (A), 4 (B), 5
(C) and 7 (D). Serial two-fold dilutions of the compounds from 500 to 7.8 uM were tested.
Data represent the mean + SD (N = 3).

(TIF)

S3 Fig. Bioluminescence (solid lines) and growth curves (dotted lines) for compounds 3-5
and 7 in V. harveyi. Compound 3 (A-D); compound 4 (E-H); compound 5 (I-L); compound 7
(M-P). Serial two-fold dilutions of the compounds from 500 to 7.8 uM were tested. Data repre-
sent the mean + SD (N = 3).

(TIF)

S1 File. General methodological information and spectroscopic data of the compounds syn-
thesized for this study.
(DOCX)

S1 Video. Time-lapse sequence of byssal thread formation. The sequence, that covers 4-5 h
of continuous recording, shows clearly how the mussel extends its foot to explore the surface
and produces a byssal thread.

(MP4)

$2 Video. Mussel foot-retraction response to FSW (negative control).
(MP4)

$3 Video. Mussel foot-retraction response to 1000 ppm CuSO, (positive control).
(MP4)

$4 Video. Mussel foot-retraction response to 200 uM of compound 3.
(MP4)
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